Insight into the Processing, Gelation and Functional Components of Tofu: A Review
Abstract
:1. Introduction
2. Effects of Non-Thermal Processing and Hydrocolloids on the Texture and Rheological Properties of Tofu
2.1. Rheology and Texture
2.2. Diverse Technologies for Tofu Making
2.2.1. Ultra-High-Pressure Homogenization
2.2.2. High-Intensity Ultrasound
2.2.3. High Hydrostatic Pressure
2.3. Hydrocolloids for Tofu Texture Modification
3. Gelation of Soybean Proteins during Tofu Processing
3.1. Classification and Characterization of Proteins in Soybean
3.2. Denaturation of Soybean Proteins in Soymilk
3.3. Coagulation of Denatured Soybean Proteins Using Coagulants
3.4. Molding of Coagulated Soybean Proteins for Tofu Production
4. Functional Compounds and Ingredients from Soybean to Tofu
4.1. The Bioactive Components of Isoflavones in Soybeans
4.2. The Bioactive Components of Anthocyanins in Soybeans
4.3. The Bioactive Components of Isoflavones in Soybean Products
4.4. The Bioactive Components of Anthocyanins in Soybean Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, T.R.; Wei, Q.K. Analysis of bioactive aglycone isoflavones in soybean and soybean products. Nutr. Food Sci. 2008, 38, 540–547. [Google Scholar] [CrossRef]
- Islam, M.A.; Bekele, R.; Vanden Berg, J.H.J.; Kuswanti, Y.; Thapa, O.; Soltani, S.; van Leeuwen, F.X.R.; Rietjens, I.M.C.M.; Murk, A.J. Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicology. Vitr. 2015, 29, 706–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.K.; Kim, J.N.; Han, S.N.; Nam, J.H.; Na, H.N.; Ha, T.J. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr. Res. 2012, 32, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Sancho, R.A.S.; Pastore, G.M. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res. Int. 2012, 46, 378–386. [Google Scholar] [CrossRef]
- Kim, S.Y.; Wi, H.R.; Choi, S.; Ha, T.J.; Lee, B.W.; Lee, M. Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. J. Funct. Foods 2015, 14, 623–633. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Poysa, V.; Woodrow, L. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality. Food Res. Int. 2002, 35, 337–345. [Google Scholar] [CrossRef]
- Fasoyiro, S. Physical, chemical and sensory qualities of Roselle water extract-coagulated tofu compared with tofu from two natural coagulants. Niger. Food J. 2014, 32, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.Y.; Jung, M.J.; Jeong, I.H.; Kim, G.W.; Sim, J.M.; Nam, S.Y.; Kim, B.M. Effects of crab shell extract as a coagulant on the textural and sensorial properties of tofu (soybean curd). Food Sci. Nutr. 2019, 7, 547–553. [Google Scholar] [CrossRef]
- Omueti, O.; Jaiyeola, O. Effects of chemical and plant based coagulants on yield and some quality attributes of tofu. Nutr. Food Sci. 2006, 36, 169–176. [Google Scholar] [CrossRef]
- Manassero, C.A.; Vaudagna, S.R.; Sancho, A.M.; Añón, M.C.; Speroni, F. Combined high hydrostatic pressure and thermal treatments fully inactivate trypsin inhibitors and lipoxygenase and improve protein solubility and physical stability of calcium-added soymilk. Food Hydrocoll. 2016, 43, 629–635. [Google Scholar] [CrossRef]
- Huang, Y.C.; Kuo, M.I. Rheological characteristics and gelation of tofu made from ultra-high-pressure homogenized soymilk. J. Texture Stud. 2015, 46, 335–344. [Google Scholar] [CrossRef]
- Lin, H.F.; Lu, C.P.; Hsieh, J.F.; Kuo, M.I. Effect of ultrasonic treatment on the rheological property and microstructure of tofu made from different soybean cultivars. Innov. Food Sci. Emerg. Technol. 2016, 37, 98–105. [Google Scholar] [CrossRef]
- Saowapark, S.; Apichartsrangkoon, A.; Bell, A.E. Viscoelastic properties of high pressure and heat induced tofu gels. Food Chem. 2008, 107, 984–989. [Google Scholar] [CrossRef]
- Chang, K.L.B.; Lin, Y.S.; Chen, R.H. The effect of chitosan on the gel properties of tofu (soybean curd). J. Food Eng. 2003, 57, 315–319. [Google Scholar] [CrossRef]
- Li, M.; Chen, F.; Yang, B.; Lai, S.; Yang, H.; Liu, K.; Bu, G.; Fu, C.; Deng, Y. Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chem. 2015, 167, 168–174. [Google Scholar] [CrossRef]
- Shen, Y.R.; Kuo, M.I. Effects of different carrageenan types on the rheological and water holding properties of tofu. LWT—Food Sci. Technol. 2017, 78, 122–128. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P. Preparation of tofu using chitosan as a coagulant for improved shelf-life. Int. J. Food Sci. Technol. 2004, 39, 133–141. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Hsieh, J.F. The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process. Food Chem. 2018, 261, 8–14. [Google Scholar] [CrossRef]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement; Academic Press: New York, NY, USA, 2002; pp. 182–186. [Google Scholar]
- Ahmad, M.U.; Tashiro, Y.; Matsukawa, S.; Ogawa, H. Comparison of gelation mechanism of surimi between heat and pressure treatment by using rheological and NMR relaxation measurements. J. Food Sci. 2004, 69, E497–E501. [Google Scholar] [CrossRef]
- Baik, O.D.; Mittal, G.S. Dynamic of changes in viscoelastic properties of a tofu during frying. Int. J. Food Prop. 2006, 9, 73–83. [Google Scholar] [CrossRef]
- Singh, H.; Rockall, A.; Martin, C.R.; Chung, O.K.; Lookhart, G.L. The analysis of stress relaxation data of some viscoelastic foods using a texture analyzer. J. Texture Stud. 2006, 37, 383–392. [Google Scholar] [CrossRef]
- Dobraszczyk, B.J.; Morgenstern, M.P. Rheology and the bread making process. J. Cereal Sci. 2003, 38, 229–245. [Google Scholar] [CrossRef]
- Ahmed, J.; Ptaszek, P.; Basu, S. Food Rheology: Scientific Development and Importance to Food Industry. In Advances in Food Rheology and Its Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–4. [Google Scholar]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Joyner, H.S. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018, 21, 7–14. [Google Scholar] [CrossRef]
- Floury, J.; Desrumaux, A.; Legrand, J. Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein stabilized emulsions. J. Food Sci. 2002, 67, 3388–3395. [Google Scholar] [CrossRef]
- Li, T.; Rui, X.; Wang, K.; Jiang, M.; Chen, X.; Li, W.; Dong, M. Study of the dynamic states of water and effects of high-pressure homogenization on water distribution in tofu by using low-field nuclear magnetic resonance. Innov. Food Sci. Emerg. Technol. 2015, 30, 61–68. [Google Scholar] [CrossRef]
- Liu, H.H.; Chien, J.T.; Kuo, M.I. Ultra high pressure homogenized soy flour for tofu making. Food Hydrocoll. 2013, 32, 278–285. [Google Scholar] [CrossRef]
- Cruz, N.; Capellas, M.; Hernandez, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructure characteristics. Food Res. Int. 2007, 40, 725–732. [Google Scholar] [CrossRef]
- Cruz, N.; Capellas, M.; Jaramillo, D.P.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Soymilk treated by ultra high–pressure homogenization: Acid coagulation properties and characteristic of soy-yogurt product. Food Hydrocoll. 2009, 23, 490–496. [Google Scholar] [CrossRef]
- Ferragut, V.; Ccuz, N.S.; Trujillo, A.; Guamis, B.; Capellas, M. Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. J. Food Eng. 2009, 92, 63–69. [Google Scholar] [CrossRef]
- Poliseli-Scopel, F.H.; Hernandez-Herrero, M.; Guamis, B.; Ferragut, V. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT Food Sci. Technol. 2012, 46, 42–48. [Google Scholar] [CrossRef]
- Toro-Funes, N.; Bosch-Fuste, J.; Veciana-Nogues, M.T.; Vidal-Carou, N.C. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk. Food Chem. 2014, 152, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Toro-Funes, N.; Bosch-Fuste, J.; Veciana-Nogues, M.T.; Vidal-Carou, N.C. Changes of isoflavones and protein quality in soymilk pasteurized by ultra-high-pressure homogenization throughout storage. Food Chem. 2014, 162, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Tian, K.; Wang, Z.X. Modern techniques efficacy on tofu processing: A review. Trends Food Sci. Technol. 2021, 116, 766–785. [Google Scholar] [CrossRef]
- Li, J.; Wang, K.; Gao, Y.; Ma, C.; Sun, D.; Hussain, M.A.; Qayum, A.; Jiang, Z.; Hou, J. Effect of thermal treatment and pressure on the characteristics of green soybean tofu and the optimization conditions of tofu processing by TOPSIS analysis. LWT Food Sci. Technol. 2021, 136, 110314. [Google Scholar] [CrossRef]
- Liu, H.H.; Kuo, M.I. Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocoll. 2016, 52, 741–748. [Google Scholar] [CrossRef]
- Chemat, K.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–815. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Lelas, V.; Mason, M.J.; Krešić, G.; Badanjak, M. Physical properties of ultrasound treated soy proteins. J. Food Eng. 2009, 93, 386–393. [Google Scholar] [CrossRef]
- Tang, C.H.; Wang, X.Y.; Yang, X.Q.; Li, L. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. J. Food Eng. 2009, 92, 432–437. [Google Scholar] [CrossRef]
- Hu, H.; Fan, X.; Zhou, Z.; Xu, X.; Fan, G.; Wang, L.; Huang, X.J.; Pan, S.Y.; Zhu, L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem. 2013, 20, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li-Chan, E.C.Y.; Wan, L.; Tian, M.; Pan, S. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate induced by calcium sulfate. Food Hydrocoll. 2013, 32, 303–311. [Google Scholar] [CrossRef]
- Fan, X.; Li, S.; Zhang, A.; Chang, H.; Zhao, X.; Lin, Y.; Feng, Z. Mechanism of change of the physicochemical characteristics, gelation process, water state, and microstructure of okara tofu analogues induced by high-intensity ultrasound treatment. Food Hydrocoll. 2021, 111, 106241. [Google Scholar] [CrossRef]
- Ahmed, J.; Ayad, A.; Ramaswamy, H.S.; Alli, I.; Shao, Y. Dynamic viscoelastic behavior of high pressure treated soybean protein isolate dispersions. Int. J. Food Prop. 2007, 10, 397–411. [Google Scholar] [CrossRef]
- Smith, K.; Mendonca, A.; Jung, S. Impact of high-pressure processing on microbial shelf-life and protein stability of refrigerated soymilk. Food Microbiol. 2009, 26, 794–800. [Google Scholar] [CrossRef]
- Van der Ven, C.; Matser, A.M.; Van den Berg, R.W. Inactivation of soybean trypsin inhibitors and lipoxygenase by high-pressure processing. J. Agric. Food Chem. 2005, 53, 1087–1092. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Mittal, G. Preparation of tofu gel by high pressure processing. J. Food Process. Preserv. 2009, 33, 560–569. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Tatsumi, E.; Isobe, S. High-pressure treatment effects on proteins in soy milk. LWT Food Sci. Technol. 2005, 38, 7–14. [Google Scholar] [CrossRef]
- Funami, T. Next target for food hydrocolloid studies: Texture design of foods using hydrocolloid technology. Food Hydrocoll. 2011, 25, 1904–1914. [Google Scholar] [CrossRef]
- Lin, D.; Lu, W.; Kelly, A.L.; Zhang, L.; Zheng, B.; Miao, S. Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends Food Sci. Technol. 2017, 68, 130–144. [Google Scholar] [CrossRef]
- Van de Velde, F.; de Hoog, E.H.; Oosterveld, A.; Tromp, R.H. Protein-polysaccharide interactions to alter texture. Annu. Rev. Food Sci. Technol. 2015, 6, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Everett, D.W.; McLeod, R.E. Interactions of polysaccharide stabilizers with casein aggregates in stirred skim-milk yoghurt. Interact. Dairy J. 2005, 15, 1175–1183. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Li, D.; Wang, I.J.; Bi, C.H.; Adhikari, B. Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels. Carbohydr. Polym. 2014, 108, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.L.; Wang, L.Y.; Wang, J.M.; Zhou, Q.; Yuan, Y.; Yang, X.Q. Synergistic interfacial properties of soy protein-stevioside mixture: Relationship to emulsion stability. Food Hydrocoll. 2014, 39, 127–135. [Google Scholar] [CrossRef]
- MacArtain, P.; Jacquier, J.C.; Dawson, K.A. Physical characteristics of calcium induced k-carrageenan networks. Carbohydr. Polym. 2003, 53, 395–400. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.C.; Lin, T.C.; Kuo, M.I. Effect of whole chia seed flour on gelling properties, microstructure and texture modification of tofu. LWT Food Sci. Technol. 2022, 154, 112676. [Google Scholar] [CrossRef]
- Ho, G.H.; Yang, T.H.; Yang, J. Dietary Products Comprising One or More of Gamma-Polyglutamic Acid (Gamma-Polyglutamate, H Form) And Gamma-Polyglutamates for Use As Nutrition Supplements. U.S. Patent No. US 2006/0257468 A1, 16 November 2006. [Google Scholar]
- Lee, C.Y.; Kuo, M.I. Effect of g-polyglutamate on the rheological properties and microstructure of tofu. Food Hydrocoll. 2011, 25, 1034–1040. [Google Scholar] [CrossRef]
- Wang, T.L.; Domoney, C.; Hedley, C.L.; Casey, R.; Grusak, M.A. Can we improve the nutritional quality of legume seeds? Plant Physiol. 2003, 131, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Canabady-Rochelle, L.S.; Sanchez, C.; Mellema, M.; Banon, S. Study of calcium-soy protein interactions by isothermal titration calorimetry and pH Cycle. J. Agric. Food Chem. 2009, 57, 5939–5947. [Google Scholar] [CrossRef]
- L’Hocine, L.; Boye, J.I. Allergenicity of soybean: New developments in identification of allergenic proteins, cross-reactivities and hypoallergenization technologies. Crit. Rev. Food Sci. Nutr. 2007, 47, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Zhong, X.; Lu, Y.; Du, X.; Jia, R.; Li, H.; Zhang, M. Changes of soybean protein during tofu processing. Foods 2021, 10, 1594. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, M.; Taira, H.; Igarashi, Y.; Yagasaki, K.; Ono, T. Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin. J. Agric. Food Chem. 2000, 48, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Amigo-Benavent, M.; Athanasopoulos, V.I.; del Castillo, M.D. Ion exchange chromatographic conditions for obtaining individual subunits of soybean β-conglycinin. J. Chromatogr. B 2010, 878, 2453–2456. [Google Scholar] [CrossRef]
- Nielson, N.C. Structure of soy proteins. In New Protein Food: Seed Storage Proteins; Altschul, A.M., Wilcke, H.L., Eds.; Academic Press: Orlando, FL, USA, 1985; Volume 5, pp. 27–64. [Google Scholar]
- Gu, X.; Beardslee, T.; Zeece, M.; Sarath, G.; Markwell, J. Identification of IgE-binding proteins in soy lecithin. Int. Arch. Allergy Immunol. 2001, 126, 218–225. [Google Scholar] [CrossRef]
- Hsieh, J.F.; Yu, C.J.; Tsai, T.Y. Proteomic profiling of the coagulation of soymilk proteins induced by magnesium chloride. Food Hydrocoll. 2012, 29, 219–225. [Google Scholar] [CrossRef]
- Mujoo, R.; Trinh, D.T.; Ng, P.K. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem. 2003, 82, 265–273. [Google Scholar] [CrossRef]
- Hsieh, J.F.; Yu, C.J.; Chang, J.Y.; Chen, S.T.; Tsai, H.Y. Microbial transglutaminase-induced polymerization of β-conglycinin and glycinin in soymilk: A proteomics approach. Food Hydrocoll. 2014, 35, 678–685. [Google Scholar] [CrossRef]
- James, A.T.; Yang, A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chem. 2016, 194, 284–289. [Google Scholar] [CrossRef]
- Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z.U.; Huang, Q.; Liu, R. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll. 2019, 89, 512–522. [Google Scholar] [CrossRef]
- Li, Q.; Hua, Y.; Li, X.; Kong, X.; Zhang, C.; Chen, Y. Effects of heat treatments on the properties of soymilks and glucono-δ–Lactone induced tofu gels. Food Res. Int. 2022, 161, 111912. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Deng, H.; Yang, A.; Wu, Z.; Li, X.; Tong, P.; Chen, H. Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu. Food Funct. 2019, 10, 5485–5497. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.H.; Lu, C.P.; Kuo, M.I.; Hsieh, J.F. Coacervation of β-conglycinin, glycinin and isoflavones induced by propylene glycol alginate in heated soymilk. Food Chem. 2016, 200, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Kuo, M.I. Effect of microwave heating on the viscoelastic property and microstructure of soy protein isolate gel. J. Texture Stud. 2011, 42, 1–9. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Yu, C.J.; Li, W.T.; Hsieh, J.F. Coagulation of β-conglycinin, glycinin and isoflavones induced by calcium chloride in soymilk. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, K.H.; Cavender, G.A. Investigation of tofu products coagulated with trimagnesium citrate as a novel alternative to nigari and gypsum: Comparison of physical properties and consumer preference. LWT 2020, 118, 108819. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Hsia, S.Y.; Chan, Y.C.; Hsieh, J.F. Complex coacervation of soy proteins, isoflavones and chitosan. Molecules 2017, 22, 1022. [Google Scholar] [CrossRef] [Green Version]
- Hsia, S.Y.; Hsiao, Y.H.; Li, W.T.; Hsieh, J.F. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.H.; Li, X.J.; Luo, S.Z.; Mu, D.D.; Zhong, X.Y.; Jiang, S.T.; Zheng, Z.; Zhao, Y.Y. Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu. LWT Food Sci. Technol. 2017, 85, 58–65. [Google Scholar] [CrossRef]
- Ringgenberg, E.; Alexander, M.; Corredig, M. Effect of concentration and incubation temperature on the acid induced aggregation of soymilk. Food Hydrocoll. 2013, 30, 463–469. [Google Scholar] [CrossRef]
- Kohyama, K.; Sano, Y.; Doi, E. Rheological characteristics and gelation mechanism of tofu (soybean curd). J. Agric. Food Chem. 1995, 43, 1808–1812. [Google Scholar] [CrossRef]
- Prabhakaran, M.P.; Perera, C.O.; Valiyaveettil, S. Effect of different coagulants on the isoflavone levels and physical properties of prepared firm tofu. Food Chem. 2006, 99, 492–499. [Google Scholar] [CrossRef]
- Kim, I.S.; Hwang, C.W.; Yang, W.S.; Kim, C.H. Current perspectives on the physiological activities of fermented soybean-derived cheonggukjang. Int. J. Mol. Sci. 2021, 22, 5746. [Google Scholar] [CrossRef] [PubMed]
- Veitch, N.C. Isoflavonoids of the leguminosae. Nat. Prod. Rep. 2013, 30, 988–1027. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.P. Isoflavones: Chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev. 2014, 15, 7001–7010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Jin, H.; Wang, G.; Herbert, S. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Setchell, K.D. Phytoestrogens the biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 1998, 68, 1333S–1346S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizova, L.; Dadakova, K.; Kasparovska, J.; Kasparovsky, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [Green Version]
- Sacks, F.M.; Lichtenstein, A.; Van Horn, L.; Harris, W.; Kris-Etherton, P.; Winston, M. American Heart Association Nutrition Committee. Soy protein, isoflavones, and cardiovascular health: An American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 2006, 113, 1034–1044. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, K.; Chin, A.; Lees, K.A.; Nguyen, A.; Bujnowski, D.; He, J.A. Meta-analysis of the effect of soy protein supplementation on serum lipids. Am. J. Cardiol. 2006, 98, 633–640. [Google Scholar] [CrossRef]
- Ruscica, M.; Pavanello, C.; Gandini, S.; Gomaraschi, M.; Vitali, C.; Macchi, C.; Morlotti, B.; Aiello, G.; Bosisio, R.; Calabresi, L.; et al. Effect of soy on metabolic syndrome and cardiovascular risk factors: A randomized controlled trial. Eur. J. Nutr. 2016, 57, 499–511. [Google Scholar] [CrossRef]
- Varinska, L.; Gal, P.; Mojzisova, G.; Mirossay, L.; Mojzis, J. Soy and Breast Cancer: Focus on Angiogenesis. Int. J. Mol. Sci. 2015, 16, 11728–11749. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kim, C.W.; Jeon, S.Y.; Go, R.E.; Hwang, K.; Choi, K.C. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab. Anim. Res. 2014, 30, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.R.; Chen, K.H. Utilization of Isoflavones in Soybeans for Women with Menopausal Syndrome: An Overview. Int. J. Mol. Sci. 2021, 22, 3212. [Google Scholar] [CrossRef]
- Yoshiara, L.Y.; Madeira, T.B.; de Camargo, A.C.; Shahidi, F.; Ida, E.I. Multistep optimization of β-glucoside extraction from germinated soybeans (Glycine max L. Merril) and recovery of isoflavones aglycones. Foods 2018, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.M.; Ha, T.J.; Lee, Y.B.; Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Jeong, S.H.; Kang, Y.M.; Lee, J.H. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods 2013, 5, 1065–1076. [Google Scholar] [CrossRef]
- Paik, S.S.; Jeong, E.; Jung, S.W.; Ha, T.J.; Kang, S.; Sim, S.; Jeon, J.H.; Chun, M.H.; Kim, I.B. Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Exp. Eye Res. 2012, 97, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Rani, R.; Pushkar, S.; Lal, S.K.; Srivastava, S.; Kumari, S.; Vinutha, T.; Dahuja, A.; Praveen, S.; Sachdev, A. Anthocyanin fingerprinting and dynamics in differentially pigmented exotic soybean genotypes using modified HPLC–DAD method. J. Food Meas. Charact. 2020, 14, 1966–1975. [Google Scholar] [CrossRef]
- Saha, S.; Singh, J.; Paul, A.; Sarkar, R.; Khan, Z.; Banerjee, K. Anthocyanin profiling using uv-vis spectroscopy and liquid chromatography mass spectrometry. J AOAC Int. 2020, 103, 23–39. [Google Scholar] [CrossRef]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.M.; Ranjha, M.M.A.N.; Jooste, L.; Hano, C.; Aadil, R.M. Heterocyclic aromatic amines in meat: Formation, isolation, risk assessment, and inhibitory effect of plant extracts. Foods 2021, 10, 1466. [Google Scholar] [CrossRef]
- Ranjha, M.M.; Shafique, B.; Wang, L.; Irfan, S.; Safdar, M.N.; Murtaza, M.A.; Nadeem, M.; Mahmood, S.; Mueen-ud-Din, G.; Nadeem, H.R. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum). Adv. Trad. Med. 2021. [Google Scholar] [CrossRef]
- Takahashi, A.; Shimizu, H.; Okazaki, Y.; Sakaguchi, H.; Taira, T.; Suzuki, T.; Chiji, H. Anthocyanin-rich phytochemicals from aronia fruits inhibit visceral fat accumulation and hyperglycemia in high-fat diet-induced dietary obese rats. J. Oleo Sci. 2015, 64, 1243–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.H.; Kim, H.J.; Jeong, J.W.; Park, C.; Kim, B.W.; Choi, Y.H. Inhibition of adipocyte differentiation by anthocyanins iso lated from the fruit of vitis coignetiae pulliat is associated with the activation of AMPK signaling pathway. Toxicol. Res. 2018, 34, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemes, A.; Homoki, J.R.; Kiss, R.; Hegedus, C.; Kovacs, D.; Peitl, B.; Gal, F.; Stündl, L.; Szilvássy, Z.; Remenyik, J. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients 2019, 11, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.J.; Dai, G.H.; Zheng, X.D. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem. 2016, 36, 68–80. [Google Scholar] [CrossRef]
- Kurimoto, Y.; Shibayama, Y.; Inoue, S.; Soga, M.; Takikawa, M.; Ito, C.; Nanba, F.; Yoshida, T.; Yamashita, Y.; Ashida, H. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. J. Agric. Food Chem. 2013, 61, 5558–5564. [Google Scholar] [CrossRef]
- Tani, T.; Nishikawa, S.; Kato, M.; Tsuda, T. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci. Nutr. 2017, 5, 929–933. [Google Scholar] [CrossRef]
- Matsukawa, T.; Inaguma, T.; Han, J.; Villareal, M.O.; Isoda, H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J. Nutr. Biochem. 2015, 26, 860–867. [Google Scholar] [CrossRef]
- Akiyama, S.; Nesumi, A.; Maeda-Yamamoto, M.; Uehara, M.; Murakami, A. Effects of anthocyanin-rich tea “Sunrouge” on dextran sodium sulfate-induced colitis in mice. Biofactors. 2012, 38, 226–233. [Google Scholar] [CrossRef]
- Graf, D.; Seifert, S.; Jaudszus, A.; Bub, A.; Watzl, B. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats. PLoS ONE 2013, 8, e66690. [Google Scholar] [CrossRef]
- Hassimotto, N.M.; Moreira, V.; do Nascimento, N.G.; Souto, P.C.; Teixeira, C.; Lajolo, F.M. Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside. Biomed. Res. Int. 2013, 2013, 146716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 843–849. [Google Scholar] [CrossRef]
- Ma, H.; Johnson, S.L.; Liu, W.; Dasilva, N.A.; Meschwitz, S.; Dain, J.A.; Seeram, N.P. Evaluation of polyphenol anthocyaninenriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-Glycation, anti-β-Amyloid aggregation, and microglial neuroprotective effects. Int. J. Mol. Sci. 2018, 19, 461. [Google Scholar]
- El-Shiekh, R.A.; Ashour, R.M.; El-Haleim, E.A.A.; Abdel-sattar, E. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomed. Pharmacother. 2020, 128, 110303. [Google Scholar] [CrossRef] [PubMed]
- Horie, K.; Nanashima, N.; Maeda, H. Phytoestrogenic effects of blackcurrant anthocyanins increased endothelial nitric oxide synthase (eNOS) expression in human endothelial cells and ovariectomized rats. Molecules 2019, 24, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitiéma, M.; Koala, M.; Belemnaba, L.; Ouédraogo, J.C.W.; Ouédraogo, S.; Kini, F.; Ouédraogo, S.; Guissou, I.P. Endothelium-independent vasorelaxant effects of anthocyanins-enriched extract from Odontonema strictum (Nees) Kuntze (Acanthaceae) flowers: Ca2+ channels involvement. Eur. J. Med. Plants 2019, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.S.; Kim, C.H.; Yang, W.S. Physiologically active molecules and functional properties of soybeans in human health-Acurrent perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef]
- Liu, Z.S.; Chang, S.K. Effect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu. J. Agric. Food Chem. 2004, 52, 3405–3411. [Google Scholar] [CrossRef]
- Wood, J.E.; Senthilmohan, S.T.; Peskin, A.V. Antioxidant activity of procyanidin-containing plant extracts at different pHs. Food Chem. 2002, 77, 155–161. [Google Scholar] [CrossRef]
- Chua, J.Y.; Liu, S.Q. Soy whey: More than just wastewater from tofu and soy protein isolate industry. Trends Food Sci. Technol. 2019, 91, 24–32. [Google Scholar] [CrossRef]
- Wang, F.; Meng, J.; Sun, L.; Weng, Z.; Fang, Y.; Tang, X.; Zhao, T.; Shen, X. Study on the tofu quality evaluation method and the establishment of a model for suitable soybean varieties for Chinese traditional tofu processing. LWT 2019, 117, 108441. [Google Scholar] [CrossRef]
- Hu, C.; Wong, W.T.; Wu, R.; Lai, W.F. Biochemistry and use of soybean isoflavones in functional food development. Crit. Rev. Food Sci. Nutr. 2019, 60, 2098–2112. [Google Scholar] [CrossRef]
- Barac, M.B.; Stanojevic, S.P.; Pesic, M.B. Biologically Active Components of Soybeans and Soy Protein Products: A Review. Acta Period. Technol. 2005, 36, 155–168. [Google Scholar] [CrossRef]
- Riciputi, Y.; Serrazanetti, D.I.; Verardo, V.; Vannini, L.; Caboni, M.F.; Lanciotti, R. Effect of fermentation on the content of bioactive compounds in tofu-type products. J. Funct. Foods 2016, 27, 131–139. [Google Scholar] [CrossRef]
- Vindiola, O.L.; Seib, P.A.; Hoseney, R.C. Accelerated development of the hard-to-cook state in beans. Cereal Foods World 1986, 31, 538–552. [Google Scholar]
- Yoshida, K.; Sato, Y.; Okuno, R.; Kameda, K.; Isobe, M.; Kondo, T. Structural analysis and measurement of anthocyanin from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Biosci., Biotechnol., Biochem. 1996, 60, 589–593. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef]
- Choung, M.G.; Baek, I.Y.; Kang, S.T.; Han, W.Y.; Shin, D.C.; Moon, H.P.; Kang, K.H. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 2001, 49, 5848–5851. [Google Scholar] [CrossRef]
- Katsuzaki, H.; Hibasami, H.; Ohwaki, S.; Ishikawa, K.; Imai, K.; Date, K.; Kimura, Y.; Komiya, T. Cyanidin-3-O-D-glucoside isolated from skin of black Glycine max and other anthocyanins isolated from skin of red grape induce apoptosis in human lymphoid leukemia Molt 4B cells. Oncol. Rep. 2003, 10, 297–300. [Google Scholar] [CrossRef]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. Total Phenolics, Phenolic Acids, Isoflavones, and Anthocyanins and Antioxidant Properties of Yellow and Black Soybeans As Affected by Thermal Processing. J. Agric. Food Chem. 2008, 56, 7165–7175. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, L. Thermal degradation of carotenoids and influence on their physiological functions. In Nutritional and Toxicological Consequences of Food Processing; Friedman, M., Ed.; Plenum Press: New York, NY, USA, 1991; pp. 75–82. [Google Scholar]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruits and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
Svedberg Coefficients | Protein Name | Molecular Weight (kDa) | Isoelectric Point | References |
---|---|---|---|---|
2S | Albumin | 12.0 | - | [69] |
Bowman–Birk inhibitor | 7.8 | - | [64] | |
Kunitz inhibitor | 21.5 | - | [64] | |
Trasylol | 8-21.5 | 4.5 | [65] | |
Cytochrome C | 12 | 10.2–10.8 | [65] | |
7S | β-Conglycinin, α’ subunit | 72 | 5.5 | [70] |
β-Conglycinin, α subunit | 70 | 5.0 | [70] | |
β-Conglycinin, β subunit | 50 | 5.8 | [70] | |
β-Amylase | 61.7 | 5.0–6.5 | [65] | |
Lipoxygenases | 102.0 | 5.7–6.4 | [65] | |
Lectins (hemagglutinins) | 102.0 | - | [65] | |
11S | Glycinin, A1a subunit | 37.0 | 5.4 | [70] |
Glycinin, A1b subunit | 37.0 | 5.2 | [70] | |
Glycinin, A2 subunit | 37.0 | 5.0 | [70] | |
Glycinin, A3 subunit | 42.0 | 5.1 | [70] | |
Glycinin, A4 subunit | 36.0 | 4.8 | [70] | |
Glycinin, A5 subunit | 10.0 | - | [71] | |
Glycinin, B1a subunit | 20.0 | 7.2 | [72] | |
Glycinin, B1b subunit | 20.0 | 8.2 | [72] | |
Glycinin, B2 subunit | 18.0 | - | [73] | |
Glycinin, B3 subunit | 21.0 | 9.3 | [72] | |
Glycinin, B4 subunit | 20.2 | - | [73] | |
15S | protein polymers | 600 | - | [65] |
Methods | Key Process | References |
---|---|---|
Soymilk was heated at 80 °C for 30 min. | [61] | |
Heating treatment | Soymilk was heated at 95 ± 3 °C for 10 min. | [74] |
Soymilk was heated at 80 °C for 70 min. | [75] | |
Soymilk was heated at 85 °C for 30 min. | [77] | |
Ultrasonic treatment | Soymilk was treated with ultrasonic at 50 °C for 30 min. | [13] |
Microwave treatment | Soymilk was heated in a microwave oven at 210 W for 90 s for protein denaturation. | [78] |
Ultra-high-pressure homogenization treatment | Soymilk was homogenized in a homogenizer at the pressure of 150 MPa for protein denaturation. | [12] |
Component | Coagulants | Key Process | References |
---|---|---|---|
Metal ion | Calcium chloride | Crosslinking of soybean proteins by the protein-Ca2+-protein bridges. | [79] |
Magnesium chloride | Cross-linking of soybean protein by magnesium ions. | [70] | |
Bittern (nigari) | Cross-linking of soybean proteins with metal ions. | [80] | |
Polysaccharide | Chitosan | Cross-linking of soybean proteins with the positively charged amine groups in chitosan. | [81] |
Propylene glycol alginate (PGA) | Hydrophobic association between PGA nonpolar soy protein side chains and ester groups. | [77] | |
Organic acid | GDL | The pH value approaches the isoelectric point of soybean proteins, leading to protein aggregation. | [82] |
Citric acid | [83] | ||
Malic acid | [83] | ||
Enzyme | Transglutaminase (TGase) | TGase catalyzes the cross-linking reaction between soybean proteins. | [72] |
Coagulants | Molding Process | References |
---|---|---|
Metal ion (nigari) | The tofu curd was pressed for 2 h using bricks (1 kg) to remove the whey. | [80] |
Organic acid (GDL, citric acid and malic acid) | The tofu curds were pressed for 30 min at 8 g/cm2 to remove the whey. | [83] |
Polysaccharide (chitosan) | The tofu curd was pressed for 15 min using bricks (3.8 kg) to remove the whey. | [18] |
Enzyme (TGase) | The tofu curd was transferred to a plastic mold and pressed for 3 h. | [76] |
Soybean Content | Health Effects | References |
---|---|---|
Decreased cholesterol levels. | [93,94] | |
Isoflavones | Reducing the risk of cardiovascular disease. | [95] |
Inhibiting cell proliferation. | [96] | |
Anti-cancer. | [97] | |
Anti-aging. | [98] | |
Anti-inflammatory. | [99] |
Soybean Content | Health Effects | References |
---|---|---|
Anti-oxidant. | [103,104,105] | |
Anthocyanins | Anti-obesity. | [106,107,108] |
Anti-diabetic. | [109,110,111,112] | |
Anti-inflammation activity. | [113,114,115,116] | |
Prevention of Alzheimer’s disease. | [117,118] | |
Prevention of cardiovascular disease. | [119,120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-C.; Hsieh, J.-F.; Kuo, M.-I. Insight into the Processing, Gelation and Functional Components of Tofu: A Review. Processes 2023, 11, 202. https://doi.org/10.3390/pr11010202
Chen C-C, Hsieh J-F, Kuo M-I. Insight into the Processing, Gelation and Functional Components of Tofu: A Review. Processes. 2023; 11(1):202. https://doi.org/10.3390/pr11010202
Chicago/Turabian StyleChen, Chun-Chi, Jung-Feng Hsieh, and Meng-I Kuo. 2023. "Insight into the Processing, Gelation and Functional Components of Tofu: A Review" Processes 11, no. 1: 202. https://doi.org/10.3390/pr11010202
APA StyleChen, C.-C., Hsieh, J.-F., & Kuo, M.-I. (2023). Insight into the Processing, Gelation and Functional Components of Tofu: A Review. Processes, 11(1), 202. https://doi.org/10.3390/pr11010202