A Scientometric Review on Imbibition in Unconventional Reservoir: A Decade of Review from 2010 to 2021
Abstract
:1. Introduction
2. Research Methodology
2.1. Literature Collection Work
2.2. Analysis of Citespace Software
3. Scientometric Analysis
3.1. Characteristic Analysis of Imported Literature
3.1.1. Analysis of National Cooperation
3.1.2. Analysis of Institutional Cooperation
3.1.3. Author’s Collaborative Analysis
3.2. Keyword Coexistence and Evolution Analysis
3.2.1. Keyword Co-occurrence
3.2.2. Keyword Evolution
3.3. Co-citation Analysis
3.3.1. Reference
3.3.2. Author Co-citation
Author | Title | Cited Frequency | Cited Frequency (Per Year) | Cited Frequency from 2016 to 2020 | Cited Frequency in 2020 |
---|---|---|---|---|---|
Berg et al. | Real-time 3D imaging of Haines jumps in porous media flow [33] | 346 | 38.4 | 246 | 63 |
Cai et al. | Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries with Variably Shaped Apertures [34] | 335 | 41.88 | 236 | 57 |
Cai et al. | A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media [35] | 294 | 26.73 | 178 | 32 |
Cai et al. | Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media [36] | 257 | 21.42 | 168 | 23 |
Dehghanpour et al. | Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Imbibition and Resulting Microfractures [37] | 243 | 27 | 171 | 32 |
Zhao et al. | Wettability control on multiphase flow in patterned microfluidics [38] | 224 | 37.33 | 163 | 59 |
Huber et al. | Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion, and flow in nanoporous media [39] | 202 | 28.86 | 162 | 30 |
Cai et al. | An analytical model for spontaneous imbibition in fractal porous media including gravity [40] | 190 | 19 | 103 | 16 |
Dehghanpour et al. | Liquid Intake of Organic Shales [41] | 179 | 17.9 | 121 | 24 |
Krevor et al. | Capillary trapping for geologic carbon dioxide storage—From pore-scale physics to field-scale implications [42] | 175 | 25 | 132 | 41 |
3.3.3. Journal Co-citation
3.4. Cluster Analysis
4. Discussion
4.1. Existing Knowledge Domains
4.1.1. Year-by-Year Growth Trend
4.1.2. National Cooperation Network
4.1.3. Main Research Scholars
4.1.4. Keyword Co-occurrence Network
4.1.5. Publication Journals
4.1.6. Main Cluster Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, R.J.; Almond, S.; Ward, R.S.; Jackson, R.B.; Adams, C.; Worrall, F.; Herringshaw, L.G.; Gluyas, J.G.; Whitehead, M.A. Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Mar. Pet. Geol. 2014, 56, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.M.; Tweheyo, M.T.; Austad, T. Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloid Surf. A Physicochem. Eng. Asp. 2007, 301, 199–208. [Google Scholar] [CrossRef]
- Lin, D.; Wang, J.; Yuan, B.; Shen, Y. Review on gas flow and recovery in unconventional porous rocks. Adv. Geo-Energy Res. 2017, 1, 39–53. [Google Scholar] [CrossRef]
- You, Q.; Wang, H.; Zhang, Y.; Liu, Y.F.; Fang, J.C.; Dai, C.L. Experimental study on spontaneous imbibition of recycled fracturing flow-back fluid to enhance oil recovery in low permeability sandstone reservoirs. J. Pet. Sci. Eng. 2018, 166, 375–380. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Ning, Z.F.; Ye, X.F.; Wang, Q.; Zhang, W.T. New insights into spontaneous imbibition in tight oil sandstones with NMR. J. Pet. Sci. Eng. 2019, 179, 455–464. [Google Scholar] [CrossRef]
- Jin, J.F.; Sun, J.S.; Rong, K.S.; Lv, K.H.; Nguyen, T.A.H.; Wang, R.; Huang, X.B.; Bai, Y.R.; Liu, J.P.; Wang, J.T. Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review. Energies 2020, 13, 4591. [Google Scholar] [CrossRef]
- Cai, J.C.; Luo, L.; Ye, R.; Zeng, X.F.; Hu, X.Y. Recent Advances on Fractal Modeling of Permeability for Fibrous Porous Media. Patterns Scaling Nat. Soc. 2015, 23, 9. [Google Scholar] [CrossRef]
- Tian, W.B.; Wu, K.L.; Gao, Y.; Chen, Z.X.; Gao, Y.L.; Li, J. A Critical Review of Enhanced Oil Recovery by Imbibition: Theory and Practice. Energy Fuels 2021, 35, 5643–5670. [Google Scholar] [CrossRef]
- Diamantopoulos, E.; Durner, W. Dynamic Nonequilibrium of Water Flow in Porous Media: A Review. Vadose Zone J. 2012, 11, 18. [Google Scholar] [CrossRef]
- Gambaryan-Roisman, T. Liquids on porous layers: Wetting, imbibition and transport processes. Curr. Opin. Colloid Interface Sci. 2014, 19, 320–335. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. A scientometric review of global research on sustainability and sustainable development. J. Clean Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation—The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Podoba, Z.S.; Lavrova, A.V. “Shale Revolution” In The Usa And Its Impact on the International Trade Flows of Oil and Gas. Mosc. Univ. Econ. Bull. 2021, 1, 3–32. [Google Scholar] [CrossRef]
- Liu, X.J.; Xiong, J.; Liang, L.X. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J. Nat. Gas Sci. Eng. 2015, 22, 62–72. [Google Scholar] [CrossRef]
- Tang, J.Z.; Li, J.W.; Tang, M.R.; Du, X.F.; Yin, J.; Guo, X.Y.; Wu, K.; Xiao, L.Z. Investigation of multiple hydraulic fractures evolution and well performance in lacustrine shale oil reservoirs considering stress heterogeneity. Eng. Fract. Mech. 2019, 218, 18. [Google Scholar] [CrossRef]
- Zou, C.N.; Yang, Z.; Zhu, R.K.; Zhang, G.S.; Hou, L.H.; Wu, S.T.; Tao, S.Z.; Yuan, X.J.; Dong, D.Z.; Wang, Y.M.; et al. Progress in China’s Unconventional Oil & Gas Exploration and Development and Theoretical Technologies. Acta Geol. Sin.-Engl. Ed. 2015, 89, 938–971. [Google Scholar]
- Li, H.T.; Wei, N.; Jiang, L.; Zhao, J.Z.; Cui, Z.J.; Sun, W.T.; Zhang, L.H.; Zhou, S.W.; Xu, H.M.; Zhang, X.C.; et al. Evaluation of Experimental Setup and Procedure for Rapid Preparation of Natural Gas Hydrate. Energies 2020, 13, 531. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.K.; Yang, L.; Shen, Y.H.; Ren, K.; Meng, F.B.; Ji, W.M.; Wu, S. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids. Pet. Sci. 2015, 12, 636–650. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.H.; Ewing, R.P.; Rowe, H.D. Low nanopore connectivity limits gas production in Barnett formation. J. Geophys. Res.-Solid Earth 2015, 120, 8073–8087. [Google Scholar] [CrossRef]
- Cai, J.C.; Lin, D.L.; Singh, H.; Wei, W.; Zhou, S.W. Shale gas transport model in 3D fractal porous media with variable pore sizes. Mar. Pet. Geol. 2018, 98, 437–447. [Google Scholar] [CrossRef]
- Chen, C.M.; Chen, Y.; Horowitz, M.; Hou, H.Y.; Liu, Z.Y.; Pellegrino, D. Towards an explanatory and computational theory of scientific discovery. J. Informetr. 2009, 3, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Binazadeh, M.; Xu, M.X.; Zolfaghari, A.; Dehghanpour, H. Effect of Electrostatic Interactions on Water Uptake of Gas Shales: The Interplay of Solution Ionic Strength and Electrostatic Double Layer. Energy Fuels 2016, 30, 992–1001. [Google Scholar] [CrossRef]
- Dehghanpour, H.; DiCarlo, D.A. Drainage of Capillary-Trapped Oil by an Immiscible Gas: Impact of Transient and Steady-State Water Displacement on Three-Phase Oil Permeability. Transp. Porous Media 2013, 100, 297–319. [Google Scholar] [CrossRef]
- Shen, Y.H.; Meng, M.M.; Liu, T.; Ge, H.K.; Zhang, Y.L. Impact of Petrophysical Properties on Hydraulic Fracturing and Development in Tight Volcanic Gas Reservoirs. Geofluids 2017, 2017, 5235140. [Google Scholar] [CrossRef] [Green Version]
- Li, C.X.; Shen, Y.H.; Ge, H.K.; Zhang, Y.J.; Liu, T. Spontaneous imbibition in fractal tortuous micro-nano pores considering dynamic contact angle and slip effect: Phase portrait analysis and analytical solutions. Sci. Rep. 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Meng, M.M.; Ge, H.K.; Shen, Y.H.; Ji, W.M. Evaluation of the Pore Structure Variation During Hydraulic Fracturing in Marine Shale Reservoirs. J. Energy Resour. Technol.-Trans. ASME 2021, 143, 10. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.K.; Shi, X.; Cheng, Y.F.; Zhang, K.H.; Chen, H.; Shen, Y.H.; Zhang, J.J.; Qu, X.M. The effect of microstructure and rock mineralogy on water imbibition characteristics in tight reservoirs. J. Nat. Gas Sci. Eng. 2016, 34, 1461–1471. [Google Scholar] [CrossRef]
- Lan, Q.; Ghanbari, E.; Dehghanpour, H.; Hawkes, R. Water Loss Versus Soaking Time: Spontaneous Imbibition in Tight Rocks. Energy Technol. 2014, 2, 1033–1039. [Google Scholar] [CrossRef]
- Alinejad, A.; Dehghanpour, H. Evaluating porous media wettability from changes in Helmholtz free energy using spontaneous imbibition profiles. Adv. Water Resour. 2021, 157, 8. [Google Scholar] [CrossRef]
- Wei, W.; Cai, J.C.; Xiao, J.F.; Meng, Q.B.; Xiao, B.Q.; Han, Q. Kozeny-Carman constant of porous media: Insights from fractal-capillary imbibition theory. Fuel 2018, 234, 1373–1379. [Google Scholar] [CrossRef]
- Berg, S.; Ott, H.; Klapp, S.A.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Enzmann, F.; Schwarz, J.O.; et al. Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA 2013, 110, 3755–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.C.; Perfect, E.; Cheng, C.L.; Hu, X.Y. Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries with Variably Shaped Apertures. Langmuir 2014, 30, 5142–5151. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.C.; Yu, B.M. A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transp. Porous Media 2011, 89, 251–263. [Google Scholar] [CrossRef]
- Cai, J.C.; Yu, B.M.; Zou, M.Q.; Luo, L. Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media. Energy Fuels 2010, 24, 1860–1867. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Lan, Q.; Saeed, Y.; Fei, H.; Qi, Z. Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Adsorption and Resulting Microfractures. Energy Fuels 2013, 27, 3039–3049. [Google Scholar] [CrossRef]
- Zhao, B.Z.; MacMinn, C.W.; Juanes, R. Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. USA 2016, 113, 10251–10256. [Google Scholar] [CrossRef] [Green Version]
- Huber, P. Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. J. Phys.-Condes. Matter 2015, 27, 43. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.C.; Hu, X.Y.; Standnes, D.C.; You, L.J. An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloid Surf. A Physicochem. Eng. Asp. 2012, 414, 228–233. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Zubair, H.A.; Chhabra, A.; Ullah, A. Liquid Intake of Organic Shales. Energy Fuels 2012, 26, 5750–5758. [Google Scholar] [CrossRef]
- Krevor, S.; Blunt, M.J.; Benson, S.M.; Pentland, C.H.; Reynolds, C.; Al-Menhali, A.; Niu, B. Capillary trapping for geologic carbon dioxide storage—From pore scale physics to field scale implications. Int. J. Greenh. Gas Control 2015, 40, 221–237. [Google Scholar] [CrossRef] [Green Version]
Keyword | Frequency | Centrality |
---|---|---|
2010–2014 | ||
Porous media | 101 | 0.28 |
Imbibition | 76 | 0.18 |
Flow | 72 | 0.06 |
Model | 64 | 0.19 |
Capillary pressure | 34 | 0.01 |
Two-phase flow | 28 | 0.12 |
Water | 27 | 0.12 |
Permeability | 26 | 0.06 |
Wettability | 21 | 0.02 |
Simulation | 17 | 0.00 |
Saturation | 16 | 0.07 |
Relative permeability | 16 | 0.02 |
Oil recovery | 13 | 0.21 |
Multiphase flow | 10 | 0.04 |
Oil | 10 | 0.03 |
2015–2020 | ||
Porous media | 308 | 0.21 |
Imbibition | 241 | 0.21 |
Flow | 222 | 0.14 |
Spontaneous imbibition | 173 | 0.13 |
Model | 149 | 0.10 |
Wettability | 143 | 0.24 |
Water | 138 | 0.01 |
Permeability | 107 | 0.07 |
Oil recovery | 61 | 0.01 |
Recovery | 61 | 0.01 |
Simulation | 59 | 0.03 |
Dynamics | 54 | 0.00 |
Two-phase flow | 53 | 0.06 |
Saturation | 41 | 0.00 |
Fluid | 23 | 0.00 |
Journal | Host Country | Count | Percentage |
---|---|---|---|
Journal of Petroleum Science and Engineering | The Netherlands | 170 | 9.392% |
Energy & Fuels | USA | 116 | 6.409% |
Transport In Porous Media | The Netherlands | 98 | 5.414% |
Journal of Natural Gas Science and Engineering | England | 82 | 4.530% |
Water Resources Research | USA | 71 | 3.922% |
Advances in Water Resources | England | 64 | 3.536% |
Fuel | England | 62 | 3.425% |
SPE Journal | USA | 52 | 2.873% |
Chemical Engineering Science | USA | 33 | 1.823% |
SPE Reservoir Evaluation & Engineering | USA | 33 | 1.823% |
Journal | Host Country | Citation |
---|---|---|
Energy & Fuels | USA | 2373 |
Journal of Petroleum Science and Engineering | The Netherlands | 2351 |
Transport in Porous Media | The Netherlands | 1798 |
Water Resources Research | USA | 1740 |
Journal of Natural Gas Science and Engineering | England | 1674 |
Advances in Water Resources | England | 1674 |
Fuel | England | 1098 |
SPE Journal | USA | 624 |
Chemical Engineering Science | USA | 574 |
SPE Reservoir Evaluation & Engineering | USA | 526 |
Cluster-ID | Size | Cluster Label | Silhouette Score | Mean (Cite Year) |
---|---|---|---|---|
#0 | 43 | Spontaneous imbibition | 0.707 | 2013 |
#1 | 43 | Porous media | 0.707 | 2011 |
#2 | 31 | Flow | 0.703 | 2011 |
#3 | 29 | Capillary imbibition | 0.702 | 2011 |
#4 | 16 | Oil recovery | 0.747 | 2012 |
#5 | 15 | Contact angle | 0.783 | 2013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Yang, D.; Liang, C.; Li, Y.; He, M.; Jia, J.; He, J. A Scientometric Review on Imbibition in Unconventional Reservoir: A Decade of Review from 2010 to 2021. Processes 2023, 11, 845. https://doi.org/10.3390/pr11030845
Yang L, Yang D, Liang C, Li Y, He M, Jia J, He J. A Scientometric Review on Imbibition in Unconventional Reservoir: A Decade of Review from 2010 to 2021. Processes. 2023; 11(3):845. https://doi.org/10.3390/pr11030845
Chicago/Turabian StyleYang, Liu, Duo Yang, Chen Liang, Yuxue Li, Manchao He, Junfei Jia, and Jianying He. 2023. "A Scientometric Review on Imbibition in Unconventional Reservoir: A Decade of Review from 2010 to 2021" Processes 11, no. 3: 845. https://doi.org/10.3390/pr11030845
APA StyleYang, L., Yang, D., Liang, C., Li, Y., He, M., Jia, J., & He, J. (2023). A Scientometric Review on Imbibition in Unconventional Reservoir: A Decade of Review from 2010 to 2021. Processes, 11(3), 845. https://doi.org/10.3390/pr11030845