Environmental Footprint of Inland Fisheries: Integrating LCA Analysis to Assess the Potential of Wastewater-Based Microalga Cultivation as a Promising Solution for Animal Feed Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Functional Unit
2.3. Production Process
2.4. Life Cycle Impact Assessment
2.5. Data Normalization
2.6. ReCiPe Endpoint
3. Results
3.1. Life-Cycle Inventory
3.2. Impact Evaluation
3.3. Normalization
3.4. ReCiPe Endpoint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
LCA | Life Cycle Assessment |
ALF | Algal Life Feed |
ALF+Rn | Algal Life Feed with Recycled nutrients |
PB | Pelletized Biomass |
PB+Rn | Pelletized Biomass with Recycled nutrients |
LCIA | Life Cycle Inventory Assessment |
kg 1,4-DCB | kg 1,4 dichlorobenzene |
kg CO2 eq | kg of carbon dioxide |
kg oil eq | kg of oil |
kg N eq | kg of Nitrogen |
kg P eq | kg of Phosphate |
kg CFC11 eq | Kg of fluorocarbonate |
References
- Carballeira Braña, C.B.; Cerbule, K.; Senff, P.; Stolz, I.K. Towards Environmental Sustainability in Marine Finfish Aquaculture. Front. Mar. Sci. 2021, 8, 666662. [Google Scholar] [CrossRef]
- Rossignoli, C.M.; Manyise, T.; Shikuku, K.M.; Nasr-Allah, A.M.; Dompreh, E.B.; Henriksson, P.J.G.; Lam, R.D.; Lozano Lazo, D.; Tran, N.; Roem, A.; et al. Tilapia Aquaculture Systems in Egypt: Characteristics, Sustainability Outcomes and Entry Points for Sustainable Aquatic Food Systems. Aquaculture 2023, 577, 739952. [Google Scholar] [CrossRef]
- Kibria, G. Impacts of Microplastic on Fisheries and Seafood Security—Global Analysis and Synthesis. Sci. Total Environ. 2023, 904, 166652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Akyol, Ç.; Meers, E. Nutrient Recovery and Recycling from Fishery Waste and By-Products. J. Environ. Manag. 2023, 348, 119266. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Zuorro, A.; Maffei, G.; Lavecchia, R.; Puglia, D.; Dominici, F.; Luzi, F.; Valente, T.; Torre, L. Recycling Coffee Silverskin in Sustainable Composites Based on a Poly(Butylene Adipate-Co-Terephthalate)/Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Matrix. Ind. Crops Prod. 2018, 118, 311–320. [Google Scholar] [CrossRef]
- Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; De Steur, H. Life Cycle Cost Analysis of Agri-Food Products: A Systematic Review. Sci. Total Environ. 2022, 850, 158012. [Google Scholar] [CrossRef]
- Ubando, A.T.; Anderson, S.; Ng, E.; Chen, W.-H.; Culaba, A.B.; Kwon, E.E. Life Cycle Assessment of Microalgal Biorefinery: A State-of-the-Art Review. Bioresour. Technol. 2022, 360, 127615. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, P. Life Cycle Assessment: Blazing a Trail for Bioresources Management. Energy Convers. Manag. X 2021, 10, 100063. [Google Scholar] [CrossRef]
- Magalhães, I.B.; Ferreira, J.; de Siqueira Castro, J.; de Assis, L.R.; Calijuri, M.L. Agro-Industrial Wastewater-Grown Microalgae: A Techno-Environmental Assessment of Open and Closed Systems. Sci. Total Environ. 2022, 834, 155282. [Google Scholar] [CrossRef]
- Herrera, A.; D’Imporzano, G.; Acién Fernandez, F.G.; Adani, F. Sustainable Production of Microalgae in Raceways: Nutrients and Water Management as Key Factors Influencing Environmental Impacts. J. Clean. Prod. 2021, 287, 125005. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Maiolo, S.; Cristiano, S.; Gonella, F.; Pastres, R. Ecological Sustainability of Aquafeed: An Emergy Assessment of Novel or Underexploited Ingredients. J. Clean. Prod. 2021, 294, 126266. [Google Scholar] [CrossRef]
- Bartek, L.; Strid, I.; Henryson, K.; Junne, S.; Rasi, S.; Eriksson, M. Life Cycle Assessment of Fish Oil Substitute Produced by Microalgae Using Food Waste. Sustain. Prod. Consum. 2021, 27, 2002–2021. [Google Scholar] [CrossRef]
- Kashem, A.H.M.; Das, P.; Hawari, A.H.; Mehariya, S.; Thaher, M.I.; Khan, S.; Abduquadir, M.; Al-Jabri, H. Aquaculture from Inland Fish Cultivation to Wastewater Treatment: A Review. Rev. Environ. Sci. Bio/Technol. 2023, 22, 969–1008. [Google Scholar] [CrossRef]
- Gurreri, L.; Calanni Rindina, M.; Luciano, A.; Lima, S.; Scargiali, F.; Fino, D.; Mancini, G. Environmental Sustainability of Microalgae-Based Production Systems: Roadmap and Challenges towards the Industrial Implementation. Sustain. Chem. Pharm. 2023, 35, 101191. [Google Scholar] [CrossRef]
- Jayaseelan, M.; Usman, M.; Somanathan, A.; Palani, S.; Muniappan, G.; Jeyakumar, R.B. Microalgal Production of Biofuels Integrated with Wastewater Treatment. Sustainability 2021, 13, 8797. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Josa, I.; Ferrer, I.; Van Hulle, S.W.H.; Rousseau, D.P.L.; Garfí, M. Life Cycle Assessment of Microalgae Systems for Wastewater Treatment and Bioproducts Recovery: Natural Pigments, Biofertilizer and Biogas. Sci. Total Environ. 2022, 847, 157615. [Google Scholar] [CrossRef] [PubMed]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Vavrova, K. A Comparative Analysis of Environmental Impacts of Operational Phases of Three Selected Microalgal Cultivation Systems. Sustainability 2022, 15, 769. [Google Scholar] [CrossRef]
- Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [Google Scholar] [CrossRef]
- García-Martínez, J.B.; Ayala-Torres, E.; Reyes-Gómez, O.; Zuorro, A.; Andrés, F.; Barajas-Solano, B.; Crisóstomo, C.; Barajas-Ferreira, B. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella Vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360. [Google Scholar] [CrossRef]
- Jankowska, E.; Sahu, A.K.; Oleskowicz-Popiel, P. Biogas from Microalgae: Review on Microalgae’s Cultivation, Harvesting and Pretreatment for Anaerobic Digestion. Renew. Sustain. Energy Rev. 2017, 75, 692–709. [Google Scholar] [CrossRef]
- Sakarika, M.; Koutra, E.; Tsafrakidou, P.; Terpou, A.; Kornaros, M. Microalgae-Based Remediation of Wastewaters; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128175361. [Google Scholar]
- Chen, C.-Y.; Zhao, X.-Q.; Yen, H.-W.; Ho, S.-H.; Cheng, C.-L.; Lee, D.-J.; Bai, F.-W.; Chang, J.-S. Microalgae-Based Carbohydrates for Biofuel Production. Biochem. Eng. J. 2013, 78, 1–10. [Google Scholar] [CrossRef]
- Zuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Solano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria Sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [Google Scholar] [CrossRef] [PubMed]
- Zuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of Cell Wall Degrading Enzymes to Improve the Recovery of Lipids from Chlorella Sorokiniana. Chem. Eng. J. 2019, 377, 120325. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Leong, H.Y.; Ho, S.-H.; Munawaroh, H.S.H.; Show, P.L. CO2 Mitigation and Phycoremediation of Industrial Flue Gas and Wastewater via Microalgae-Bacteria Consortium: Possibilities and Challenges. Chem. Eng. J. 2021, 425, 131436. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [Google Scholar] [CrossRef]
- Rani, A.; Saini, K.; Bast, F.; Mehariya, S.; Bhatia, S.; Lavecchia, R.; Zuorro, A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021, 26, 1142. [Google Scholar] [CrossRef]
- García-Martínez, J.B.; Contreras-Ropero, J.E.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Kafarov, V.; Barajas-Ferreira, C.; Ibarra-Mojica, D.M.; Zuorro, A. A Simulation Analysis of a Microalgal-Production Plant for the Transformation of Inland-Fisheries Wastewater in Sustainable Feed. Water 2022, 14, 250. [Google Scholar] [CrossRef]
- García-Martínez, J.B.; Sanchez-Tobos, L.P.; Carvajal-Albarracín, N.A.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V.; Zuorro, A. The Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Production. Water 2022, 14, 749. [Google Scholar] [CrossRef]
- Tan, Y.H.; Chai, M.K.; Na, J.Y.; Wong, L.S. Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater. Sustainability 2023, 15, 6601. [Google Scholar] [CrossRef]
- Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Garcia-Martinez, J.B.; Lopez-Barrera, G.L.; González-Delgado, A.D. Prospects for Using Wastewater from a Farm for Algae Cultivation: The Case of Eastern Colombia. J. Water Land Dev. 2022, 172–179. [Google Scholar] [CrossRef]
- Yadav, G.; Dubey, B.K.; Sen, R. A Comparative Life Cycle Assessment of Microalgae Production by CO2 Sequestration from Flue Gas in Outdoor Raceway Ponds under Batch and Semi-Continuous Regime. J. Clean. Prod. 2020, 258, 120703. [Google Scholar] [CrossRef]
- Davis, D.; Morão, A.; Johnson, J.K.; Shen, L. Life Cycle Assessment of Heterotrophic Algae Omega-3. Algal Res. 2021, 60, 102494. [Google Scholar] [CrossRef]
- McKuin, B.L.; Kapuscinski, A.R.; Sarker, P.K.; Cheek, N.; Colwell, A.; Schoffstall, B.; Greenwood, C. Comparative Life Cycle Assessment of Heterotrophic Microalgae Schizochytrium and Fish Oil in Sustainable Aquaculture Feeds. Elem. Sci. Anthr. 2022, 10, 98. [Google Scholar] [CrossRef]
- Schade, S.; Meier, T. Distinct Microalgae Species for Food—Part 1: A Methodological (Top-down) Approach for the Life Cycle Assessment of Microalgae Cultivation in Tubular Photobioreactors. J. Appl. Phycol. 2020, 32, 2977–2995. [Google Scholar] [CrossRef]
- Maiolo, S.; Parisi, G.; Biondi, N.; Lunelli, F.; Tibaldi, E.; Pastres, R. Fishmeal Partial Substitution within Aquafeed Formulations: Life Cycle Assessment of Four Alternative Protein Sources. Int. J. Life Cycle Assess. 2020, 25, 1455–1471. [Google Scholar] [CrossRef]
- Morales, M.; Bonnefond, H.; Bernard, O. Rotating Algal Biofilm versus Planktonic Cultivation: LCA Perspective. J. Clean. Prod. 2020, 257, 120547. [Google Scholar] [CrossRef]
- Rodríguez, P.D.; Arce Bastias, F.; Arena, A.P. Modeling and Environmental Evaluation of a System Linking a Fishmeal Facility with a Microalgae Plant within a Circular Economy Context. Sustain. Prod. Consum. 2019, 20, 356–364. [Google Scholar] [CrossRef]
- Castellanos-Estupinan, M.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6. [Google Scholar] [CrossRef]
- D’Imporzano, G.; Veronesi, D.; Salati, S.; Adani, F. Carbon and Nutrient Recovery in the Cultivation of Chlorella Vulgaris: A Life Cycle Assessment Approach to Comparing Environmental Performance. J. Clean. Prod. 2018, 194, 685–694. [Google Scholar] [CrossRef]
- Nigam, H.; Jain, R.; Malik, A.; Singh, V. Comparative Life-Cycle Assessment of Microalgal Biomass Production in Conventional Growth Media versus Newly Developed Nanoemulsion Media. Bioresour. Technol. 2022, 352, 127069. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Meng, X.; Liu, Y.; Bai, S.; Li, B.; Li, H.; Hou, N.; Li, C. Single-Cell Sorting of Microalgae and Identification of Optimal Conditions by Using Response Surface Methodology Coupled with Life-Cycle Approaches. Sci. Total Environ. 2022, 832, 155061. [Google Scholar] [CrossRef] [PubMed]
- Pegallapati, A.K.; Frank, E.D. Energy Use and Greenhouse Gas Emissions from an Algae Fractionation Process for Producing Renewable Diesel. Algal Res. 2016, 18, 235–240. [Google Scholar] [CrossRef]
- Sun, J.; Yang, L.; Xiao, S.; Chu, H.; Jiang, S.; Yu, Z.; Zhou, X.; Zhang, Y. A Promising Microalgal Wastewater Cyclic Cultivation Technology: Dynamic Simulations, Economic Viability, and Environmental Suitability. Water Res. 2022, 217, 118411. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.P.; Tan, X.; Lim, J.Y.; Chew, K.W.; Koyande, A.K.; Show, P.L. Environmental Analysis of Chlorella Vulgaris Cultivation in Large Scale Closed System under Waste Nutrient Source. Chem. Eng. J. 2022, 433, 134254. [Google Scholar] [CrossRef]
- Pérez-López, P.; de Vree, J.H.; Feijoo, G.; Bosma, R.; Barbosa, M.J.; Moreira, M.T.; Wijffels, R.H.; van Boxtel, A.J.B.; Kleinegris, D.M.M. Comparative Life Cycle Assessment of Real Pilot Reactors for Microalgae Cultivation in Different Seasons. Appl. Energy 2017, 205, 1151–1164. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Ahmad, M.H.; Lee, K.L.; Hussain, S. Sustainable Business Model Innovation and Perspective of Using Microalgae to Produce Biofuel: A Systematic Literature Review. J. Sustain. Sci. Manag. 2022, 17, 291–312. [Google Scholar] [CrossRef]
- Hossain, N.; Zaini, J.; Indra Mahlia, T.M. Life Cycle Assessment, Energy Balance and Sensitivity Analysis of Bioethanol Production from Microalgae in a Tropical Country. Renew. Sustain. Energy Rev. 2019, 115, 109371. [Google Scholar] [CrossRef]
- Bussa, M.; Zollfrank, C.; Röder, H. Life-Cycle Assessment and Geospatial Analysis of Integrating Microalgae Cultivation into a Regional Economy. J. Clean. Prod. 2020, 243, 118630. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; Costa, D.; Mata, T.M.; Martins, A.A.; Freitas, M.A.V.; Caetano, N.S. A Life Cycle Inventory of Microalgae-Based Biofuels Production in an Industrial Plant Concept. Energy Rep. 2020, 6, 397–402. [Google Scholar] [CrossRef]
- Sfez, S.; Van Den Hende, S.; Taelman, S.E.; De Meester, S.; Dewulf, J. Environmental Sustainability Assessment of a Microalgae Raceway Pond Treating Aquaculture Wastewater: From up-Scaling to System Integration. Bioresour. Technol. 2015, 190, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Sills, D.L.; Van Doren, L.G.; Beal, C.; Raynor, E. The Effect of Functional Unit and Co-Product Handling Methods on Life Cycle Assessment of an Algal Biorefinery. Algal Res. 2020, 46, 101770. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- de Souza, M.H.B.; Calijuri, M.L.; Assemany, P.P.; de Siqueira Castro, J.; de Oliveira, A.C.M. Soil Application of Microalgae for Nitrogen Recovery: A Life-Cycle Approach. J. Clean. Prod. D 2019, 211, 342–349. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, Q.; Yu, J. Life Cycle Assessment of Potential Environmental Burden and Human Capital Loss Caused by Apple Production System in China. Environ. Sci. Pollut. Res. 2023, 30, 62015–62031. [Google Scholar] [CrossRef]
- Sillcox, R.; Gitonga, B.; Meiklejohn, D.A.; Wright, A.S.; Oelschlager, B.K.; Bryant, M.K.; Tarefder, R.; Khan, Z.; Zhu, J. The Environmental Impact of Surgical Telemedicine: Life Cycle Assessment of Virtual vs. in-Person Preoperative Evaluations for Benign Foregut Disease. Surg. Endosc. 2023, 37, 5696–5702. [Google Scholar] [CrossRef]
- Hassan, M.; Usman, N.; Hussain, M.; Yousaf, A.; Khattak, M.A.; Yousaf, S.; Mishr, R.S.; Ahmad, S.; Rehman, F.; Rashedi, A. Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan. Sustainability 2023, 15, 12089. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Noghani, S.; Panahandeh, A.; Samadi, A.; Asnaashari, E. Evaluation of Environmental Sustainability of the Construction and Operation Phases of Man-made Lakes; A Case Study: Chitgar Lake. Environ. Prog. Sustain. Energy 2023, 42, e14160. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life Cycle Assessment of High Rate Algal Ponds for Wastewater Treatment and Resource Recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [Google Scholar] [CrossRef]
- Colzi Lopes, A.; Valente, A.; Iribarren, D.; González-Fernández, C. Energy Balance and Life Cycle Assessment of a Microalgae-Based Wastewater Treatment Plant: A Focus on Alternative Biogas Uses. Bioresour. Technol. 2018, 270, 138–146. [Google Scholar] [CrossRef]
- de Siqueira Castro, J.; Calijuri, M.L.; Ferreira, J.; Assemany, P.P.; Ribeiro, V.J. Microalgae Based Biofertilizer: A Life Cycle Approach. Sci. Total Environ. 2020, 724, 138138. [Google Scholar] [CrossRef]
- Payen, S.; Ledgard, S.F. Aquatic Eutrophication Indicators in LCA: Methodological Challenges Illustrated Using a Case Study in New Zealand. J. Clean. Prod. 2017, 168, 1463–1472. [Google Scholar] [CrossRef]
- Mio, A.; Fermeglia, M.; Favi, C. A Critical Review and Normalization of the Life Cycle Assessment Outcomes in the Naval Sector. Bibliometric Analysis and Characteristics of the Studies. J. Clean. Prod. 2022, 371, 133268. [Google Scholar] [CrossRef]
- de Souza Ferreira, M.; Dodds, W.K.; Fernandes Cunha, D.G. Carbon Dioxide and Methane Emissions across Tropical and Subtropical Inland Water Ecosystems in Brazil: Meta-Analysis of General Patterns and Potential Drivers. Limnetica 2023, 43, 1. [Google Scholar] [CrossRef]
- Gómez-Gener, L.; Gubau, M.; von Schiller, D.; Marcé, R.; Obrador, B. Integrated Assessment of the Net Carbon Footprint of Small Hydropower Plants. Environ. Res. Lett. 2023, 18, 084015. [Google Scholar] [CrossRef]
- Taelman, S.E.; De Meester, S.; Roef, L.; Michiels, M.; Dewulf, J. The Environmental Sustainability of Microalgae as Feed for Aquaculture: A Life Cycle Perspective. Bioresour. Technol. 2013, 150, 513–522. [Google Scholar] [CrossRef]
- Thielemann, A.K.; Smetana, S.; Pleissner, D. Cultivation of the Heterotrophic Microalga Galdieria Sulphuraria on Food Waste: A Life Cycle Assessment. Bioresour. Technol. 2021, 340, 125637. [Google Scholar] [CrossRef]
- Nishshanka, G.K.S.H.; Liyanaarachchi, V.C.; Premaratne, M.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Kornaros, M. Wastewater-Based Microalgal Biorefineries for the Production of Astaxanthin and Co-Products: Current Status, Challenges and Future Perspectives. Bioresour. Technol. 2021, 342, 126018. [Google Scholar] [CrossRef]
- Nasir, N.M.; Bakar, N.S.A.; Lananan, F.; Abdul Hamid, S.H.; Lam, S.S.; Jusoh, A. Treatment of African Catfish, Clarias gariepinus Wastewater Utilizing Phytoremediation of Microalgae, Chlorella sp. with Aspergillus niger Bio-Harvesting. Bioresour. Technol. 2015, 190, 492–498. [Google Scholar] [CrossRef]
- Mu, D.; Min, M.; Krohn, B.; Mullins, K.A.; Ruan, R.; Hill, J. Life Cycle Environmental Impacts of Wastewater-Based Algal Biofuels. Environ. Sci. Technol. 2014, 48, 11696–11704. [Google Scholar] [CrossRef]
- Marangon, B.B.; Calijuri, M.L.; de Siqueira Castro, J.; Assemany, P.P. A Life Cycle Assessment of Energy Recovery Using Briquette from Wastewater Grown Microalgae Biomass. J. Environ. Manag. 2021, 285, 112171. [Google Scholar] [CrossRef]
- Schneider, R.d.C.d.S.; de Moura Lima, M.; Hoeltz, M.; de Farias Neves, F.; John, D.K.; de Azevedo, A. Life Cycle Assessment of Microalgae Production in a Raceway Pond with Alternative Culture Media. Algal Res. 2018, 32, 280–292. [Google Scholar] [CrossRef]
- Raghuvanshi, S.; Bhakar, V.; Chava, R.; Sangwan, K.S. Comparative Study Using Life Cycle Approach for the Biodiesel Production from Microalgae Grown in Wastewater and Fresh Water. Procedia CIRP 2018, 69, 568–572. [Google Scholar] [CrossRef]
- Hao, X.; Wang, X.; Liu, R.; Li, S.; van Loosdrecht, M.C.M.; Jiang, H. Environmental Impacts of Resource Recovery from Wastewater Treatment Plants. Water Res. 2019, 160, 268–277. [Google Scholar] [CrossRef]
Goal | Functional Unit | Strain | Country | Reference |
---|---|---|---|---|
Assessment of the environmental impacts of algae-based bio-stimulants and aquaculture feed. | 1 kg of dried biomass | n/a | Spain | [10] |
Quantifying the environmental footprint of ω-3 oil from algae. | 1 kg of ω-3 oil | Schizochytrium sp. | The Netherlands | [36] |
Comparison of life cycle impacts between fish and algal oil for aquafeed. | 1 kg of oil | United States | [37] | |
Assessment of the impact of fish oil substitute produced by algae. | 1 ton of DHA oil | Crypthecodinium cohnii | Germany | [14] |
Environmental impact assessment of the algae at the industrial scale for food production. | 1 kg of dried biomass | Nannochloropsis sp. | [38] | |
Using LCA, compare a set of protein sources (including algae) as substitutes for fishmeal. | 1 ton of crude protein | Tisochrysis lutea | Italy | [39] |
Tetraselmis suecica | ||||
Large-scale production of algae. | 1 kg of dried biomass | France | [40] | |
Analyze the feasibility of linking an FMFO facility and an algae production plant. | Algae-based flour (ton/h) | Scenedesmus almeriensis | Argentina | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F.; Rodríguez-Lizcano, A.; Kafarov, V. Environmental Footprint of Inland Fisheries: Integrating LCA Analysis to Assess the Potential of Wastewater-Based Microalga Cultivation as a Promising Solution for Animal Feed Production. Processes 2023, 11, 3255. https://doi.org/10.3390/pr11113255
Zuorro A, García-Martínez JB, Barajas-Solano AF, Rodríguez-Lizcano A, Kafarov V. Environmental Footprint of Inland Fisheries: Integrating LCA Analysis to Assess the Potential of Wastewater-Based Microalga Cultivation as a Promising Solution for Animal Feed Production. Processes. 2023; 11(11):3255. https://doi.org/10.3390/pr11113255
Chicago/Turabian StyleZuorro, Antonio, Janet B. García-Martínez, Andrés F. Barajas-Solano, Adriana Rodríguez-Lizcano, and Viatcheslav Kafarov. 2023. "Environmental Footprint of Inland Fisheries: Integrating LCA Analysis to Assess the Potential of Wastewater-Based Microalga Cultivation as a Promising Solution for Animal Feed Production" Processes 11, no. 11: 3255. https://doi.org/10.3390/pr11113255