Preparation and Application of New Polyhydroxy Ammonium Shale Hydration Inhibitor
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis
2.3. Optimization of Synthesis Conditions
2.4. Anti-Swelling and Shrinkage–Swelling Evaluation
2.5. Wash-Durable Test
2.6. Montmorillonite Hydration and Dispersion Experiment
2.7. Linear Swelling
2.8. Performance in Drilling Fluid
2.9. Shale Rolling Recovery Experiment
2.10. FT-IR Analysis
2.11. Particle Distribution Measurement
2.12. Zeta Potential Measurement
2.13. SEM and TGA
3. Results and Discussion
3.1. Screening of Synthesis Conditions
3.2. Anti-Swelling and Shrinkage–Swelling
3.3. Wash-Durable Test
3.4. Montmorillonite Hydration and Dispersion
3.5. Linear Swelling
3.6. Performance in Drilling Fluid
3.7. Shale Rolling Recovery
3.8. FTIR Analysis
3.9. Particle Distribution
3.10. Zeta Potential
3.11. SEM
3.12. TGA
3.13. Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, M.J.; Wilson, L. Clay mineralogy and shale instability: An alternative conceptual analysis. Sci. Lett. 2014, 49, 127–145. [Google Scholar] [CrossRef]
- Chen, G.; Yan, J.; Li, L.; Zhang, J.; Gu, X.F.; Song, H. Preparation and performance of amine-tartaric salt as potential clay swelling inhibitor. Appl. Clay Sci. 2017, 138, 12–16. [Google Scholar] [CrossRef]
- Wang, J.; Yan, J.; Ding, T. Progresses in the researches on high performance water base muds. Drill. Fluid. Complet. Fluid. 2007, 24, 71–75. [Google Scholar] [CrossRef]
- Bai, X.; Wang, H.; Luo, Y.; Zheng, X.; Zhang, X.; Zhou, S.; Pu, X. The structure and application of amine-terminated hyperbranched polymer shale inhibitor for water-based drilling fluid. Appl. Polym. Sci. 2017, 134, 45466. [Google Scholar] [CrossRef]
- Faridi, S.; Mobinikhaledi, A.; Moghanian, H.; Shabanian, M. Synthesis of novel modified acrylamide copolymers for montmorillonite flocculants in water-based drilling fluid. BMC Chem. 2023, 17, 125. [Google Scholar] [CrossRef]
- Ehsan, S.H.; Iman, N.; Khalil, S.; Mosayyeb, K.; Amir, M.H.; Abbas, M. An investigation into shale swelling inhibition properties of dodecyltrimethylammonium chloride (DTAC) for water-based drilling fluids. Energy Sci. Eng. 2023, 223, 211465. [Google Scholar] [CrossRef]
- Muhammad, S.K.; Abdullah, S.S.; Usamah, A.A.; Ibnelwaleed, A. Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, J.; Zhang, J.; Chen, G.; Ma, C.; Zhang, Z. Stabilization of montmorillonite by ammoniated lignosulfonates and its use in water-based drilling fluid. Sci. Adv. Mater. 2017, 9, 928–933. [Google Scholar] [CrossRef]
- Al-Hameedi, T.T.A.; Alkinani, H.H.; Dunn-Norman, S.; Al-Alwani, M.A.; Alshammari, A.F.; Alkhamis, M.M.; Mutar, R.A.; Al-Bazzaz, W.H. Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. J. Pet. Explor. Prod. Technol. 2020, 10, 407–417. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, H.; Tian, G.; An, Y. A novel hyperbranched polyethyleneimine-graphene composite as shale inhibitor for drilling fluid. RSC Adv. 2023, 13, 2611–2619. [Google Scholar] [CrossRef]
- Ahmed, H.; Kamal, M.; Al-Harthi, M. Polymeric and low molecular weight shale inhibitors: A review. Fuel 2019, 251, 187–217. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, L.; Huang, L.; Liu, X.; Zhang, J.; Du, W.; Chen, G. Preparation and application of a novel polyammonium as potent shale hydration inhibitor. J. Macromol. Sci. Phys. Part A 2020, 57, 326–331. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Liang, L.; Xiong, J. Experimental Study on the Adaptability of Plugging Drilling Fluids to Wellbore Stability in Hard Brittle Shale Formations. ACS Omega 2022, 7, 48034–48046. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, H.; Xie, Y.; Zhou, X. A research and application of strong inhibition drilling fluid. Appl. Mech. Mater. 2014, 675, 1481–1484. [Google Scholar] [CrossRef]
- Han, Y.; Song, Z.; Huang, W.; Cao, J. Shale inhibitive properties of polyether diamine in water-based drilling fluid. Pet. Sci. Technol. 2011, 78, 510–515. [Google Scholar] [CrossRef]
- Qu, Y.; Lai, X.; Zou, L.; Su, Y. Polyoxyalkyleneamine as shale inhibitor in water-based drilling fluids. Appl. Clay Sci. 2009, 44, 264–265. [Google Scholar] [CrossRef]
- Rana, A.; Arfaj, M.K.; Saleh, T.A. Graphene grafted with glucopyranose as a shale swelling inhibitor in water-based drilling mud. Appl. Clay Sci. 2020, 199, 105806. [Google Scholar] [CrossRef]
- Movahedi, H.; Jamshidi., S.; Hajipour., M. Hydrodynamic Analysis and Cake Erosion Properties of a Modified Water-Based Drilling Fluid by a Polyacrylamide/Silica Nanocomposite during Rotating-Disk Dynamic Filtration. ACS Omega 2022, 7, 44223–44240. [Google Scholar] [CrossRef]
- SY/T 5971-2016; Performance Evaluation Method of Clay Stabilizer for Fracturing and Acidification and Water Injection in Oil and Gas Fields. China National Energy Administration: Beijing, China, 2016.
- Q/SH 0053-2010; Technical Requirements for Montmorillonite Stabilizers. China Petroleum and Chemical Corporation: Beijing, China, 2010.
- SY/T 6335-1997; Evaluation Procedure of Drilling Fluids Shale Inhibitor. China National Petroleum Corporation: Beijing, China, 1997.
- Zhang, Y.; Luo, H.; Xiao, N.; Shi, L. Design and application of green drilling fluid of strong inhibition. EES 2019, 227, 042020. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, J.; Du, W.; Hu, W.; Xie, J.; Qu, C.; Chen, G. Preparation and evaluation of ammonium-succinic salts as shale swelling inhibitor and its application in water-based drilling fluid. Russ. J. Phys. Chem. B 2021, 15, 102–108. [Google Scholar] [CrossRef]
- GB/T 16783.1-2006; Petroleum and Natural Gas Industries—Field Testing of Drilling Fluids—Part 1: Water-Based Fluids (English Version). Chinese National Standard: Beijing, China, 2006.
- Moslemizadeh, A.; Aghdam, K.; Shahbazi, K.; Zendehboudi, S. A triterpenoid saponin as an environmental friendly and biodegradable clay swelling inhibitor. J. Mol. Liq. 2017, 247, 269–280. [Google Scholar] [CrossRef]
- Aggrey, W.N.; Asiedu, N.Y.; Adenutsi, C.; Anumah, P. A novel non-ionic surfactant extract derived from Chromolaena odarata as shale inhibitor in water based drilling mud. Heliyon 2019, 5, 01697. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, W.; Zhang, H.; Bai, H.; Liu, K.; Zhang, J.; Li, Z.; Zhu, W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresour. Technol. 2023, 383, 129213. [Google Scholar] [CrossRef]
- Huang, D.; Xie, G.; Luo, P.; Deng, M.; Wang, J. Synthesis and mechanism research of a new low molecular weight shale inhibitor on swelling of sodium montmorillonite. Energy Sci. Eng. 2020, 8, 1501–1509. [Google Scholar] [CrossRef]
- Du, W.; Wang, X.; Chen, G.; Zhang, J.; Slaný, M. Synthesis, property and mechanism analysis of a novel polyhydroxy organic amine shale hydration inhibitor. Minerals 2020, 10, 128. [Google Scholar] [CrossRef]
- Xie, C.; Jia, N.; He, L. Study on the instability mechanism and grouting reinforcement repair of large-scale underground stopes. Adv. Civ. Eng. 2020, 1, 8832012. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Q.; Wei, Y.; Wei, W.; Du, W.; Zhang, J.; Chen, G.; Michal, S. Preparation and swelling inhibition of mixed metal hydroxide to montmorillonite clay. Minerals 2022, 12, 459. [Google Scholar] [CrossRef]
- Wang, Q.; Michal, S.; Gu, X.; Miao, Z.; Du, W.; Zhang, J.; Chen, G. Lubricity and rheological properties of highly dispersed graphite in clay-water-based drilling fluids. Materials 2022, 15, 1083. [Google Scholar] [CrossRef]
- Rahman, M.T.; Negash, B.M.; Idris, A.; Miah, M.I.; Biswas, K. Experimental and COSMO-RS Simulation Studies on the Effects of Polyatomic Anions on Clay Swelling. ACS Omega 2021, 6, 26519–26532. [Google Scholar] [CrossRef]
- Rana, A.; Saleh, T.A.; Arfaj, M.K. Nanosilica modified with moringa extracts to get an efficient and cost-effective shale inhibitor in water-based drilling muds. Chemical Engineering and Processing—Process Intensification. Chem. Eng. Process.-Process. Intensif. 2021, 168, 108589. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, P.; Xu, M.; Pu, L.; Wang, X. Properties of Bentonite Slurry Drilling Fluid in Shallow Formations of Deepwater Wells and the Optimization of Its Wellbore Strengthening Ability While Drilling. ACS Omega 2022, 7, 39860–39874. [Google Scholar] [CrossRef]
- Ahmed, K.; Murtaza, M.; Abdulraheem, A.; Kamal, M.S.; Mahmoud, M. Imidazolium-Based Ionic Liquids as Clay Swelling Inhibitors: Mechanism, Performance Evaluation, and Effect of Different Anions. ACS Omega 2020, 5, 26682–26696. [Google Scholar] [CrossRef]
- Du, W.; Pu, X.; Sun, J.; Luo, X.; Zhang, Y.; Li, L. Synthesis and evaluation of a novel monomeric amine as sodium montmorillonite swelling inhibitor. Adsorp. Sci. Technol. 2018, 36, 655–668. [Google Scholar] [CrossRef]
- Murtaza, M.; Gbadamosi, A.; Ahmad, H.; Hussain, S.M.S.; Kamal, M.S.; Mahmoud, M.; Patil, S. A Magnetic Surfactant Having One Degree of Unsaturation in the Hydrophobic Tail as a Shale Swelling Inhibitor. Molecules 2023, 28, 1878. [Google Scholar] [CrossRef]
- Jiang, G.; Li, X.; Zhu, H.; Yang, L.; Li, Y.; Wang, T.; Wu, X. Improved shale hydration inhibition with combination of gelatin and KCl or EPTAC, an environmentally friendly inhibitor for water-based drilling fluids. J. Appl. Polym. Sci. 2019, 136, 47585. [Google Scholar] [CrossRef]
- Murtaza, M.; Kamal, M.S.; Mahmoud, M. Application of a Novel and Sustainable Silicate Solution as an Alternative to Sodium Silicate for Clay Swelling Inhibition. ACS Omega 2020, 5, 17405–17415. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Kelessidis, V. Nano-based drilling fluids: A review. Energies 2017, 10, 540. [Google Scholar] [CrossRef]
- Xie, G.; Xiao, Y.; Deng, M.; Luo, Y.; Luo, P. Low Molecular Weight Branched Polyamine as a Clay Swelling Inhibitor and Its Inhibition Mechanism: Experiment and Density Functional Theory Simulation. Energy Fuels 2020, 34, 2169–2177. [Google Scholar] [CrossRef]
- Xuan, Y.; Jiang, G.; Li, Y.; Wang, J.; Genget, H. Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite. Colloids Surf. A Physicochem. Eng. Asp. 2013, 422, 50–60. [Google Scholar] [CrossRef]
- Mei, T.; Lan, J.; Dong, Y.; Zhang, S.; Tao, H.; Hou, H. A novel expansive soil hardener: Performance and mechanism of immersion stability. RSC Adv. 2022, 12, 30817–30828. [Google Scholar] [CrossRef] [PubMed]
Reagent | Reagent | Solvent | Proportion | Nomenclature |
---|---|---|---|---|
Ethylenediamine | Epoxy propanol | Distilled water | 1:1 | EGD-1 |
1:2 | EGD-2 | |||
1:3 | EGD-3 | |||
Ethanol | 1:1 | EGA-1 | ||
1:2 | EGA-2 | |||
1:3 | EGA-3 | |||
Acetone | 1:1 | EGP-1 | ||
1:2 | EGP-2 | |||
1:3 | EGP-3 |
Factors | Solvent (A) | Ratio of Amine to Alcohol (B) | Concentration (C) |
---|---|---|---|
1 | Distilled water | 1:1 | 0.1% |
2 | Acetone | 1:2 | 0.3% |
3 | Ethanol | 1:3 | 1.0% |
Number | A | B | C |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 2 | 1 | 2 |
5 | 2 | 2 | 3 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 3 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 2 |
Number | Swelling Rate/% | Number | Swelling Rate/% |
---|---|---|---|
1 | 48.41 | 6 | 46.61 |
2 | 35.25 | 7 | 50.61 |
3 | 48.93 | 8 | 42.13 |
4 | 35.70 | 9 | 47.08 |
5 | 29.75 |
Project | A | B | C |
---|---|---|---|
K1 | 44.20 | 44.91 | 40.10 |
K2 | 37.35 | 41.33 | 39.34 |
K3 | 46.61 | 41.92 | 48.72 |
Range | 9.25 | 3.58 | 9.37 |
Patch | 2 | 3 | 1 |
Inhibitors | Anti-Swelling Rate/% | Shrinkage–Swelling Rate/% |
---|---|---|
0.3% EGD-2 | 36.78 | 34.62 |
0.3% EGA-2 | 24.56 | 18.50 |
0.3% EGP-2 | 43.54 | 34.62 |
0.3% EGP | Anti-Swelling Rate/% | Shrinkage–Swelling Rate/% |
---|---|---|
EGP-1 | 26.32 | 11.54 |
EGP-2 | 43.54 | 34.62 |
EGP-3 | 28.78 | 16.78 |
Solution | Swelling Volume/mL | Swelling Volume after Water Washing/mL | Wash-Durable/% |
---|---|---|---|
Distilled water | 8.5 | \ | \ |
4.0% KCl | 5.5 | 8.7 | 63.22 |
0.1% EGP-2 | 6.2 | 8.7 | 71.26 |
0.3% EGP-2 | 7.0 | 8.8 | 79.55 |
1.0% EGP-2 | 6.5 | 8.5 | 76.47 |
Additive | AV/(mPa·s) | PV/(mPa·s) | YP/Pa | YP/PV Pa/(mPa·s) | FL/mL | tg |
---|---|---|---|---|---|---|
Mud | 2.00 | 1.4 | 0.60 | 0.43 | 15.9 | 0.0437 |
Mud + 0.1% EGP-2 | 3.75 | 1.5 | 2.25 | 1.50 | 18.0 | 0.1051 |
Mud + 0.3% EGP-2 | 4.00 | 3.0 | 1.00 | 0.33 | 13.0 | 0.1139 |
Mud + 1.0% EGP-2 | 3.75 | 1.5 | 2.25 | 1.50 | 16.9 | 0.1317 |
Additive | AV /(mPa·s) | PV /(mPa·s) | YP /Pa | YP/PV Pa/(mPa·s) | FL/mL | tg |
---|---|---|---|---|---|---|
Mud | 2.00 | 1.4 | 0.60 | 0.43 | 15.9 | 0.0437 |
0.5% CMC | 10.00 | 9.0 | 1.00 | 0.11 | 4.8 | 0.0875 |
0.5% CMC + 0.3% EGP-2 | 18.50 | 11.5 | 7.00 | 0.61 | 5.9 | 0.1763 |
1.0% PVA | 7.00 | 7.00 | 0.00 | 0.00 | 4.6 | 0.1944 |
1.0% PVA + 0.3% EGP-2 | 11.75 | 9.0 | 2.75 | 0.23 | 7.4 | 0.1944 |
1.0% MS | 6.90 | 6.0 | 0.90 | 0.15 | 10.8 | 0.1405 |
1.0% MS + 0.3% EGP-2 | 7.00 | 4.5 | 2.50 | 0.56 | 5.8 | 0.1853 |
0.3% GG | 16.00 | 9.0 | 7.00 | 0.44 | 16.0 | 0.0437 |
0.3% GG + 0.3% EGP-2 | 17.50 | 11.0 | 6.50 | 0.37 | 14.0 | 0.0524 |
Treatment of Montmorillonite | The Average Particle Size/μm | Median Particle Size/μm |
---|---|---|
Un-treated | 14.270 | 11.020 |
Water treated | 7.903 | 4.660 |
0.3% EGP-2 un-treated | 8.132 | 7.098 |
0.3% EGP-2 treated | 12.832 | 10.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Wang, Q.; Hu, J.; Sun, Y.; Chen, S.; Gu, X.; Chen, G. Preparation and Application of New Polyhydroxy Ammonium Shale Hydration Inhibitor. Processes 2023, 11, 3102. https://doi.org/10.3390/pr11113102
Chang X, Wang Q, Hu J, Sun Y, Chen S, Gu X, Chen G. Preparation and Application of New Polyhydroxy Ammonium Shale Hydration Inhibitor. Processes. 2023; 11(11):3102. https://doi.org/10.3390/pr11113102
Chicago/Turabian StyleChang, Xiaofeng, Quande Wang, Jiale Hu, Yan Sun, Shijun Chen, Xuefan Gu, and Gang Chen. 2023. "Preparation and Application of New Polyhydroxy Ammonium Shale Hydration Inhibitor" Processes 11, no. 11: 3102. https://doi.org/10.3390/pr11113102
APA StyleChang, X., Wang, Q., Hu, J., Sun, Y., Chen, S., Gu, X., & Chen, G. (2023). Preparation and Application of New Polyhydroxy Ammonium Shale Hydration Inhibitor. Processes, 11(11), 3102. https://doi.org/10.3390/pr11113102