Real-Time Structure Generation Based on Data-Driven Using Machine Learning
Abstract
:1. Introduction
2. Structural Optimization Theory and Data Sample
3. Deep Learning and Training
3.1. Data Reduction
3.2. Feedforward Neural Network
3.3. The Implementation of Real-Time Topology Optimization Algorithm
3.4. Discussion on Network Parameters
3.5. Realization of Real-Time Topology Optimization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanush, S.S.; Manjaiah, M. Topology optimization of aerospace part to enhance the performance by additive manufacturing process. Mater. Today Proc. 2022, 62, 7373–7378. [Google Scholar] [CrossRef]
- Zhou, H.M.; Zhang, B.; Shao, X.Y.; Tian, Y.P.; Guo, W.; Gu, Q.; Wang, T. Adaptive compensation method for real-time hybrid simulation of train-bridge coupling system. Struct. Eng. Mech. 2022, 83, 93–108. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Z.; Wei, K. Shape morphing structures inspired by multi-material topology optimized bi-functional metamaterials. Compos. Struct. 2022, 300, 116135. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.S. Topology optimization of hard-magnetic soft materials. J. Mech. Phys. Solids 2022, 158, 104628. [Google Scholar] [CrossRef]
- López, J.; Valizadeh, N.; Rabczuk, T. An isogeometric phase–field based shape and topology optimization for flexoelectric structures. Comput. Methods Appl. Mech. Eng. 2021, 391, 114564. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, H.; Yang, M.; Alexandersen, J. Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model. Int. J. Heat Mass Transf. 2020, 154, 119681. [Google Scholar] [CrossRef] [Green Version]
- Sahimi, M.; Tahmasebi, P. Reconstruction, optimization, and design of heterogeneous materials and media: Basic principles, computational algorithms, and applications. Phys. Rep. 2021, 939, 1–82. [Google Scholar] [CrossRef]
- da Silveira, T.; Baumgardt, G.; Rocha, L.; dos Santos, E.; Isoldi, L. Numerical simulation and constructal design applied to biaxial elastic buckling of plates of composite material used in naval structures. Compos. Struct. 2022, 290, 115503. [Google Scholar] [CrossRef]
- Uddin, M.; Haq, S. RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4208–4214. [Google Scholar] [CrossRef]
- Jensen, P.D.L.; Sigmund, O.; Groen, J.P. De-homogenization of optimal 2D topologies for multiple loading cases. Comput. Methods Appl. Mech. Eng. 2022, 399, 115426. [Google Scholar] [CrossRef]
- Yarlagadda, T.; Zhang, Z.; Jiang, L.; Bhargava, P.; Usmani, A. Solid isotropic material with thickness penalization—A 2.5D method for structural topology optimization. Comput. Struct. 2022, 270, 106857. [Google Scholar] [CrossRef]
- Nguyen, S.H.; Nguyen, T.N.; Nguyen-Thoi, T. A finite element level-set method for stress-based topology optimization of plate structures. Comput. Math. Appl. 2022, 115, 26–40. [Google Scholar] [CrossRef]
- Wang, L.; Shi, D.; Zhang, B.; Li, G.; Liu, P. Real-time topology optimization based on deep learning for moving morphable components. Autom. Constr. 2022, 142, 104492. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Zhai, J.; Hou, Z.; Han, Q. Topological optimization design on constrained layer damping treatment for vibration suppression of aircraft panel via improved Evolutionary Structural Optimization. Aerosp. Sci. Technol. 2021, 112, 106619. [Google Scholar] [CrossRef]
- Garus, S.; Sochacki, W. Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm. Wave Motion 2020, 98, 102645. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Yvonnet, J. A SIMP-phase field topology optimization framework to maximize quasi-brittle fracture resistance of 2D and 3D composites. Theor. Appl. Fract. Mech. 2021, 114, 102919. [Google Scholar] [CrossRef]
- Yang, D.; Liu, H.; Zhang, W.; Li, S. Stress-constrained topology optimization based on maximum stress measures. Comput. Struct. 2018, 198, 23–39. [Google Scholar] [CrossRef]
- Zhang, W.; Song, J.; Zhou, J.; Du, Z.; Zhu, Y.; Sun, Z.; Guo, X. Topology optimization with multiple materials via moving morphable component (MMC) method. Int. J. Numer. Methods Eng. 2017, 113, 1653–1675. [Google Scholar] [CrossRef]
- Zhang, W.; Zhong, W.; Guo, X. An explicit length scale control approach in SIMP-based topology optimization. Comput. Methods Appl. Mech. Eng. 2014, 282, 71–86. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, J.; Zhang, W.; Du, Z.; Liu, C.; Liu, Y. Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 2017, 323, 27–63. [Google Scholar] [CrossRef] [Green Version]
- Aswathi, R.R.; Jency, J.; Ramakrishnan, B.; Thanammal, K. Classification Based Neural Network Perceptron Modelling with Continuous and Sequential data. Microprocess. Microsyst. 2022, 104601, in press. [Google Scholar] [CrossRef]
- Djenouri, Y.; Belhadi, A.; Lin, J.C.-W. Recurrent neural network with density-based clustering for group pattern detection in energy systems. Sustain. Energy Technol. Assess. 2022, 52, 102308. [Google Scholar] [CrossRef]
- Surendranatha, G.; Naidu, B.V.V.; Gangaraju, M.; Sarapure, S.; Hemanth, K. Development of predictive models for wire electrical discharge machining of aluminium metal matrix composites by using regression analysis and neural network. Mater. Today Proc. 2022, 68, 1581–1587. [Google Scholar] [CrossRef]
- Lin, Q.; Hong, J.; Liu, Z.; Li, B.; Wang, J. Investigation into the topology optimization for conductive heat transfer based on deep learning approach. Int. Commun. Heat Mass Transf. 2018, 97, 103–109. [Google Scholar] [CrossRef]
- Ulu, E.; Zhang, R.; Kara, L.B. A data-driven investigation and estimation of optimal topologies under variable loading configurations. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, 4, 61–72. [Google Scholar] [CrossRef]
- Lei, X.; Liu, C.; Du, Z.; Zhang, W.; Guo, X. Machine Learning-Driven Real-Time Topology Optimization Under Moving Morphable Component-Based Framework. J. Appl. Mech. 2019, 86, 11004. [Google Scholar] [CrossRef]
- Yu, Y.; Hur, T.; Jung, J.; Jang, I.G. Deep learning for determining a near-optimal topological design without any iteration. Struct. Multidiscip. Optim. 2019, 59, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Cang, R.; Yao, H.; Ren, Y. One-shot generation of near-optimal topology through theory-driven machine learning. Comput. Des. 2019, 109, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-H.; Wang, J.-H.; Chu, X.; Yu, R.-Q. Neural network learning to non-linear principal component analysis. Anal. Chim. Acta 1996, 336, 209–222. [Google Scholar] [CrossRef]
Design Domain Size L | Sample Size D | Eigen-Images Size M | Neurons Size N | Number of Hidden Layers H |
---|---|---|---|---|
100 × 50 | 100 | 20 | 20 | 2 |
100 × 50 | 200 | 40 | 40 | 2 |
100 × 50 | 300 | 60 | 60 | 2 |
100 × 50 | 400 | 80 | 80 | 2 |
100 × 50 | 500 | 100 | 100 | 2 |
100 × 50 | 600 | 120 | 120 | 2 |
100 × 50 | 700 | 140 | 140 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shi, F.; Chen, B. Real-Time Structure Generation Based on Data-Driven Using Machine Learning. Processes 2023, 11, 802. https://doi.org/10.3390/pr11030802
Wang Y, Shi F, Chen B. Real-Time Structure Generation Based on Data-Driven Using Machine Learning. Processes. 2023; 11(3):802. https://doi.org/10.3390/pr11030802
Chicago/Turabian StyleWang, Ying, Feifei Shi, and Bingbing Chen. 2023. "Real-Time Structure Generation Based on Data-Driven Using Machine Learning" Processes 11, no. 3: 802. https://doi.org/10.3390/pr11030802
APA StyleWang, Y., Shi, F., & Chen, B. (2023). Real-Time Structure Generation Based on Data-Driven Using Machine Learning. Processes, 11(3), 802. https://doi.org/10.3390/pr11030802