Real-Time Structure Generation Based on Data-Driven Using Machine Learning
Abstract
1. Introduction
2. Structural Optimization Theory and Data Sample
3. Deep Learning and Training
3.1. Data Reduction
3.2. Feedforward Neural Network
3.3. The Implementation of Real-Time Topology Optimization Algorithm
3.4. Discussion on Network Parameters
3.5. Realization of Real-Time Topology Optimization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanush, S.S.; Manjaiah, M. Topology optimization of aerospace part to enhance the performance by additive manufacturing process. Mater. Today Proc. 2022, 62, 7373–7378. [Google Scholar] [CrossRef]
- Zhou, H.M.; Zhang, B.; Shao, X.Y.; Tian, Y.P.; Guo, W.; Gu, Q.; Wang, T. Adaptive compensation method for real-time hybrid simulation of train-bridge coupling system. Struct. Eng. Mech. 2022, 83, 93–108. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Z.; Wei, K. Shape morphing structures inspired by multi-material topology optimized bi-functional metamaterials. Compos. Struct. 2022, 300, 116135. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.S. Topology optimization of hard-magnetic soft materials. J. Mech. Phys. Solids 2022, 158, 104628. [Google Scholar] [CrossRef]
- López, J.; Valizadeh, N.; Rabczuk, T. An isogeometric phase–field based shape and topology optimization for flexoelectric structures. Comput. Methods Appl. Mech. Eng. 2021, 391, 114564. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, H.; Yang, M.; Alexandersen, J. Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model. Int. J. Heat Mass Transf. 2020, 154, 119681. [Google Scholar] [CrossRef]
- Sahimi, M.; Tahmasebi, P. Reconstruction, optimization, and design of heterogeneous materials and media: Basic principles, computational algorithms, and applications. Phys. Rep. 2021, 939, 1–82. [Google Scholar] [CrossRef]
- da Silveira, T.; Baumgardt, G.; Rocha, L.; dos Santos, E.; Isoldi, L. Numerical simulation and constructal design applied to biaxial elastic buckling of plates of composite material used in naval structures. Compos. Struct. 2022, 290, 115503. [Google Scholar] [CrossRef]
- Uddin, M.; Haq, S. RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4208–4214. [Google Scholar] [CrossRef]
- Jensen, P.D.L.; Sigmund, O.; Groen, J.P. De-homogenization of optimal 2D topologies for multiple loading cases. Comput. Methods Appl. Mech. Eng. 2022, 399, 115426. [Google Scholar] [CrossRef]
- Yarlagadda, T.; Zhang, Z.; Jiang, L.; Bhargava, P.; Usmani, A. Solid isotropic material with thickness penalization—A 2.5D method for structural topology optimization. Comput. Struct. 2022, 270, 106857. [Google Scholar] [CrossRef]
- Nguyen, S.H.; Nguyen, T.N.; Nguyen-Thoi, T. A finite element level-set method for stress-based topology optimization of plate structures. Comput. Math. Appl. 2022, 115, 26–40. [Google Scholar] [CrossRef]
- Wang, L.; Shi, D.; Zhang, B.; Li, G.; Liu, P. Real-time topology optimization based on deep learning for moving morphable components. Autom. Constr. 2022, 142, 104492. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Zhai, J.; Hou, Z.; Han, Q. Topological optimization design on constrained layer damping treatment for vibration suppression of aircraft panel via improved Evolutionary Structural Optimization. Aerosp. Sci. Technol. 2021, 112, 106619. [Google Scholar] [CrossRef]
- Garus, S.; Sochacki, W. Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm. Wave Motion 2020, 98, 102645. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Yvonnet, J. A SIMP-phase field topology optimization framework to maximize quasi-brittle fracture resistance of 2D and 3D composites. Theor. Appl. Fract. Mech. 2021, 114, 102919. [Google Scholar] [CrossRef]
- Yang, D.; Liu, H.; Zhang, W.; Li, S. Stress-constrained topology optimization based on maximum stress measures. Comput. Struct. 2018, 198, 23–39. [Google Scholar] [CrossRef]
- Zhang, W.; Song, J.; Zhou, J.; Du, Z.; Zhu, Y.; Sun, Z.; Guo, X. Topology optimization with multiple materials via moving morphable component (MMC) method. Int. J. Numer. Methods Eng. 2017, 113, 1653–1675. [Google Scholar] [CrossRef]
- Zhang, W.; Zhong, W.; Guo, X. An explicit length scale control approach in SIMP-based topology optimization. Comput. Methods Appl. Mech. Eng. 2014, 282, 71–86. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, J.; Zhang, W.; Du, Z.; Liu, C.; Liu, Y. Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 2017, 323, 27–63. [Google Scholar] [CrossRef]
- Aswathi, R.R.; Jency, J.; Ramakrishnan, B.; Thanammal, K. Classification Based Neural Network Perceptron Modelling with Continuous and Sequential data. Microprocess. Microsyst. 2022, 104601, in press. [Google Scholar] [CrossRef]
- Djenouri, Y.; Belhadi, A.; Lin, J.C.-W. Recurrent neural network with density-based clustering for group pattern detection in energy systems. Sustain. Energy Technol. Assess. 2022, 52, 102308. [Google Scholar] [CrossRef]
- Surendranatha, G.; Naidu, B.V.V.; Gangaraju, M.; Sarapure, S.; Hemanth, K. Development of predictive models for wire electrical discharge machining of aluminium metal matrix composites by using regression analysis and neural network. Mater. Today Proc. 2022, 68, 1581–1587. [Google Scholar] [CrossRef]
- Lin, Q.; Hong, J.; Liu, Z.; Li, B.; Wang, J. Investigation into the topology optimization for conductive heat transfer based on deep learning approach. Int. Commun. Heat Mass Transf. 2018, 97, 103–109. [Google Scholar] [CrossRef]
- Ulu, E.; Zhang, R.; Kara, L.B. A data-driven investigation and estimation of optimal topologies under variable loading configurations. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, 4, 61–72. [Google Scholar] [CrossRef]
- Lei, X.; Liu, C.; Du, Z.; Zhang, W.; Guo, X. Machine Learning-Driven Real-Time Topology Optimization Under Moving Morphable Component-Based Framework. J. Appl. Mech. 2019, 86, 11004. [Google Scholar] [CrossRef]
- Yu, Y.; Hur, T.; Jung, J.; Jang, I.G. Deep learning for determining a near-optimal topological design without any iteration. Struct. Multidiscip. Optim. 2019, 59, 787–799. [Google Scholar] [CrossRef]
- Cang, R.; Yao, H.; Ren, Y. One-shot generation of near-optimal topology through theory-driven machine learning. Comput. Des. 2019, 109, 12–21. [Google Scholar] [CrossRef]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [Google Scholar] [CrossRef]
- Jiang, J.-H.; Wang, J.-H.; Chu, X.; Yu, R.-Q. Neural network learning to non-linear principal component analysis. Anal. Chim. Acta 1996, 336, 209–222. [Google Scholar] [CrossRef]













| Design Domain Size L | Sample Size D | Eigen-Images Size M | Neurons Size N | Number of Hidden Layers H |
|---|---|---|---|---|
| 100 × 50 | 100 | 20 | 20 | 2 |
| 100 × 50 | 200 | 40 | 40 | 2 |
| 100 × 50 | 300 | 60 | 60 | 2 |
| 100 × 50 | 400 | 80 | 80 | 2 |
| 100 × 50 | 500 | 100 | 100 | 2 |
| 100 × 50 | 600 | 120 | 120 | 2 |
| 100 × 50 | 700 | 140 | 140 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shi, F.; Chen, B. Real-Time Structure Generation Based on Data-Driven Using Machine Learning. Processes 2023, 11, 802. https://doi.org/10.3390/pr11030802
Wang Y, Shi F, Chen B. Real-Time Structure Generation Based on Data-Driven Using Machine Learning. Processes. 2023; 11(3):802. https://doi.org/10.3390/pr11030802
Chicago/Turabian StyleWang, Ying, Feifei Shi, and Bingbing Chen. 2023. "Real-Time Structure Generation Based on Data-Driven Using Machine Learning" Processes 11, no. 3: 802. https://doi.org/10.3390/pr11030802
APA StyleWang, Y., Shi, F., & Chen, B. (2023). Real-Time Structure Generation Based on Data-Driven Using Machine Learning. Processes, 11(3), 802. https://doi.org/10.3390/pr11030802

