Separation and Analytical Techniques Used in Snake Venomics: A Review Article
Abstract
:1. Introduction
2. Methods Used for Separation of Venom Complex Mixtures
2.1. Chromatographic Techniques
2.1.1. Size Exclusion Chromatography
2.1.2. Ion Exchange Chromatography
2.1.3. Reversed-Phase High-Pressure Liquid Chromatography
2.1.4. Affinity Chromatography
2.2. Electrophoretic Techniques
2.2.1. One-Dimensional Gel Electrophoresis (1-DGE)
2.2.2. Two-Dimensional Gel Electrophoresis (2-DGE)
3. Implementation of Separation Methods for SVs
3.1. Bioassay-Guided Fractionation
3.2. Whole Proteome Characterization and Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Utkin, Y.N. Animal Venom Studies: Current Benefits and Future Developments. World J. Biol. Chem. 2015, 6, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17079. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.K.; Fung, S.Y.; Tan, K.Y.; Tan, N.H. Proteomic Characterization of Venom of the Medically Important Southeast Asian Naja Sumatrana (Equatorial Spitting Cobra). Acta Trop. 2014, 133, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Abd El-Aziz, T.; Soares, A.G.; Stockand, J.D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Kini, R.M.; Koh, C.Y. Snake Venom Three-Finger Toxins and Their Potential in Drug Development Targeting Cardiovascular Diseases. Biochem. Pharmacol. 2020, 181, 114105. [Google Scholar] [CrossRef]
- Blomback, B.; Blomback, M.; Nilsson, I.M. Coagulation Studies on Reptilase, an Extract of the Venom from Bothrops Jararaca. Thromb. Diath. Haemorrh. 1958, 1, 76–86. [Google Scholar] [CrossRef]
- Frangieh, J.; Rima, M.; Fajloun, Z.; Henrion, D.; Sabatier, J.M.; Legros, C.; Mattei, C. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules 2021, 26, 2223. [Google Scholar] [CrossRef]
- Waheed, H.; Moin, S.F.; Choudhary, M.I. Snake Venom: From Deadly Toxins to Life-Saving Therapeutics. Curr. Med. Chem. 2017, 24, 1874–1891. [Google Scholar] [CrossRef]
- Chan, Y.S.; Cheung, R.C.F.; Xia, L.; Wong, J.H.; Ng, T.B.; Chan, W.Y. Snake Venom Toxins: Toxicity and Medicinal Applications. Appl. Microbiol. Biotechnol. 2016, 100, 6165–6181. [Google Scholar] [CrossRef]
- Tan, C.H.; Tan, K.Y.; Tan, N.H. A Protein Decomplexation Strategy in Snake Venom Proteomics. Methods Mol. Biol. 2019, 1871, 83–92. [Google Scholar] [CrossRef]
- Bird, I.M. High Performance Liquid Chromatography: Principles and Clinical Applications. BMJ 1989, 299, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Ó’Fágáin, C.; Cummins, P.M.; O’Connor, B.F. Gel-Filtration Chromatography. Methods Mol. Biol. 2017, 1485, 15–25. [Google Scholar] [CrossRef]
- Cendron, L.; Mičetić, I.; Polverino de Laureto, P.; Paoli, M. Structural Analysis of Trimeric Phospholipase A2 Neurotoxin from the Australian Taipan Snake Venom. FEBS J. 2012, 279, 3121–3135. [Google Scholar] [CrossRef]
- Latinović, Z.; Leonardi, A.; Koh, C.Y.; Kini, R.M.; Trampuš Bakija, A.; Pungerčar, J.; Križaj, I. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor V and X-Activating Activity. Toxins 2020, 12, 358. [Google Scholar] [CrossRef]
- Naves de Souza, D.L.; Gomes, M.S.; Ferreira, F.B.; Rodrigues, R.S.; Achê, D.C.; Richardson, M.; Borges, M.H.; Rodrigues, V.M. Biochemical and Enzymatic Characterization of BpMP-I, a Fibrinogenolytic Metalloproteinase Isolated from Bothropoides pauloensis Snake Venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 161, 102–109. [Google Scholar] [CrossRef]
- Fekete, S.; Beck, A.; Veuthey, J.L.; Guillarme, D. Ion-Exchange Chromatography for the Characterization of Biopharmaceuticals. J. Pharm. Biomed. Anal. 2015, 113, 43–55. [Google Scholar] [CrossRef]
- Wahby, A.F.; Mahdy, E.-S.; El-Mezayen, H.A.; Salama, W.H.; Abdel-Aty, A.M.; Fahmy, A.S. Egyptian Horned Viper Cerastes cerastes Venom Hyaluronidase: Purification, Partial Characterization and Evidence for Its Action as a Spreading Factor. Toxicon 2012, 60, 1380–1389. [Google Scholar] [CrossRef]
- Salvador, G.H.M.; Borges, R.J.; Eulálio, M.M.C.; Dos Santos, L.D.; Fontes, M.R.M. Biochemical, Pharmacological and Structural Characterization of BmooMP-I, a New P-I Metalloproteinase from Bothrops moojeni Venom. Biochimie 2020, 179, 54–64. [Google Scholar] [CrossRef]
- Bhat, S.K.; Joshi, M.B.; Vasishta, S.; Jagadale, R.N.; Biligiri, S.G.; Coronado, M.A.; Arni, R.K.; Satyamoorthy, K. P-I Metalloproteinases and L-Amino Acid Oxidases from Bothrops species inhibit angiogenesis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200180. [Google Scholar] [CrossRef]
- Bernardes, C.P.; Santos-Filho, N.A.; Costa, T.R.; Gomes, M.S.; Torres, F.S.; Costa, J.; Borges, M.H.; Richardson, M.; dos Santos, D.M.; de Castro Pimenta, A.M.; et al. Isolation and Structural Characterization of a New Fibrin(Ogen)Olytic Metalloproteinase from Bothrops moojeni Snake Venom. Toxicon 2008, 51, 574–584. [Google Scholar] [CrossRef]
- Chaisakul, J.; Khow, O.; Wiwatwarayos, K.; Rusmili, M.R.A.; Prasert, W.; Othman, I.; Abidin, S.A.Z.; Charoenpitakchai, M.; Hodgson, W.C.; Chanhome, L. A Biochemical and Pharmacological Characterization of Phospholipase A2 and Metalloproteinase Fractions from Eastern Russell’s Viper (Daboia siamensis) Venom: Two Major Components Associated with Acute Kidney Injury. Toxins 2021, 13, 521. [Google Scholar] [CrossRef]
- Murakami, T.; Kariu, T.; Takazaki, S.; Hattori, S.; Chijiwa, T.; Ohno, M.; Oda-Ueda, N. Island Specific Expression of a Novel [Lys(49)]Phospholipase A(2) (BPIII) in Protobothrops flavoviridis Venom in Amami-Oshima, Japan. Toxicon 2009, 54, 399–407. [Google Scholar] [CrossRef]
- Miyoshi, S.; Tu, A.T. Phospholipase A2 from Naja naja sputatrix Venom Is a Muscarinic Acetylcholine Receptor Inhibitor. Arch. Biochem. Biophys. 1996, 328, 17–25. [Google Scholar] [CrossRef]
- Sanchez, E.F.; Gabriel, L.M.; Gontijo, S.; Gremski, L.H.; Veiga, S.S.; Evangelista, K.S.; Eble, J.A.; Richardson, M. Structural and Functional Characterization of a P-III Metalloproteinase, Leucurolysin-B, from Bothrops leucurus Venom. Arch. Biochem. Biophys. 2007, 468, 193–204. [Google Scholar] [CrossRef]
- Terada, S.; Hori, J.; Fujimura, S.; Kimoto, E. Purification and Amino Acid Sequence of Brevilysin L6, a Non-Hemorrhagic Metalloprotease from Agkistrodon halys brevicaudus Venom. J. Biochem. 1999, 125, 64–69. [Google Scholar] [CrossRef]
- Wu, W.B.; Chang, S.C.; Liau, M.Y.; Huang, T.F. Purification, Molecular Cloning and Mechanism of Action of Graminelysin I, a Snake-Venom-Derived Metalloproteinase That Induces Apoptosis of Human Endothelial Cells. Biochem. J. 2001, 357, 719–728. [Google Scholar] [CrossRef]
- Hage, D.S.; Matsuda, R. Affinity Chromatography: A Historical Perspective. Methods Mol. Biol. 2015, 1286, 1–19. [Google Scholar] [CrossRef]
- Shioi, N.; Nishijima, A.; Terada, S. Flavorase, a Novel Non-Haemorrhagic Metalloproteinase in Protobothrops Flavoviridis Venom, Is a Target Molecule of Small Serum Protein-3. J. Biochem. 2015, 158, 37–48. [Google Scholar] [CrossRef]
- Saavedra, S.L.; Acosta, G.; Ávila, L.; Giudicessi, S.L.; Camperi, S.A.; Albericio, F.; Cascone, O.; Martínez Ceron, M.C. Use of a Phosphopeptide as a Ligand to Purify Phospholipase A. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1146, 122070. [Google Scholar] [CrossRef]
- Gomes, P.C.; Machado de Avila, R.A.; Selena Maria, W.; Richardson, M.; Fortes-Dias, C.L.; Chávez-Olórtegui, C. The Co-Purification of a Lectin (BJcuL) with Phospholipases A2 from Bothrops jararacussu Snake Venom by Immunoaffinity Chromatography with Antibodies to Crotoxin. Toxicon 2007, 49, 1099–1108. [Google Scholar] [CrossRef]
- Samah, S.; Fatah, C.; Jean-Marc, B.; Safia, K.T.; Fatima, L.D. Purification and Characterization of Cc-Lec, C-Type Lactose-Binding Lectin: A Platelet Aggregation and Blood-Clotting Inhibitor from Cerastes cerastes Venom. Int. J. Biol. Macromol. 2017, 102, 336–350. [Google Scholar] [CrossRef] [PubMed]
- Mendonça-Franqueiro, E.e.P.; Alves-Paiva, R.e.M.; Sartim, M.A.; Callejon, D.R.; Paiva, H.H.; Antonucci, G.A.; Rosa, J.C.; Cintra, A.C.; Franco, J.J.; Arantes, E.C.; et al. Isolation, Functional, and Partial Biochemical Characterization of Galatrox, an Acidic Lectin from Bothrops atrox Snake Venom. Acta Biochim. Biophys. Sin. 2011, 43, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameziani, M.; Chérifi, F.; Kiheli, H.; Saoud, S.; Hariti, G.; Kellou-Taîri, S.; Laraba-Djebari, F. Isolation and Functional Identification of an Antiplatelet RGD-Containing Disintegrin from Cerastes cerastes Venom. Protein J. 2020, 39, 574–590. [Google Scholar] [CrossRef] [PubMed]
- Zaqueo, K.D.; Kayano, A.M.; Simões-Silva, R.; Moreira-Dill, L.S.; Fernandes, C.F.; Fuly, A.L.; Maltarollo, V.G.; Honório, K.M.; da Silva, S.L.; Acosta, G.; et al. Isolation and Biochemical Characterization of a New Thrombin-like Serine Protease from Bothrops pirajai Snake Venom. Biomed. Res. Int. 2014, 2014, 595186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, S.K.; Joshi, M.B.; Ullah, A.; Masood, R.; Biligiri, S.G.; Arni, R.K.; Satyamoorthy, K. Serine Proteinases from Bothrops Snake Venom Activates PI3K/Akt Mediated Angiogenesis. Toxicon 2016, 124, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Kakati, H.; Patra, A.; Kalita, B.; Chanda, A.; Rapole, S.; Mukherjee, A.K. A Comparison of Two Different Analytical Workflows to Determine the Venom Proteome Composition of Naja kaouthia from North-East India and Immunological Profiling of Venom against Commercial Antivenoms. Int. J. Biol. Macromol. 2022, 208, 275–287. [Google Scholar] [CrossRef]
- Unger, K.K.; Liapis, A.I. Adsorbents and Columns in Analytical High-Performance Liquid Chromatography: A Perspective with Regard to Development and Understanding. J. Sep. Sci. 2012, 35, 1201–1212. [Google Scholar] [CrossRef]
- Jandera, P.; Skeifíková, V.; Rehová, L.; Hájek, T.; Baldriánová, L.; Skopová, G.; Kellner, V.; Horna, A. RP-HPLC Analysis of Phenolic Compounds and Flavonoids in Beverages and Plant Extracts Using a CoulArray Detector. J. Sep. Sci. 2005, 28, 1005–1022. [Google Scholar] [CrossRef]
- Suntravat, M.; Cromer, W.E.; Marquez, J.; Galan, J.A.; Zawieja, D.C.; Davies, P.; Salazar, E.; Sánchez, E.E. The Isolation and Characterization of a New Snake Venom Cysteine-Rich Secretory Protein (SvCRiSP) from the Venom of the Southern Pacific Rattlesnake and Its Effect on Vascular Permeability. Toxicon 2019, 165, 22–30. [Google Scholar] [CrossRef]
- Kohlhoff, M.; Borges, M.H.; Yarleque, A.; Cabezas, C.; Richardson, M.; Sanchez, E.F. Exploring the Proteomes of the Venoms of the Peruvian Pit Vipers Bothrops Atrox, B. Barnetti and B. Pictus. J. Proteom. 2012, 75, 2181–2195. [Google Scholar] [CrossRef]
- Bordon, K.C.; Perino, M.G.; Giglio, J.R.; Arantes, E.C. Isolation, Enzymatic Characterization and Antiedematogenic Activity of the First Reported Rattlesnake Hyaluronidase from Crotalus durissus terrificus Venom. Biochimie 2012, 94, 2740–2748. [Google Scholar] [CrossRef]
- Thakur, S.; Malhotra, A.; Giri, S.; Lalremsanga, H.T.; Bharti, O.K.; Santra, V.; Martin, G.; Doley, R. Venom of Several Indian Green Pit Vipers: Comparison of Biochemical Activities and Cross-Reactivity with Antivenoms. Toxicon 2022, 210, 66–77. [Google Scholar] [CrossRef]
- Liu, C.C.; Wu, C.J.; Hsiao, Y.C.; Yang, Y.H.; Liu, K.L.; Huang, G.J.; Hsieh, C.H.; Chen, C.K.; Liaw, G.W. Snake Venom Proteome of Protobothrops mucrosquamatus in Taiwan: Delaying Venom-Induced Lethality in a Rodent Model by Inhibition of Phospholipase A2 activity with varespladib. J. Proteom. 2021, 234, 104084. [Google Scholar] [CrossRef]
- Vanuopadath, M.; Raveendran, D.; Nair, B.G.; Nair, S.S. Venomics and Antivenomics of Indian Spectacled Cobra (Naja naja) from the Western Ghats. Acta Trop. 2022, 228, 106324. [Google Scholar] [CrossRef]
- Rodrigues, C.R.; Molina Molina, D.A.; de Souza, D.L.N.; Cardenas, J.; Costal-Oliveira, F.; Guerra-Duarte, C.; Chávez-Olórtegui, C. Biological and Proteomic Characterization of the Venom from Peruvian Andes Rattlesnake Crotalus durissus. Toxicon 2022, 207, 31–42. [Google Scholar] [CrossRef]
- Munawar, A.; Zahid, A.; Negm, A.; Akrem, A.; Spencer, P.; Betzel, C. Isolation and Characterization of Bradykinin Potentiating Peptides from Agkistrodon bilineatus Venom. Proteome Sci. 2016, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Posada Arias, S.; Rey-Suárez, P.; Pereáñez, J.A.; Acosta, C.; Rojas, M.; Delazari Dos Santos, L.; Ferreira, R.S.; Núñez, V. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A2 from Colombian Bothrops asper Venom. Toxins 2017, 9, 342. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, R.; Rajput, Y.S.; Mann, B.; Singh, R.; Gandhi, K. Separation Methods for Milk Proteins on Polyacrylamide Gel Electrophoresis: Critical Analysis and Options for Better Resolution. Int. Dairy J. 2021, 114, 104920. [Google Scholar] [CrossRef]
- Pereañez, J.A.; Quintana, J.C.; Alarcón, J.C.; Núñez, V. Isolation and Functional Characterization of a Basic Phospholipase A2 from Colombian Bothrops asper Venom. Vitae 2014, 21, 38–48. [Google Scholar]
- Franco-Servín, C.; Neri-Castro, E.; Bénard-Valle, M.; Alagón, A.; Rosales-García, R.A.; Guerrero-Alba, R.; Poblano-Sánchez, J.E.; Silva-Briano, M.; Guerrero-Barrera, A.L.; Sigala-Rodríguez, J.J. Biological and Biochemical Characterization of Coronado Island Rattlesnake (Crotalus helleri caliginis) Venom and Antivenom Neutralization. Toxins 2021, 13, 582. [Google Scholar] [CrossRef]
- Olamendi-Portugal, T.; Batista, C.V.F.; Pedraza-Escalona, M.; Restano-Cassulini, R.; Zamudio, F.Z.; Benard-Valle, M.; de Roodt, A.R.; Possani, L.D. New Insights into the Proteomic Characterization of the Coral Snake Micrurus pyrrhocryptus Venom. Toxicon 2018, 153, 23–31. [Google Scholar] [CrossRef]
- Igci, N.; Demiralp, D.O. A Preliminary Investigation into the Venom Proteome of Macrovipera Lebetina Obtusa (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF Mass Spectrometry and Comparison of Venom Protein Profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch. Toxicol. 2012, 86, 441–451. [Google Scholar] [CrossRef]
- Valente, R.H.; Guimarães, P.R.; Junqueira, M.; Neves-Ferreira, A.G.; Soares, M.R.; Chapeaurouge, A.; Trugilho, M.R.; León, I.R.; Rocha, S.L.; Oliveira-Carvalho, A.L.; et al. Bothrops insularis Venomics: A Proteomic Analysis Supported by Transcriptomic-Generated Sequence Data. J. Proteom. 2009, 72, 241–255. [Google Scholar] [CrossRef]
- Rocha, S.L.; Neves-Ferreira, A.G.; Trugilho, M.R.; Angulo, Y.; Lomonte, B.; Valente, R.H.; Domont, G.B.; Perales, J. Screening for Target Toxins of the Antiophidic Protein DM64 through a Gel-Based Interactomics Approach. J. Proteom. 2017, 151, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, J.J.; Kayano, A.M.; Garay, A.F.G.; Simões-Silva, R.; Sobrinho, J.C.; Vourliotis, S.; Soares, A.M.; Calderon, L.A.; Gómez, M.C.V. Isolation, Biochemical Characterization and Antiparasitic Activity of BmatTX-IV, A Basic Lys49-Phospholipase A2 from the Venom of Bothrops mattogrossensis from Paraguay. Curr. Top. Med. Chem. 2019, 19, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Wongtay, P.; Sangtanoo, P.; Sangvanich, P.; Karnchanatat, A. Variation in the Protein Composition and Biological Activity of King Cobra (Ophiophagus hannah) Venoms. Protein J. 2019, 38, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Almehdar, H.A.; Adel-Sadek, M.A.; Redwan, E.M. Immunoreactivity and Two-Dimensional Gel-Electrophoresis Characterization of Egyptian Cobra Venom Proteome. Pak. J. Pharm. Sci. 2015, 28, 59–64. [Google Scholar]
- Kadi-Saci, A.; Laraba-Djebari, F. Purification and Characterization of a Thrombin-like Enzyme Isolated from Vipera Lebetina Venom: Its Interaction with Platelet Receptor. Blood Coagul. Fibrinolysis 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Averin, A.S.; Utkin, Y.N. Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection. Acta Nat. 2021, 13, 4–14. [Google Scholar] [CrossRef]
- Karabuva, S.; Lukšić, B.; Brizić, I.; Latinović, Z.; Leonardi, A.; Križaj, I. Ammodytin L Is the Main Cardiotoxic Component of the Vipera ammodytes ammodytes Venom. Toxicon 2017, 139, 94–100. [Google Scholar] [CrossRef]
- Sahyoun, C.; Krezel, W.; Mattei, C.; Sabatier, J.-M.; Legros, C.; Fajloun, Z.; Rima, M. Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom. Biology 2022, 11, 888. [Google Scholar] [CrossRef]
- Zanotty, Y.; Álvarez, M.; Perdomo, L.; Sánchez, E.E.; Giron, M.E.; Jimenez, J.C.; Suntravat, M.; Guerrero, B.; Ibarra, C.; Montero, Y. Mutacytin-1, a New C-Type Lectin-like Protein from the Venezuelan Cuaima (Lachesis muta muta Linnaeus, 1766)(Serpentes: Viperidae) Snake Venom Inducing Cardiotoxicity in Developing Zebrafish (Danio rerio) Embryos. Zebrafish 2019, 16, 379–387. [Google Scholar] [CrossRef]
- Menezes, T.N.; Naumann, G.B.; Peixoto, P.; Rouver, W.N.; Gomes, H.L.; Campos, F.V.; Borges, M.H.; Dos Santos, R.L.; Bissoli, N.S.; Sanchez, E.F.; et al. Bothrops leucurus Venom Induces Acute Hypotension in Rats by Means of Its Phospholipase A2 (blD-PLA2). Toxicon 2020, 185, 5–14. [Google Scholar] [CrossRef]
- Tan, L.C.; Kuruppu, S.; Smith, A.I.; Reeve, S.; Hodgson, W.C. Isolation and Pharmacological Characterisation of Hostoxin-1, a Postsynaptic Neurotoxin from the Venom of the Stephen’s Banded Snake (Hoplocephalus stephensi). Neuropharmacology 2006, 51, 782–788. [Google Scholar] [CrossRef]
- Lumsden, N.G.; Banerjee, Y.; Kini, R.M.; Kuruppu, S.; Hodgson, W.C. Isolation and Characterization of Rufoxin, a Novel Protein Exhibiting Neurotoxicity from Venom of the Psammophiine, Rhamphiophis oxyrhynchus (Rufous Beaked Snake). Neuropharmacology 2007, 52, 1065–1070. [Google Scholar] [CrossRef]
- Marcon, F.; Purtell, L.; Santos, J.; Hains, P.G.; Escoubas, P.; Graudins, A.; Nicholson, G.M. Characterization of Monomeric and Multimeric Snake Neurotoxins and Other Bioactive Proteins from the Venom of the Lethal Australian Common Copperhead (Austrelaps superbus). Biochem. Pharmacol. 2013, 85, 1555–1573. [Google Scholar] [CrossRef]
- Venkatesh, M.; Prasad, N.; Sing, T.; Gowda, V. Purification, Characterization, and Chemical Modification of Neurotoxic Peptide from Daboia Russelii Snake Venom of India. J. Biochem. Mol. Toxicol. 2013, 27, 295–304. [Google Scholar] [CrossRef]
- Lazcano-Pérez, F.; Rangel-López, E.; Robles-Bañuelos, B.; Franco-Vásquez, A.M.; García-Arredondo, A.; Navarro-García, J.C.; Zavala-Moreno, A.; Gómez-Manzo, S.; Santamaría, A.; Arreguín-Espinosa, R. Chemical Structure of Three Basic Asp-49 Phospholipases A2 Isolated from Crotalus molossus nigrescens Venom with Cytotoxic Activity against Cancer Cells. Toxicon 2022, 210, 25–31. [Google Scholar] [CrossRef]
- Abdullah, N.A.H.; Rusmili, M.R.A.; Zainal Abidin, S.A.; Shaikh, M.F.; Hodgson, W.C.; Othman, I. Isolation and Characterization of A2-EPTX-Nsm1a, a Secretory Phospholipase A. Toxins 2021, 13, 859. [Google Scholar] [CrossRef]
- Proleón, A.; Torrejón, D.; Urra, F.A.; Lazo, F.; López-Torres, C.; Fuentes-Retamal, S.; Quispe, E.; Bautista, L.; Agurto, A.; Gavilan, R.G.; et al. Functional, Immunological Characterization, and Anticancer Activity of BaMtx: A New Lys49- PLA. Int. J. Biol. Macromol. 2022, 206, 990–1002. [Google Scholar] [CrossRef]
- dos Santos, N.F.T.; Imberg, A.D.; Mariano, D.O.; Moraes, A.C.; Andrade-Silva, J.; Fernandes, C.M.; Sobral, A.C.; Giannotti, K.C.; Kuwabara, W.M.T.; Pimenta, D.C. β-Micrustoxin (Mlx-9), a PLA 2 from Micrurus lemniscatus Snake Venom: Biochemical Characterization and Anti-Proliferative Effect Mediated by P53. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210094. [Google Scholar] [CrossRef]
- Bennacer, A.; Boukhalfa-Abib, H.; Laraba-Djebari, F. Computational and Functional Characterization of a Hemorrhagic Metalloproteinase Purified from Cerastes cerastes Venom. Protein J. 2021, 40, 589–599. [Google Scholar] [CrossRef]
- Požek, K.; Leonardi, A.; Pungerčar, J.; Rao, W.; Gao, Z.; Liu, S.; Laustsen, A.H.; Trampuš Bakija, A.; Reberšek, K.; Podgornik, H.; et al. Genomic Confirmation of the P-IIIe Subclass of Snake Venom Metalloproteinases and Characterisation of Its First Member, a Disintegrin-like/Cysteine-Rich Protein. Toxins 2022, 14, 232. [Google Scholar] [CrossRef]
- Burin, S.M.; Cacemiro, M.D.C.; Cominal, J.G.; Grandis, R.A.; Machado, A.R.T.; Donaires, F.S.; Cintra, A.C.O.; Ambrosio, L.; Antunes, L.M.G.; Sampaio, S.V.; et al. L-Amino Acid Oxidase Induces Apoptosis and Epigenetic Modulation on Bcr-Abl. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20200123. [Google Scholar] [CrossRef] [PubMed]
- Abdelkafi-Koubaa, Z.; Jebali, J.; Othman, H.; Morjen, M.; Aissa, I.; Zouari-Kesentini, R.; Bazaa, A.; Ellefi, A.A.; Majdoub, H.; Srairi-Abid, N.; et al. A Thermoactive L-Amino Acid Oxidase from Cerastes cerastes Snake Venom: Purification, Biochemical and Molecular Characterization. Toxicon 2014, 89, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Salama, W.H.; Ibrahim, N.M.; El Hakim, A.E.; Bassuiny, R.I.; Mohamed, M.M.; Mousa, F.M.; Ali, M.M. L-Amino Acid Oxidase from Cerastes vipera Snake Venom: Isolation, Characterization and Biological Effects on Bacteria and Tumor Cell Lines. Toxicon 2018, 150, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Rey-Suárez, P.; Acosta, C.; Torres, U.; Saldarriaga-Córdoba, M.; Lomonte, B.; Núñez, V. MipLAAO, a New L-Amino Acid Oxidase from the Redtail Coral Snake. PeerJ 2018, 6, e4924. [Google Scholar] [CrossRef] [PubMed]
- Carone, S.E.I.; Menaldo, D.L.; Sartim, M.A.; Bernardes, C.P.; Caetano, R.C.; da Silva, R.R.; Cabral, H.; Barraviera, B.; Ferreira Junior, R.S.; Sampaio, S.V. BjSP, a Novel Serine Protease from Bothrops Jararaca Snake Venom That Degrades Fibrinogen without Forming Fibrin Clots. Toxicol. Appl. Pharmacol. 2018, 357, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Vander Dos Santos, R.; Villalta-Romero, F.; Stanisic, D.; Borro, L.; Neshich, G.; Tasic, L. Citrus Bioflavonoid, Hesperetin, as Inhibitor of Two Thrombin-like Snake Venom Serine Proteases Isolated from Crotalus simus. Toxicon 2018, 143, 36–43. [Google Scholar] [CrossRef]
- Boldrini-França, J.; Santos Rodrigues, R.; Santos-Silva, L.K.; de Souza, D.L.; Gomes, M.S.; Cologna, C.T.; de Pauw, E.; Quinton, L.; Henrique-Silva, F.; de Melo Rodrigues, V.; et al. Expression of a New Serine Protease from Crotalus durissus collilineatus Venom in Pichia Pastoris and Functional Comparison with the Native Enzyme. Appl. Microbiol. Biotechnol. 2015, 99, 9971–9986. [Google Scholar] [CrossRef]
- Amorim, F.G.; Menaldo, D.L.; Carone, S.E.I.; Silva, T.A.; Sartim, M.A.; De Pauw, E.; Quinton, L.; Sampaio, S.V. New Insights on Moojase, a Thrombin-like Serine Protease from Bothrops moojeni Snake Venom. Toxins 2018, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.F.D.C.; Matias Ribeiro, M.S.; de Sousa Simamoto, B.B.; Dias, E.H.V.; Costa, J.O.; Santos-Filho, N.A.; Bordon, K.C.F.; Arantes, E.C.; Dantas, N.O.; Silva, A.C.A.; et al. Baltetin: A New C-Type Lectin-like Isolated from Bothrops Alternatus Snake Venom Which Act as a Platelet Aggregation Inhibiting. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1173, 122695. [Google Scholar] [CrossRef]
- Rincon-Filho, S.; Naves-de-Souza, D.L.; Lopes-de-Souza, L.; Silvano-de-Oliveira, J.; Bonilla Ferreyra, C.; Costal-Oliveira, F.; Guerra-Duarte, C.; Chávez-Olórtegui, C. Micrurus surinamensis Peruvian Snake Venom: Cytotoxic Activity and Purification of a C-Type Lectin Protein (Ms-CTL) Highly Toxic to Cardiomyoblast-Derived H9c2 Cells. Int. J. Biol. Macromol. 2020, 164, 1908–1915. [Google Scholar] [CrossRef]
- Jebali, J.; Zakraoui, O.; Aissaoui, D.; Abdelkafi-Koubaa, Z.; Srairi-Abid, N.; Marrakchi, N.; Essafi-Benkhadir, K. Lebecetin, a Snake Venom C-Type Lectin Protein, Modulates LPS-Induced Inflammatory Cytokine Production in Human THP-1-Derived Macrophages. Toxicon 2020, 187, 144–150. [Google Scholar] [CrossRef]
- Pires, W.L.; Kayano, A.M.; de Castro, O.B.; Paloschi, M.V.; Lopes, J.A.; Boeno, C.N.; Pereira, S.D.S.; Antunes, M.M.; Rodrigues, M.M.S.; Stábeli, R.G.; et al. Lectin Isolated from Bothrops jararacussu Venom Induces IL-10 Release by TCD4. J. Leukoc. Biol. 2019, 106, 595–605. [Google Scholar] [CrossRef]
- Deka, A.; Sharma, M.; Mukhopadhyay, R.; Devi, A.; Doley, R. Naja kaouthia Venom Protein, Nk-CRISP, Upregulates Inflammatory Gene Expression in Human Macrophages. Int. J. Biol. Macromol. 2020, 160, 602–611. [Google Scholar] [CrossRef]
- Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.F.; Boldrini-França, J.; Peigneur, S.; Arantes, E.C.; Rosa, J.C.; Faccioli, L.H.; Tytgat, J.; Sampaio, S.V. First Report on BaltCRP, a Cysteine-Rich Secretory Protein (CRISP) from Bothrops alternatus Venom: Effects on Potassium Channels and Inflammatory Processes. Int. J. Biol. Macromol. 2019, 140, 556–567. [Google Scholar] [CrossRef]
- Lodovicho, M.E.; Costa, T.R.; Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.F.; Carone, S.E.; Rosa, J.C.; Pucca, M.B.; Cerni, F.A.; Arantes, E.C.; et al. Investigating Possible Biological Targets of Bj-CRP, the First Cysteine-Rich Secretory Protein (CRISP) Isolated from Bothrops jararaca Snake Venom. Toxicol. Lett. 2017, 265, 156–169. [Google Scholar] [CrossRef]
- Rivas Mercado, E.; Neri Castro, E.; Bénard Valle, M.; Rucavado-Romero, A.; Olvera Rodríguez, A.; Zamudio Zuñiga, F.; Alagón Cano, A.; Garza Ocañas, L. Disintegrins Extracted from Totonacan Rattlesnake (Crotalus totonacus) Venom and Their Anti-Adhesive and Anti-Migration Effects on MDA-MB-231 and HMEC-1 Cells. Toxicol. In Vitro 2020, 65, 104809. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Manzini, R.V.; Ferreira, I.G.; Cardoso, I.A.; Bordon, K.C.F.; Machado, A.R.T.; Antunes, L.M.G.; Rosa, J.C.; Arantes, E.C. Cell Migration Inhibition Activity of a Non-RGD Disintegrin from Crotalus durissus collilineatus venom. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 28. [Google Scholar] [CrossRef]
- Allane, D.; Oussedik-Oumehdi, H.; Harrat, Z.; Seve, M.; Laraba-Djebari, F. Isolation and Characterization of an Anti-Leishmanial Disintegrin from Cerastes cerastes Venom. J. Biochem. Mol. Toxicol. 2018, 32, e22018. [Google Scholar] [CrossRef]
- Kryukova, E.V.; Potapenko, A.S.; Andreeva, T.V.; Ivanov, I.A.; Ryabinin, V.V.; Ziganshin, R.H.; Starkov, V.G.; Ayvazyan, N.M.; Tsetlin, V.I.; Utkin, Y.N. Dimeric Disintegrins from the Steppe Viper V. ursinii Venom. Dokl. Biochem. Biophys. 2019, 488, 338–341. [Google Scholar] [CrossRef]
- Conlon, J.M.; Attoub, S.; Musale, V.; Leprince, J.; Casewell, N.R.; Sanz, L.; Calvete, J.J. Isolation and Characterization of Cytotoxic and Insulin-Releasing Components from the Venom of the Black-Necked Spitting Cobra Naja nigricollis (Elapidae). Toxicon X 2020, 6, 100030. [Google Scholar] [CrossRef]
- Lomonte, B.; Camacho, E.; Fernández, J.; Salas, M.; Zavaleta, A. Three-Finger Toxins from the Venom of Micrurus tschudii tschudii (Desert Coral Snake): Isolation and Characterization of Tschuditoxin-I. Toxicon 2019, 167, 144–151. [Google Scholar] [CrossRef]
- Son, L.; Kryukova, E.; Ziganshin, R.; Andreeva, T.; Kudryavtsev, D.; Kasheverov, I.; Tsetlin, V.; Utkin, Y. Novel Three-Finger Neurotoxins From Naja melanoleuca Cobra Venom Interact with GABAA and Nicotinic Acetylcholine Receptors. Toxins 2021, 13, 164. [Google Scholar] [CrossRef]
- Lomonte, B.; Calvete, J.J. Strategies in “snake Venomics” Aiming at an Integrative View of Compositional, Functional, and Immunological Characteristics of Venoms. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 26. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Aziz, T.M.; Soares, A.G.; Stockand, J.D. Advances in Venomics: Modern Separation Techniques and Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1160, 122352. [Google Scholar] [CrossRef] [PubMed]
- Slagboom, J.; Kaal, C.; Arrahman, A.; Vonk, F.J.; Somsen, G.W.; Calvete, J.J.; Wüster, W.; Kool, J. Analytical Strategies in Venomics. Microchem. J. 2022, 175, 107187. [Google Scholar] [CrossRef]
- Tasoulis, T.; Pukala, T.L.; Isbister, G.K. Investigating Toxin Diversity and Abundance in Snake Venom Proteomes. Front. Pharmacol. 2021, 12, 768015. [Google Scholar] [CrossRef]
- Tan, K.Y.; Liew, J.L.; Tan, N.H.; Quah, E.S.H.; Ismail, A.K.; Tan, C.H. Unlocking the Secrets of Banded Coral Snake (Calliophis intestinalis, Malaysia): A Venom with Proteome Novelty, Low Toxicity and Distinct Antigenicity. J. Proteom. 2019, 192, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Oh, A.M.F.; Tan, C.H.; Tan, K.Y.; Quraishi, N.H.; Tan, N.H. Venom Proteome of Bungarus sindanus (Sind Krait) from Pakistan and in Vivo Cross-Neutralization of Toxicity Using an Indian Polyvalent Antivenom. J. Proteom. 2019, 193, 243–254. [Google Scholar] [CrossRef]
- Chen, P.C.; Huang, M.N.; Chang, J.F.; Liu, C.C.; Chen, C.K.; Hsieh, C.H. Snake Venom Proteome and Immuno-Profiling of the Hundred-Pace Viper, Deinagkistrodon Acutus, in Taiwan. Acta Trop. 2019, 189, 137–144. [Google Scholar] [CrossRef]
- Lee, L.P.; Tan, K.Y.; Tan, C.H. Snake Venom Proteomics and Antivenomics of Two Sundaic Lance-Headed Pit Vipers: Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Tan, C.H.; Tan, K.Y.; Ng, T.S.; Sim, S.M.; Tan, N.H. Venom Proteome of Spine-Bellied Sea Snake (Hydrophis curtus) from Penang, Malaysia: Toxicity Correlation, Immunoprofiling and Cross-Neutralization by Sea Snake Antivenom. Toxins 2018, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.Y.; Wong, K.Y.; Tan, N.H.; Tan, C.H. Quantitative Proteomics of Naja annulifera (Sub-Saharan Snouted Cobra) Venom and Neutralization Activities of Two Antivenoms in Africa. Int. J. Biol. Macromol. 2020, 158, 605–616. [Google Scholar] [CrossRef]
- Hia, Y.L.; Tan, K.Y.; Tan, C.H. Comparative Venom Proteomics of Banded Krait (Bungarus fasciatus) from Five Geographical Locales: Correlation of Venom Lethality, Immunoreactivity and Antivenom Neutralization. Acta Trop. 2020, 207, 105460. [Google Scholar] [CrossRef]
- Kumkate, S.; Chanhome, L.; Thiangtrongjit, T.; Noiphrom, J.; Laoungboa, P.; Khow, O.; Vasaruchapong, T.; Sitprija, S.; Chaiyabutr, N.; Reamtong, O. Venomics and Cellular Toxicity of Thai Pit Vipers (Trimeresurus macrops and T. hageni). Toxins 2020, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.M.; Yang, Y.E.; Chen, Y.; Cao, J.; Zhang, C.; Liu, L.L.; Wang, Z.Z.; Wang, X.M.; Wang, Y.M.; Tsai, I.H. Transcriptome and Proteome of the Highly Neurotoxic Venom of Gloydius intermedius. Toxicon 2015, 107, 175–186. [Google Scholar] [CrossRef]
- Bocian, A.; Urbanik, M.; Hus, K.; Łyskowski, A.; Petrilla, V.; Andrejčáková, Z.; Petrillová, M.; Legáth, J. Proteomic Analyses of Agkistrodon Contortrix Contortrix Venom Using 2D Electrophoresis and MS Techniques. Toxins 2016, 8, 372. [Google Scholar] [CrossRef]
- Hus, K.K.; Buczkowicz, J.; Petrilla, V.; Petrillová, M.; Łyskowski, A.; Legáth, J.; Bocian, A. First Look at the Venom of Naja ashei. Molecules 2018, 23, 609. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, A.; Sajevic, T.; Pungerčar, J.; Križaj, I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J. Proteome Res. 2019, 18, 2287–2309. [Google Scholar] [CrossRef] [PubMed]
- Choksawangkarn, W.; Sriswasdi, S.; Kalpongnukul, N.; Wongkongkathep, P.; Saethang, T.; Chanhome, L.; Laoungbua, P.; Khow, O.; Sumontha, M.; Chaiyabutr, N.; et al. Combined Proteomic Strategies for In-Depth Venomic Analysis of the Beaked Sea Snake (Hydrophis schistosus) from Songkhla Lake, Thailand. J. Proteom. 2022, 259, 104559. [Google Scholar] [CrossRef] [PubMed]
- Katali, O.; Shipingana, L.; Nyarangó, P.; Pääkkönen, M.; Haindongo, E.; Rennie, T.; James, P.; Eriksson, J.; Hunter, C.J. Protein Identification of Venoms of the African Spitting Cobras. Toxins 2020, 12, 520. [Google Scholar] [CrossRef]
- Dias, Ê.; de Oliveira, L.A.; Sales Lauria, P.S.; Bordon, K.C.F.; Rodrigues Domênico, A.M.; da Silva Guerreiro, M.L.; Wiezel, G.A.; Cardoso, I.A.; Rossini, B.C.; Marino, C.L.; et al. Bothrops Leucurus Snake Venom Protein Profile, Isolation and Biological Characterization of Its Major Toxin PLA. Toxicon 2022, 213, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Gopcevic, K.; Karadzic, I.; Izrael-Zivkovic, L.; Medic, A.; Isakovic, A.; Popović, M.; Kekic, D.; Stanojkovic, T.; Hozic, A.; Cindric, M. Study of the Venom Proteome of Vipera ammodytes ammodytes (Linnaeus, 1758): A Qualitative Overview, Biochemical and Biological Profiling. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 37, 100776. [Google Scholar] [CrossRef]
- Nie, X.; He, Q.; Zhou, B.; Huang, D.; Chen, J.; Chen, Q.; Yang, S.; Yu, X. Exploring the Five-Paced Viper (Deinagkistrodon acutus) Venom Proteome by Integrating a Combinatorial Peptide Ligand Library Approach with Shotgun LC-MS/MS. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200196. [Google Scholar] [CrossRef]
- Hus, K.K.; Marczak, Ł.; Petrilla, V.; Petrillová, M.; Legáth, J.; Bocian, A. Different Research Approaches in Unraveling the Venom Proteome of Naja Ashei. Biomolecules 2020, 10, 1282. [Google Scholar] [CrossRef]
- Choudhury, M.; McCleary, R.J.R.; Kesherwani, M.; Kini, R.M.; Velmurugan, D. Comparison of Proteomic Profiles of the Venoms of Two of the “Big Four” Snakes of India, the Indian Cobra (Naja naja) and the Common Krait (Bungarus caeruleus), and Analyses of Their Toxins. Toxicon 2017, 135, 33–42. [Google Scholar] [CrossRef]
- Ghezellou, P.; Garikapati, V.; Kazemi, S.M.; Strupat, K.; Ghassempour, A.; Spengler, B. A Perspective View of Top-down Proteomics in Snake Venom Research. Rapid Commun. Mass Spectrom. 2019, 33 (Suppl. 1), 20–27. [Google Scholar] [CrossRef] [Green Version]
- Calvete, J.J.; Pla, D.; Els, J.; Carranza, S.; Damm, M.; Hempel, B.F.; John, E.B.O.; Petras, D.; Heiss, P.; Nalbantsoy, A.; et al. Combined Molecular and Elemental Mass Spectrometry Approaches for Absolute Quantification of Proteomes: Application to the Venomics Characterization of the Two Species of Desert Black Cobras, Walterinnesia aegyptia and Walterinnesia morgani. J. Proteome Res. 2021, 20, 5064–5078. [Google Scholar] [CrossRef]
- Melani, R.D.; Skinner, O.S.; Fornelli, L.; Domont, G.B.; Compton, P.D.; Kelleher, N.L. Mapping Proteoforms and Protein Complexes From King Cobra Venom Using Both Denaturing and Native Top-down Proteomics. Mol. Cell. Proteom. 2016, 15, 2423–2434. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, S.; Petras, D.; Engmark, M.; Süssmuth, R.D.; Whiteley, G.; Albulescu, L.O.; Kazandjian, T.D.; Wagstaff, S.C.; Rowley, P.; Wüster, W.; et al. The Medical Threat of Mamba Envenoming in Sub-Saharan Africa Revealed by Genus-Wide Analysis of Venom Composition, Toxicity and Antivenomics Profiling of Available Antivenoms. J. Proteom. 2018, 172, 173–189. [Google Scholar] [CrossRef]
- Petras, D.; Heiss, P.; Harrison, R.A.; Süssmuth, R.D.; Calvete, J.J. Top-down Venomics of the East African Green Mamba, Dendroaspis angusticeps, and the Black Mamba, Dendroaspis polylepis, Highlight the Complexity of Their Toxin Arsenals. J. Proteom. 2016, 146, 148–164. [Google Scholar] [CrossRef]
- Ghezellou, P.; Albuquerque, W.; Garikapati, V.; Casewell, N.R.; Kazemi, S.M.; Ghassempour, A.; Spengler, B. Integrating Top-Down and Bottom-Up Mass Spectrometric Strategies for Proteomic Profiling of Iranian Saw-Scaled Viper, Echis carinatus sochureki, Venom. J. Proteome Res. 2021, 20, 895–908. [Google Scholar] [CrossRef]
- Hempel, B.F.; Damm, M.; Mrinalini; Göçmen, B.; Karış, M.; Nalbantsoy, A.; Kini, R.M.; Süssmuth, R.D. Extended Snake Venomics by Top-Down In-Source Decay: Investigating the Newly Discovered Anatolian Meadow Viper Subspecies. J. Proteome Res. 2020, 19, 1731–1749. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, J.; Peng, L.; Yang, Y.; Sun, Z. Compositional and Toxicological Investigation of Pooled Venom from Farm-Raised. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210040. [Google Scholar] [CrossRef]
- Chanhome, L.; Khow, O.; Reamtong, O.; Vasaruchapong, T.; Laoungbua, P.; Tawan, T.; Suntrarachun, S.; Sitprija, S.; Kumkate, S.; Chaiyabutr, N. Biochemical and Proteomic Analyses of Venom from a New Pit Viper, Protobothrops kelomohy. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210080. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, M.; Xue, C.; Liang, J.; Huang, F. Analysis of the Composition of Deinagkistrodon acutus Snake Venom Based on Proteomics, and Its Antithrombotic Activity and Toxicity Studies. Molecules 2022, 27, 2229. [Google Scholar] [CrossRef]
- Sitprija, S.; Chanhome, L.; Reamtong, O.; Thiangtrongjit, T.; Vasaruchapong, T.; Khow, O.; Noiphrom, J.; Laoungbua, P.; Tubtimyoy, A.; Chaiyabutr, N.; et al. Proteomics and Immunocharacterization of Asian Mountain Pit Viper (Ovophis monticola) Venom. PLoS ONE 2021, 16, e0260496. [Google Scholar] [CrossRef]
Separation Technique | Advantages | Disadvantages |
---|---|---|
Size exclusion chromatography |
|
|
Ion-exchange chromatography |
|
|
Affinity chromatography |
|
|
RP-HPLC |
|
|
1D gel electrophoresis |
|
|
2-D gel electrophoresis |
|
|
Molecule | SV | M.W. | Strategy of Separation | Columns Used | Reference |
---|---|---|---|---|---|
Phospholipase A2 | Crotalus molossus nigrescens | 13,972 Da b | RP-HPLC | C18 | [68] |
Naja sumatrana | 15,606 Da b | Size exclusion Size exclusion RP-HPLC | Sephadex G-50 Superdex 75 10/30 GL C18 | [69] | |
Daboia siamensis | 14,000 Da a | Weak cation exchange Size exclusion | CM-FF Superdex 75 10/300 GL | [29] | |
Bothrops atrox | 13,826 Da b | Weak cation exchange RP-HPLC | CM-sephadex C-25 C18 | [70] | |
Micrurus lemniscatus | 13,568 Da b | RP-HPLC | C8 | [71] | |
Metalloproteinase | Daboia siamensis | 68,000 Da a | Size exclusion Strong Anion exchange Strong cation exchange | Superdex 75 10/300 GL Mono Q Resource S | [29] |
Bothrops atrox | 25,000 Da a | Size exclusion Strong anion exchange | Superdex 200 Mono Q 5/50 GL | [19] | |
Cerastes cerastes | 35,000 Da a | Size exclusion Weak anion exchange Affinity | Sephadex G-75 DEAE sephadex A-50 Benzamidine Sepharose 6B | [72] | |
Bothrops moojeni | 25,000 Da a | Weak cation exchange RP-HPLC | CM-FF C18 | [18] | |
Vipera ammodytes | 21,000 Da a | Size exclusion Strong cation exchange | Superdex 75 10/300 GL SP sepharose | [73] | |
L-amino acid oxidase | Bothrops moojeni | 58,000 Da a | Size exclusion Strong anion exchange | Superdex 200 Mono Q 5/50 GL | [19] |
ND | Weak cation exchange Hydrophobic interaction Affinity | CM-Sepharose Phenyl-Sepharose CL-4B Benzamidine Sepharose | [74] | ||
Cerastes cerastes | 58,000 Da a | Size exclusion Strong anion exchange Affinity | Sephadex G-75 Resource Q HiTrap heparin | [75] | |
Cerastes viper | 60,000 Da a | Size exclusion Weak anion exchange | Sephacryl S-200 DEAE-Sepharose | [76] | |
Micrurus mipartitus | 57,000 Da a | Size exclusion RP-HPLC | Biosec S-200 C18 | [77] | |
Serine protease | Bothrops jararaca | 28,000 Da b | Size exclusion Weak anion exchange RP-HPLC | Sephacryl 200 DEAE C18 | [78] |
Crotalus simus | 24,600 Da a 31,300 Da a | Size exclusion Size exclusion RP-HPLC | Sephadex G-200 Sephadex G-75 C5 | [79] | |
Crotalus durissus collilineatus | 29,474 Da b 28,388 Da b | Size exclusion Strong anion exchange RP-FPLC | Sephacryl S100 HR Mono Q 5/50GL C4 | [80] | |
Bothrops moojeni | 30,300 Da a | Weak cation exchange RP-HPLC | CM Sepharose C18 | [81] | |
C-type lectin | Bothrops alternatus | 25,000 Da a | Weak anion exchange Affinity RP-HPLC | DEAE-Sephacel HiTrap heparin HP RP-source 15 RPC ST4.6/100 | [82] |
Lachesis muta muta | 28,000 Da a | Size exclusion Strong anion exchange RP-HPLC | Sephacryl 300 Mono Q2 C18 | [62] | |
Micrurus surinamensis | 23,461 Da b | Size exclusion Weak anion exchange Size exclusion | Sephacryl S-200 DEAE-Sepharose Superdex G75 10/30 | [83] | |
Macrovipera lebetina | ND | Size exclusion Strong cation exchange | Sephadex G-75 Mono S | [84] | |
Bothrops jararacussu | ND | Affinity RP-HPLC | Sepharose 6B-CL-lactose C18 | [85] | |
Cerastes cerastes | 34,271 Da b | Affinity Size exclusion RP-HPLC | Sepharose 4B-lactose Sephadex G-25 C8 | [39] | |
Cysteine-Rich Secretory Protein | Naja kaouthia | 24,900 Da b | RP-HPLC RP-HPLC | C18 (5 µm) C18 (3 µm) | [86] |
Crotalus oreganus helleri | 25,000 Da a | RP-HPLC Strong cation exchange | C18 SP 5 PW | [24] | |
Bothrops alternatus | 24,400 Da a | Weak anion exchange Size exclusion Affinity | DEAE-Sepharose Sephacryl S-100 Affi-gel blue Sepharose | [87] | |
Bothrops jararaca | 24,600 Da a | Size exclusion Strong anion exchange RP-HPLC | Sephacryl S-200 15 Q C18 | [88] | |
Disintegrins | Crotalus totonacus | 7437 Da b | Size exclusion RP-HPLC | Sephadex G-75 C18 | [89] |
Crotalus durissus collilineatus | 7287 Da b | RP-FPLC RP-FPLC | C18 (5 µm) C18 (3.6 µm) | [90] | |
Cerastes cerastes | 7083 Da b | Size exclusion Weak anion exchange RP-HPLC | Sephadex G75 DEAE-Sephadex A50 C8 | [91] | |
13,835 Da b | Affinity Size exclusion | Sepharose 4B-lactose Sephadex G-50 | [45] | ||
Vipera ursinii | 14,018 Da b | Size exclusion RP-HPLC | Sephadex 75 10/300 GL C18 | [92] | |
Three-Finger Toxins | Naja nigricollis | 6743 Da b | RP-HPLC RP-HPLC | C18 C4 | [93] |
Micrurus tschudii | 6538 Da b | RP-HPLC | C18 | [94] | |
Naja melanoleuca | 7441 Da b 7756 Da b 7787 Da b 8030 Da b | Size exclusion Weak cation exchange RP-HPLC | Sephadex G50 Bio 1000 CM C18 | [95] |
Workflow | SV | Nb of Protein Families | Nb of Proteins | Main Protein Distribution/Most Abundant Venom Components | Reference |
---|---|---|---|---|---|
Workflow 1 RP-HPLC/in-solution trypsin digestion/LC-MSMS | Trimeresus wiroti | 10 | 62 | SV serine protease (31.04%) SV metalloproteinase (26.17%) Disintegrins (9.08%) C-type lectins/snaclecs (8.05%) Phospholipase A2 (7.90%) Cysteine-rich secretory protein (7.22%) | [103] |
Naja atra | 21 | 47 | Phospholipase A2 (45.6%) 3-Finger Toxins (41.4) NGF-beta family (2.4%) SV metalloproteinases (1.5%) | [126] | |
Workflow 2 SDS-PAGE/in-gel protein digestion/LC-MS/MS | Protobothrops kelomohy | 11 | 42 | SV metalloproteinases (40.85%) SV serine protease (29.93%) Phospholipase A2 (15.49%) L-amino acid oxidase (3.87%) | [127] |
Deinagkistrodon acutus | 16 | 103 | Phospholipase A2 (30%) C-type lectins (21%) Antithrombin (17.8%) Thrombin (8.1%) | [128] | |
Workflow 3 2DGE/in gel digestion/LC-MS/MS | Agkistrodon contortrix | 10 | 26 | Phospholipase A2 (50.1%) Metalloproteinases (25.26%) Protein C activator (8.87%) Serine protease (5.85%) | [109] |
Workflow 4 Shotgun analysis | Bothrops leucurus | 19 | 137 | Phospholipase A2 (33.66%) L-amino acid oxidases (9.18%) SV serine proteinases (14.46%) SV metalloproteinases (12.92%) | [114] |
Deinagkistrodon acutus | 10 | 84 | SV metalloproteinases (31.7%) SV serine proteinases (17.6%) C-type lectins (17.6%) Phospholipase A2 (4.7%) 5′-nucleotidase (5.9%) | [116] | |
Combination of workflows 2 + 3 | Ovophis monticola | 9 | 247 | SV metalloproteases (36.8%) SV serine proteases (31.1%), Phospholipase A2 (12.1%) L-amino acid oxidase (5.7%) | [129] |
Combination of workflow 1 + 2 | Hydrophis schistosus | 10 | 42 | Phospholipase A2 Three-finger toxins | [112] |
Naja naja | 17 | 115 | Three-finger toxins (29%) Phospholipase A2 (10%) SV metalloproteinases (9%) | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahyoun, C.; Rima, M.; Mattei, C.; Sabatier, J.-M.; Fajloun, Z.; Legros, C. Separation and Analytical Techniques Used in Snake Venomics: A Review Article. Processes 2022, 10, 1380. https://doi.org/10.3390/pr10071380
Sahyoun C, Rima M, Mattei C, Sabatier J-M, Fajloun Z, Legros C. Separation and Analytical Techniques Used in Snake Venomics: A Review Article. Processes. 2022; 10(7):1380. https://doi.org/10.3390/pr10071380
Chicago/Turabian StyleSahyoun, Christina, Mohamad Rima, César Mattei, Jean-Marc Sabatier, Ziad Fajloun, and Christian Legros. 2022. "Separation and Analytical Techniques Used in Snake Venomics: A Review Article" Processes 10, no. 7: 1380. https://doi.org/10.3390/pr10071380