NOX Concentration Prediction in Cement Denitrification Process Based on EEMD-MImRMR-BASBP
Abstract
:1. Introduction
2. Analysis of NOX Generation Mechanism
3. Introduction to the Construction Idea and Method of Prediction Model
3.1. EEMD and Median-Averaged Filtering Data Processing Modules
3.2. MI Timing Matching Module for the Entropy Principle
3.3. mRMR Variable Selection Module
3.4. EEMD-MImRMR-BASBP Prediction Model
Algorithm1. EEMD-MImRMR-BASBP |
Input: data set D of relevant variables Output: The prediction results of the completed training 1: Data pre-processing: E = function EEMD (D, Nstd, NE) 2: F = function Median Average Filter (E, T) 3: Timing Matching: G = function MI(Analysis Scope, F) 4: The data set after time-series matching through the time lag of G forms a new sample H 5: Variable Selection: I = function mrmr_miq_d (H, f, k) 6: Model Building: for BP repeat for I 7: Initialize BAS parameters 8: Input Data I 9: Determine the network topology 10: Initialize BP weights and thresholds 11: for net. train Param epochs = 300 12: Update the position of the beetle’s left and right whiskers 13: Update beetle location 14: Calculation fitness = MSE 15: Update target network step 16: end for 17: Obtain optimal weights and thresholds 18: Find the unit output of the implicit and output layers Deviation of the expected value from the actual value Deviation to iteration requirements 19: end for |
4. Experimental Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Ge, Y.; Wei, X. Experiment on NOX reduction by advanced reburning in cement precalciner. Fuel 2018, 224, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.S.; Park, S.W. Improvement of De NOX efficiency of SNCR process with chemical additives in urea solution. J. Korea Acad.-Ind. Coop. Soc. 2017, 18, 663–668. [Google Scholar]
- Huang, N.E. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Kaneko, H.; Funatsu, K. Smoothing-combined soft sensors for noise reduction and improvement of predictive ability. Ind. Eng. Chem. Res. 2015, 54, 12630–12638. [Google Scholar] [CrossRef]
- Donoho, D.L. De-Noising by Soft-Thresholding; IEEE Press: Piscataway, NJ, USA, 1995. [Google Scholar]
- Fu, R.; Yang, Y.; Yu, B.; Liu, C.; Zhang, C. High-order tensor feature Extraction from eeg Signals based on ensemble empirical Mode Decomposition. Acta Metrol. Sin. 2021, 42, 1680–1686. [Google Scholar]
- Kravchonok, A.I.; Zalesky, B.A.; Lukashevich, P.V. An algorithm for median filtering on the basis of merging of ordered columns[J]. Pattern recognition and image analysis: Advances in mathematical theory and applications in the USSR. Pattern Recognit. Image Anal. 2007, 17, 402–407. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, C.; Xu, J. Research on energy hub configuration optimization problem based on analytic hierarchy and grey correlation analysis. J. Phys. Conf. Ser. 2022, 2354, 012012. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Tang, Z.H.; Zhang, Z.J. The Multi-objective optimization of combustion system operations based on deep data-driven models. Energy 2019, 182, 37–47. [Google Scholar] [CrossRef]
- Tan, P.; He, B.; Zhang, C.; Rao, D.; Li, S.; Fang, Q.; Chen, G. Dynamic modeling of NOX emission in a 660MW coal-fired boiler with long short-term memory. Energy 2019, 176, 429–436. [Google Scholar] [CrossRef]
- Huang, Q.; Xie, L.; Yin, G.; Ran, M.; Liu, X.; Zheng, J. Acoustic signal analysis for detecting defects inside an arc magnet using a combination of variational mode decomposition and beetle antennae search. ISA Trans. 2020, 102, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, S. BAS: Beetle antennae search algorithm for optimization problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Kozachenko, L.F.; Leonenko, N.N. Sample Estimate of the Entropy of a Random Vector. Probl. Peredachi Inf. 1987, 23, 9–16. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Özyurt, F. A fused CNN model for WBC detection with MRMR feature selection and extreme learning machine. Soft Comput. 2020, 24, 163–8172. [Google Scholar] [CrossRef]
- Huang, L.S.; Ruan, C.; Huang, W.J.; Shi, Y.; Peng, D.L.; Ding, W.J. Wheat Powdery mildew monitoring based on GF-1 remote sensing image and relief-mRMR-GASVM model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 167–175, 314. [Google Scholar]
- Cheng, X.M.; Shen, Z.F.; Xing, T.Y.; Xia, L.G.; Wu, T.J. Efficiency and accuracy analysis of multi-spectral remote sensing image classification based on mRMR feature optimization algorithm. J. Geo-Inf. Sci. 2016, 18, 815–823. [Google Scholar]
- Osowski, S. Signal flow graphs and neural networks. Biol. Cybern. 1994, 70, 387–395. [Google Scholar] [CrossRef]
- Jin, G.; Feng, W.; Meng, Q. Prediction of Waterway Cargo Transportation Volume to Support Maritime Transportation Systems Based on GA-BP Neural Network Optimization. Sustainability 2022, 14, 13872. [Google Scholar] [CrossRef]
- Zhang, M. Classification Prediction of Rockburst in Railway Tunnel Based on Hybrid PSO-BP Neural Network. Geofluids 2022, 2022, 4673073. [Google Scholar] [CrossRef]
- Sun, F.; Wang, X.; Han, P.; He, B. Combined EIS and BAS-BP neural network analysis of electrochemical corrosion on pipeline steel in silty soil in a Salt–Temperature coupling environment. Int. J. Press. Vessel. Pip. 2022, 200, 104807. [Google Scholar] [CrossRef]
- Silva, D.A.; Alves, G.I.; de Mattos Neto, P.S.; Ferreira, T.A. Measurement of fitness function efficiency using data envelopment analysis. Expert Syst. Appl. 2014, 41, 7147–7160. [Google Scholar] [CrossRef]
- Lima Junior, A.R.; Silva, D.A.; Mattos Neto, P.S.; Ferreira, T.A. An Experimental Study of Fitness Function and Time Series Forecasting Using Artificial Neural Networks. In Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, Portland, OR, USA, 7–11 July 2010; pp. 2015–2018. [Google Scholar]
- Zhang, F.; Gong, T.; Lee, V.E.; Zhao, G.; Rong, C.; Qu, G. Fast algorithms to evaluate collaborative filtering recommender systems. Knowledge-Based Syst. 2016, 96, 96–103. [Google Scholar] [CrossRef]
Gas Composition | Temperature | Measurement Uncertainty | Decomposition Rate | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NOX | Measurement Uncertainty | CO | Measurement Uncertainty | O2 | Measurement Uncertainty | |||||
ppm | % | ppm | % | % | °C | °C | % | |||
Main Body | 600.5 | ±5 | 206 | ±5% | 0 | ±8 | 878 | ±1 | 73.2 | Column A |
Gooseneck | 623.9 | ±5 | 136 | ±5% | 0.01 | ±8 | 884 | ±1 | 86.8 | |
Export | 609.7 | ±5 | 9 | ±2 ppm | 0.09 | ±8 | 870 | ±1 | 91.1 | |
Main Body | 614.8 | ±5 | 180 | ±5% | 0.02 | ±8 | 878 | ±1 | 73.0 | Column B |
Gooseneck | 645.5 | ±5 | 111 | ±5% | 0.01 | ±8 | 886 | ±1 | 85.2 | |
Export | 637.5 | ±5 | 0 | ±2 ppm | 0.07 | ±8 | 871 | ±1 | 91.4 |
Characterization Factors | Definition | Variable Name | Unit | Measurement Uncertainty |
---|---|---|---|---|
Ignite Grill Warm Degree Table Levy | TD | Decomposition furnace temperature | °C | ±1 °C |
TC5 | C5 temperature | °C | ±1 °C | |
TS | Kiln tail flue chamber temperature | °C | ±1 °C | |
TK | Kiln head hood temperature | °C | ±1 °C | |
GT | Head of coal | t/h | ±0.1 t/h | |
GW | Tail coal volume | t/h | ±0.1 t/h | |
Denitrification efficiency characterization | LN | Ammonia flow | l/min | 0.5 L/min |
Calcine Grill Work Situation Table Levy | IKP | Kiln current | A | ±0.5% |
CNO | C1 Export NOX | ppm | ±5% | |
CCO | C1 export carbon monoxide | ppm | ±5%(+40~+500 ppm)/±2 ppm (0~+39.9 ppm) | |
CO2 | C1 export oxygen | % | ±8% | |
Empty Gas quantity Table Levy | PK | Kiln head hood pressure | Pa | ±1.5% (+3~+40 hPa) |
RH | High-temperature fan speed | rpm | 0.0074 rpm | |
IKC | Kiln head exhaust fan current | A | ±0.5% |
Definition | mRMR Coefficients after Processing of EEMD Data without MI Matching | mRMR Coefficients after Median-Averaged Filtering without MI Matching | Time Lag/s | MI-Matched mRMR Coefficients after EEMD Data Processing | MI-Matched Median-Averaged Filtered mRMR Coefficients |
---|---|---|---|---|---|
TD | 0.7231 | 0.6825 | −10.4 | 0.8644 | 0.8278 |
TC5 | 0.6022 | 0.5934 | −10.75 | 0.7735 | 0.7649 |
TS | 0.5123 | 0.4957 | −42 | 0.8782 | 0.8704 |
TK | 0.6921 | 0.8132 | 5 | 0.7833 | 0.8636 |
GT | 0.7835 | 0.8022 | −4.5 | 0.8028 | 0.8544 |
GW | 0.8123 | 0.7953 | −4 | 0.8015 | 0.8135 |
LN | 0.7568 | 0.8023 | 8.5 | 0.9198 | 0.9128 |
IKP | 0.6034 | 0.5984 | 7.5 | 0.7338 | 0.7048 |
CNO | 0.9273 | 0.9432 | 0.5 | 0.9368 | 0.9365 |
CCO | 0.7356 | 0.7562 | −0.75 | 0.8172 | 0.8175 |
CO2 | 0.5742 | 0.5234 | 17 | 0.7943 | 0.7625 |
PK | 0.8135 | 0.7975 | −1 | 0.8094 | 0.8016 |
RH | 0.7214 | 0.7548 | 2.5 | 0.7878 | 0.7338 |
IKC | 0.7135 | 0.6979 | 7.8 | 0.8354 | 0.8679 |
Modeling Strategies | Input Variables | RMSE for Group A | MAE for Group A | RMSE for Group B | MAE for Group B |
---|---|---|---|---|---|
BP | TD, TC5, TS, TK, GT, GW, LN, IKP, CNO, CCO, CO2, PK, RH, IKC | 0.9012 | 0.8643 | 0.9134 | 0.8973 |
PSOBP | TD, TC5, TS, TK, GT, GW, LN, IKP, CNO, CCO, CO2, PK, RH, IKC | 0.8025 | 0.7534 | 0.8315 | 0.7954 |
BASBP | TD, TC5, TS, TK, GT, GW, LN, IKP, CNO, CCO, CO2, PK, RH, IKC | 0.7028 | 0.6956 | 0.8012 | 0.7834 |
EEMD-MImRMR-PSOBP | CNO, LN, TS, TD, IKC, CCO | 0.6023 | 0.5347 | 0.6953 | 0.6026 |
EEMD-MImRMR-BASBP | CNO, LN, TS, TD, IKC, CCO | 0.2927 | 0.1795 | 0.3513 | 0.2383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, Y.; He, N.; Yao, Y. NOX Concentration Prediction in Cement Denitrification Process Based on EEMD-MImRMR-BASBP. Processes 2023, 11, 317. https://doi.org/10.3390/pr11020317
Liu X, Chen Y, He N, Yao Y. NOX Concentration Prediction in Cement Denitrification Process Based on EEMD-MImRMR-BASBP. Processes. 2023; 11(2):317. https://doi.org/10.3390/pr11020317
Chicago/Turabian StyleLiu, Xuanzhi, Yanxin Chen, Ning He, and Yanfei Yao. 2023. "NOX Concentration Prediction in Cement Denitrification Process Based on EEMD-MImRMR-BASBP" Processes 11, no. 2: 317. https://doi.org/10.3390/pr11020317
APA StyleLiu, X., Chen, Y., He, N., & Yao, Y. (2023). NOX Concentration Prediction in Cement Denitrification Process Based on EEMD-MImRMR-BASBP. Processes, 11(2), 317. https://doi.org/10.3390/pr11020317