Multi-Dataset Hyper-CNN for Hyperspectral Image Segmentation of Remote Sensing Images
Abstract
:1. Introduction
- We build a recurrent 2D-CNN model as a further step toward capitalizing on the spatial context (R-2DCNN). As the area of the patch gets smaller, the R-2D-CNN is able to focus more intently on the core pixel, which allows it to extract more meaningful information from it. Experiments show that the R-2D-CNN model performs significantly better than its predecessor, the 2D-CNN model.
- In order to solve the issue of noisy patches, we develop a spatially and spectrally aware recurrent 3D-CNN model, which we refer to as R-3DCNN. The R-3D-CNN model improves the functionality of the 3D-CNN architecture by reducing the patch size in an iterative manner. As a result, rather than relying on information about patches, the final classification of each pixel relies significantly on information about individual pixels. Experiments provide evidence that demonstrates that the R-3D-CNN model is superior to other models. Most notably, it offers the highest level of classification accuracy that is practical and converges at a faster rate than other methods.
- The proposed HSI classification approach outperforms state-of-the-art conventional and deep-learning-based HSI algorithms with less labelled samples, as shown by experiments conducted on the Indian Pines, Pavia University, and Salinas HSI benchmark datasets.
2. Literature Review
- (a)
- Developing a robust and efficient method for automatic land cover classification using hyperspectral images. The problem addresses the need for a fast and accurate method for land cover classification, which is important for applications such as urban planning and natural resource management.
- (b)
- Improving the performance of anomaly detection in hyperspectral images using deep-learning models. The problem addresses the challenge of detecting anomalies in high-dimensional and complex hyperspectral data, which is important for applications such as mineral exploration and environmental monitoring.
- (c)
- Investigating the use of multi-dataset hyper-CNN for hyperspectral image segmentation of remote sensing images. The problem addresses the need for an effective method for segmentation of hyperspectral images, which is important for applications such as object detection and tracking in surveillance and monitoring.
- (d)
- Investigating the use of 3D-CNN for hyperspectral image classification. The problem addresses the need for an efficient and accurate method for hyperspectral image classification, which is important for applications such as land cover mapping and mineral exploration. Table 1 displays a meta-analysis of prior state-of-the-art studies.
3. Methodology
3.1. Dataset Description
3.1.1. Indian Pines
3.1.2. Pavia Dataset
3.1.3. Salinas Valley Dataset
3.2. Architecture of 3D-CNN
3.3. Principle Component Analyses
3.4. Feature Mapping
3.5. Flatten Layers
3.6. Output Layers
4. Results
4.1. Image Segmentation
4.2. Detection
4.3. Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, V.; Diba, A.; Tuytelaars, T.; Van Gool, L. Hyperspectral CNN for Image Classification & Band Selection, with Application to Face Recognition; Technical Report: KUL/ESAT/PSI/1604; KU LEUVEN: Leuven, Belgium, 2016. [Google Scholar]
- Hameed, M.; Yang, F.; Bazai, S.U.; Ghafoor, M.I.; Alshehri, A.; Khan, I.; Baryalai, M.; Andualem, M.; Jaskani, F.H. Urbanization Detection Using LiDAR-Based Remote Sensing Images of Azad Kashmir Using Novel 3D-CNNs. J. Sens. 2022, 2022, 6430120. [Google Scholar] [CrossRef]
- Kuras, A.; Brell, M.; Rizzi, J.; Burud, I. Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine Learning and Neural-Network-Based Classification: A Review. Remote. Sens. 2021, 13, 3393. [Google Scholar] [CrossRef]
- Cruz, P.H.A. Mapping Urban Tree Species in a Tropical Environment Using Airborne Multispectral and LiDAR Data. Master’s Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2021; p. 65. [Google Scholar]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [Google Scholar] [CrossRef] [PubMed]
- Hameed, M.; Yang, F.; Bazai, S.U.; Ghafoor, M.I.; Alshehri, A.; Khan, I.; Ullah, S.; Baryalai, M.; Jaskani, F.H.; Andualem, M. Convolutional Autoencoder-Based Deep Learning Approach for Aerosol Emission Detection Using LiDAR Dataset. J. Sens. 2022, 2022, 3690312. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Spangenberg, G.; Kant, S. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements. Biosensors 2022, 12, 16. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote. Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Guo, F.; Wang, S.; Yue, B.; Wang, J. A Deformable Configuration Planning Framework for a Parallel Wheel-Legged Robot Equipped with Lidar. Sensors 2020, 20, 5614. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.R.; Hellfeld, D.; Joshi, T.H.Y.; Salathe, M.; Bandstra, M.S.; Bilton, K.J.; Cooper, R.J.; Curtis, J.C.; Negut, V.; Shurley, A.J.; et al. 3-D Object Tracking in Panoramic Video and LiDAR for Radiological Source–Object Attribution and Improved Source Detection. IEEE Trans. Nucl. Sci. 2021, 68, 189–202. [Google Scholar] [CrossRef]
- Shinohara, T.; Xiu, H.; Matsuoka, M. FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning. Sensors 2020, 20, 3568. [Google Scholar] [CrossRef] [PubMed]
- Melotti, G.; Premebida, C.; Goncalves, N. Multimodal Deep-Learning for Object Recognition Combining Camera and LIDAR Data. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal, 15–17 April 2020; pp. 177–182. [Google Scholar]
- Männistö, S. Mapping and Classification of Urban Green Spaces with Object-Based Image Analysis and Lidar Data Fusion. October 2020, pp. 1–46. Available online: https://helda.helsinki.fi/handle/10138/322585 (accessed on 13 November 2022).
- Senchuri, R.; Kuras, A.; Burud, I. Machine Learning Methods for Road Edge Detection on Fused Airborne Hyperspectral and LIDAR Data. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021. [Google Scholar]
- Wei, Y.; Akinci, B. A vision and learning-based indoor localization and semantic mapping framework for facility operations and management. Autom. Constr. 2019, 107, 102915. [Google Scholar] [CrossRef]
- Cui, X.; Avestruz, A.-T. Fast-Response Variable Frequency DC-DC Converters Using Switching Cycle Event-Driven Digital Control. arXiv 2022, arXiv:2209.05272. [Google Scholar]
- Raiyn, J. Data and Cyber Security in Autonomous Vehicle Networks. Transp. Telecommun. J. 2018, 19, 325–334. [Google Scholar] [CrossRef]
- El-Rewini, Z.; Sadatsharan, K.; Sugunaraj, N.; Selvaraj, D.F.; Plathottam, S.J.; Ranganathan, P. Cybersecurity Attacks in Vehicular Sensors. IEEE Sens. J. 2020, 20, 13752–13767. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Young, J.R., III. An Evaluation of DEM Generation Methods Using a Pixel-Based Landslide Detection Algorithm. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2021. [Google Scholar]
- Theodouli, A.; Moschou, K.; Votis, K.; Tzovaras, D.; Lauinger, J.; Steinhorst, S. Towards a Blockchain-based Identity and Trust Management Framework for the IoV Ecosystem. In Proceedings of the 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kaushik, I.; Sharma, N. Black Hole Attack and Its Security Measure in Wireless Sensors Networks. In Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s; Springer: Cham, Switzerland, 2020; pp. 401–416. [Google Scholar] [CrossRef]
- Onita, D.; Dinu, L.P.; Adriana, B. From Image to Text in Sentiment Analysis via Regression and Deep Learning. In Proceedings of the Recent Advances in Natural Language Processing, Varna, Bulgaria, 2–4 September 2019; pp. 862–868. [Google Scholar] [CrossRef]
- El-Bakry, H.M. Fast Face Detection Using Neural Networks and Image Decomposition. In Proceedings of the 6th International Computer Science Conference, AMT 2001, Hong Kong, China, 18–20 December 2001; Lecture Notes in Computer Science. pp. 205–215. [Google Scholar] [CrossRef]
- Bist, A.S.; Samriya, J.K.; Rawat, B. Hybrid Authentication Policy for Digital Image Processing in Big Data Platform. In Proceedings of the International Conference on Innovative Computing & Communication (ICICC), Delhi, India, 3 July 2021. [Google Scholar]
- Li, K.; Pang, K.; Song, Y.-Z.; Hospedales, T.M.; Xiang, T.; Zhang, H. Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval. IEEE Trans. Image Process. 2017, 26, 5908–5921. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, G.; Yu, M.; Qi, Y. Latitude and binocular perception based blind stereoscopic omnidirectional image quality assessment for VR system. Signal Process. 2020, 173, 107586. [Google Scholar] [CrossRef]
- Chetouani, A.; Li, L. On the use of a scanpath predictor and convolutional neural network for blind image quality assessment. Signal Process. Image Commun. 2020, 89, 115963. [Google Scholar] [CrossRef]
- Jeyalakshmi, S.; Radha, R. A Review on Diagnosis of Nutrient Deficiency Symptoms in Plant Leaf Image Using Digital Image Processing. ICTACT J. Image Video Process. 2017, 7, 1515–1524. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, L.; Paul, A.; Yuan, Y.; Wei, Z.; Song, Q. Semisupervised Particle Swarm Optimization for Classification. Math. Probl. Eng. 2014, 2014, 832135. [Google Scholar] [CrossRef]
- Gao, C.; Zeng, J.; Xia, X.; Lo, D.; Lyu, M.R.; King, I. Automating App Review Response Generation. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 11–15 November 2019; pp. 163–175. [Google Scholar] [CrossRef]
- Chen, L.; Shi, X.-J.; Liu, H.; Mao, X.; Gui, L.-N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry 2021, 11, 15. [Google Scholar] [CrossRef]
- Kumar, S.M.; Majumder, D. Healthcare Solution based on Machine Learning Applications in IOT and Edge Computing. Int. J. Pure Appl. Math. 2018, 119, 1473–1484. [Google Scholar]
- Yang, L.; Gao, H.; Yu, D.; Pan, S.; Zhou, Y.; Gai, Y. Design of a Novel Fully Automatic Ocean Spectra Acquisition and Control System Based on the Real-Time Solar Angle Analyzing and Tracking. IEEE Access 2020, 9, 4752–4768. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going Deeper With Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef]
- Li, X.; Ding, M.; Pižurica, A. Group Convolutional Neural Networks for Hyperspectral Image Classification. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 639–643. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Xue, W.; Xiang, S.; Huang, H.; Meng, L.; Ma, G.; Ullah, A.; Zhang, G. Study on time-temperature-transformation diagrams of stainless steel using machine-learning approach. Comput. Mater. Sci. 2020, 171, 109282. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Xue, W.; Ullah, A.; Xiang, S.; Huang, H.; Meng, L.; Ma, G.; Zhang, G. A combined machine learning model for the prediction of time-temperature-transformation diagrams of high-alloy steels. J. Alloys Compd. 2020, 823, 153694. [Google Scholar] [CrossRef]
- Geng, X.; Mao, X.; Wu, H.-H.; Wang, S.; Xue, W.; Zhang, G.; Ullah, A.; Wang, H. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels. J. Mater. Sci. Technol. 2022, 107, 207–215. [Google Scholar] [CrossRef]
- Geng, X.; Wang, H.; Ullah, A.; Xue, W.; Xiang, S.; Meng, L.; Ma, G. Prediction of Continuous Cooling Transformation Diagrams for Ni-Cr-Mo Welding Steels via Machine Learning Approaches. JOM 2020, 72, 3926–3934. [Google Scholar] [CrossRef]
- Sheng, H.; Cong, R.; Yang, D.; Chen, R.; Wang, S.; Cui, Z. UrbanLF: A Comprehensive Light Field Dataset for Semantic Segmentation of Urban Scenes. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7880–7893. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Liu, X.; Wang, L.; Xia, X. Efficient image segmentation based on deep learning for mineral image classification. Adv. Powder Technol. 2021, 32, 3885–3903. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, L.; Zhou, Y.; Qiu, W.; Wu, M.-W.; Luo, T. Local and Global Feature Learning for Blind Quality Evaluation of Screen Content and Natural Scene Images. IEEE Trans. Image Process. 2018, 27, 2086–2095. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.; Hu, K.; Yin, G.; Wei, Z. IA-Net: An Inception–Attention-Module-Based Network for Classifying Underwater Images from Others. IEEE J. Ocean. Eng. 2022, 47, 704–717. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, X.; Xi, J.; Hu, X.; Hu, D.; Xu, K. Learning to Detect 3D Symmetry from Single-View RGB-D Images with Weak Supervision. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H.; Wan, Z. Ore Image Classification Based on Improved CNN. Comput. Electr. Eng. 2022, 99, 107819. [Google Scholar] [CrossRef]
- Liao, L.; Du, L.; Guo, Y. Semi-Supervised SAR Target Detection Based on an Improved Faster R-CNN. Remote. Sens. 2021, 14, 143. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Li, D.; Zheng, W.; Yin, L.; Wang, R. Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing. Electronics 2022, 11, 3264. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yin, L. Research on image classification method based on improved multi-scale relational network. PeerJ Comput. Sci. 2021, 7, e613. [Google Scholar] [CrossRef]
- Pykes, K. February 2022. Available online: https://towardsdatascience.com/confusion-matrix-un-confused-1ba98dee0d7f (accessed on 29 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Awwad, E.M.; Ali, Y.A.; Al-Razgan, M.; Maarouf, A.; Abualigah, L.; Hoshyar, A.N. Multi-Dataset Hyper-CNN for Hyperspectral Image Segmentation of Remote Sensing Images. Processes 2023, 11, 435. https://doi.org/10.3390/pr11020435
Liu L, Awwad EM, Ali YA, Al-Razgan M, Maarouf A, Abualigah L, Hoshyar AN. Multi-Dataset Hyper-CNN for Hyperspectral Image Segmentation of Remote Sensing Images. Processes. 2023; 11(2):435. https://doi.org/10.3390/pr11020435
Chicago/Turabian StyleLiu, Li, Emad Mahrous Awwad, Yasser A. Ali, Muna Al-Razgan, Ali Maarouf, Laith Abualigah, and Azadeh Noori Hoshyar. 2023. "Multi-Dataset Hyper-CNN for Hyperspectral Image Segmentation of Remote Sensing Images" Processes 11, no. 2: 435. https://doi.org/10.3390/pr11020435
APA StyleLiu, L., Awwad, E. M., Ali, Y. A., Al-Razgan, M., Maarouf, A., Abualigah, L., & Hoshyar, A. N. (2023). Multi-Dataset Hyper-CNN for Hyperspectral Image Segmentation of Remote Sensing Images. Processes, 11(2), 435. https://doi.org/10.3390/pr11020435