The Impact of Additive Manufacturing on Supply Chain Management from a System Dynamics Model—Scenario: Traditional, Centralized, and Distributed Supply Chain
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Description of Scenarios
4.1.1. Scenario 1—Traditional Supply Chain
4.1.2. Scenario 2—Centralized Additive Manufacturing Supply Chain
4.1.3. Scenario 3—Decentralized Additive Supply Chain
4.2. Scenario Simulation
- Lead-time analysis indicates the time elapsed from the reception of the first order in week one until all orders of the product category are recorded in the order record.
- Analysis of available capacity and orders in production and inventory.
- Analysis of the behavior of raw material and finished product inventories.
4.2.1. Chain Lead-Time Analysis
4.2.2. Behavioral Analysis of Orders, Inventories, and Available Capacity
- −
- In scenario 1, when there are new orders generated, FM1R1 starts requiring 1600 units of raw material, then it accumulates orders and reaches a peak of 2900 units to complete production. In comparison, FM2R2 and FM3R3 have an inventory of less than 100 units that runs out in a few hours since their demand is much lower than that of product 1.
- −
- In scenario 2, the behavior is divided for each week, where average peaks of 1800 units are reached and then decrease, reaching off-peaks at zero when order production has finished and new orders have not been generated. One of the reasons for the previous situation is that only one manufacturer manages a single inventory of raw materials.
- −
- In scenario 3, the material’s behavior reaches a maximum of 1100 units in the case of FM1R1 because it accumulates the most significant quantity of products and demand, whereas in FM2R2 and FM3R3, the amounts reach 650 and 200, respectively.
5. Discussion
- Traditional supply chain;
- Supply chain with centralized additive manufacturing;
- Supply chain with decentralized additive manufacturing.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Abe, F., Costa Santos, E., Kitamura, Y., Osakada, K., & Shiomi, M. (2003). Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), 119–126. https://doi.org/10.1243/095440603762554668
- Ahn, D.-G., Lee, J.-Y., & Yang, D.-Y. (2006). Rapid Prototyping and Reverse Engineering Application for Orthopedic Surgery Planning. Journal of Mechanical Science and Technology, 20(1), 19–28. https://doi.org/10.1007/BF02916196
- Al-Ahmari, A., Nasr, E. A., Moiduddin, K., Alkindi, M., & Kamrani, A. (2015). Patient specific mandibular implant for maxillofacial surgery using additive manufacturing. 2015 International Conference on Industrial Engineering and Operations Management (IEOM), 1–7. https://doi.org/10.1109/IEOM.2015.7093788
- Arcaute, K., & Wicker, R. B. (2008). Patient-Specific Compliant Vessel Manufacturing Using Dip-Spin Coating of Rapid Prototyped Molds. Journal of Manufacturing Science and Engineering, 130(5), 051008. https://doi.org/10.1115/1.2898839
- Attar, H., Calin, M., Zhang, L. C., Scudino, S., & Eckert, J. (2014). Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A, 593, 170–177. https://doi.org/10.1016/j.msea.2013.11.038
- Bauermeister, A. J., Zuriarrain, A., & Newman, M. I. (2016). Three-Dimensional Printing in Plastic and Reconstructive Surgery. Annals of Plastic Surgery, 77(5), 569–576. https://doi.org/10.1097/SAP.0000000000000671
- Beaucamp, A. T., Namba, Y., Charlton, P., Jain, S., & Graziano, A. A. (2015). Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG). Surface Topography: Metrology and Properties, 3(2), 024001. https://doi.org/10.1088/2051-672X/3/2/024001
- Berretta, S., Evans, K., & Ghita, O. (2018). Additive manufacture of PEEK cranial implants: Manufacturing considerations versus accuracy and mechanical performance. Materials & Design, 139, 141–152. https://doi.org/10.1016/j.matdes.2017.10.078
- Berry, E., Brown, J. M., Connell, M., Craven, C. M., Efford, N. D., Radjenovic, A., & Smith, M. A. (1997). Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Medical Engineering & Physics, 19(1), 90–96. https://doi.org/10.1016/S1350-4533(96)00039-2
- Bibb, R., Eggbeer, D., Evans, P., Bocca, A., & Sugar, A. (2009). Rapid manufacture of custom-fitting surgical guides. Rapid Prototyping Journal, 15(5), 346–354. https://doi.org/10.1108/13552540910993879
- Bill, J. S., Reuther, J. F., Dittmann, W., Kübler, N., Meier, J. L., Pistner, H., & Wittenberg, G. (1995). Stereolithography in oral and maxillofacial operation planning. International Journal of Oral and Maxillofacial Surgery, 24(1), 98–103. https://doi.org/10.1016/S0901-5027(05)80869-0
- Blaya, F., Pedro, P. S., Lopez-Silva, Julia., D’Amato, Roberto., Juanes, J. A., & Lagándara, J. G. (2017). Study, design and prototyping of arm splint with additive manufacturing process. Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality—TEEM 2017, 1–7. https://doi.org/10.1145/3144826.3145407
- Bose, S., Ke, D., Sahasrabudhe, H., & Bandyopadhyay, A. (2018). Additive manufacturing of biomaterials. Progress in Materials Science, 93, 45–111. https://doi.org/10.1016/j.pmatsci.2017.08.003
- Brito, N. M. da S. O., Soares, R. de S. C., Monteiro, E. L. T., Martins, S. C. R., Cavalcante, J. R., Grempel, R. G., & Neto, J. A. de O. (2016). Additive Manufacturing for Surgical Planning of Mandibular Fracture. Acta Stomatologica Croatica, 50(4), 348–353. https://doi.org/10.15644/asc50/4/8
- BRUBAKER, C., FRECKER, T., NJOROGE, I., JENNINGS, G. K., ROSENTHAL, S., & ADAMS, D. (2017). Incorporation of Gold Nanoparticles for Enhanced Additive Manufacturing and 3D Printing Applications of Novel ‘Smart’ Materials. Structural Health Monitoring 2017, 0(shm). https://doi.org/10.12783/shm2017/14072
- Budzik, G., Burek, J., Bazan, A., & Turek, P. (2016). Analysis of the Accuracy of Reconstructed Two Teeth Models Manufactured Using the 3DP and FDM Technologies. Strojniški Vestnik - Journal of Mechanical Engineering, 62(1). https://doi.org/10.5545/sv-jme.2015.2699
- Cheng, Y. L., & Chen, S. J. (2006). Manufacturing of Cardiac Models Through Rapid Prototyping Technology for Surgery Planning. Materials Science Forum, 505–507, 1063–1068. https://doi.org/10.4028/www.scientific.net/MSF.505-507.1063
- Chlebus, E., Kuźnicka, B., Kurzynowski, T., & Dybała, B. (2011). Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting. Materials Characterization, 62(5), 488–495. https://doi.org/10.1016/j.matchar.2011.03.006
- Choi, A. H., Conway, R. C., Cazalbou, S., & Ben-Nissan, B. (2018). Maxillofacial bioceramics in tissue engineering: Production techniques, properties, and applications. In Fundamental Biomaterials: Ceramics (pp. 63–93). Elsevier. https://doi.org/10.1016/B978-0-08-102203-0.00003-2
- Chougule, V. N., Mulay, A. V., & Ahuja, B. B. (2014). Development of patient specific implants for Minimum Invasive Spine Surgeries (MISS) from non-invasive imaging techniques by reverse engineering and additive manufacturing techniques. Procedia Engineering, 97, 212–219. https://doi.org/10.1016/j.proeng.2014.12.244
- Clinkenbeard, R. E., Johnson, D. L., Parthasarathy, R., Altan, M. C., Tan, K.-H., Park, S.-M., & Crawford, R. H. (2002). Replication of Human Tracheobronchial Hollow Airway Models Using a Selective Laser Sintering Rapid Prototyping Technique. AIHAJ, 63(2), 141–150. https://doi.org/10.1202/0002-8894(2002)063<0141:ROHTHA>2.0.CO;2
- Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C., & Mikos, A. G. (2003). Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of Biomedical Materials Research, 64B(2), 65–69. https://doi.org/10.1002/jbm.b.10485
- Cronskär, M., Bäckström, M., & Rännar, L. (2013). Production of customized hip stem prostheses – a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyping Journal, 19(5), 365–372. https://doi.org/10.1108/RPJ-07-2011-0067
- Cruz, F., & Coole, T. (2006). Additive fabrication of bioceramic/biopolymer bone implants. 95–96.
- Dadbakhsh, S., Speirs, M., Van Humbeeck, J., & Kruth, J.-P. (2016). Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications. MRS Bulletin, 41(10), 765–774. https://doi.org/10.1557/mrs.2016.209
- Dahake, S. W., Kuthe, A. M., Chawla, J., & Mawale, M. B. (2017). Rapid prototyping assisted fabrication of customized surgical guides in mandibular distraction osteogenesis: a case report. Rapid Prototyping Journal, 23(3), 602–610. https://doi.org/10.1108/RPJ-09-2015-0129
- Dahake, S. W., Kuthe, A. M., Mawale, M. B., & Bagde, A. D. (2016). Applications of medical rapid prototyping assisted customized surgical guides in complex surgeries. Rapid Prototyping Journal, 22(6), 934–946. https://doi.org/10.1108/RPJ-02-2015-0021
- Daniel, S., & Eggbeer, D. (2016). A CAD and AM process for maxillofacial prostheses bar-clip retention. Rapid Prototyping Journal, 22(1), 170–177. https://doi.org/10.1108/RPJ-03-2014-0036
- de Beer, N., & van der Merwe, A. (2013). Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyping Journal, 19(2), 126–139. https://doi.org/10.1108/13552541311302987
- Dhariwala, B., Hunt, E., & Boland, T. (2004). Rapid Prototyping of Tissue-Engineering Constructs, Using Photopolymerizable Hydrogels and Stereolithography. Tissue Engineering, 10(9–10), 1316–1322. https://doi.org/10.1089/ten.2004.10.1316
- Dobrzański, L. A. (2007). Archives of materials science and engineering international scientific journal published monthly as the organ of the Committee of Materials Science of the Polish Academy of Sciences. In Archives of Materials Science and Engineering (Issue Vol. 76, nr 2). International OCSCO World Press.
- Duan, B., & Wang, M. (2011). Selective laser sintering and its application in biomedical engineering. MRS Bulletin, 36(12), 998–1005. https://doi.org/10.1557/mrs.2011.270
- D’Urso, P. S., Effeney, D. J., Earwaker, W. J., Barker, T. M., Redmond, M. J., Thompson, R. G., & Tomlinson, F. H. (2000). Custom cranioplasty using stereolithography and acrylic. British Journal of Plastic Surgery, 53(3), 200–204. https://doi.org/10.1054/bjps.1999.3268
- Edith Wiria, F., Fai Leong, K., & Kai Chua, C. (2010). Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds. Rapid Prototyping Journal, 16(6), 400–410. https://doi.org/10.1108/13552541011083317
- Edith Wiria, F., Sudarmadji, N., Fai Leong, K., Kai Chua, C., Wei Chng, E., & Chai Chan, C. (2010). Selective laser sintering adaptation tools for cost effective fabrication of biomedical prototypes. Rapid Prototyping Journal, 16(2), 90–99. https://doi.org/10.1108/13552541011025816
- Elahinia, M., Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., Bimber, B. A., & Hamilton, R. F. (2016). Fabrication of NiTi through additive manufacturing: A review. Progress in Materials Science, 83, 630–663. https://doi.org/10.1016/J.PMATSCI.2016.08.001
- El-Hajje, A., Kolos, E. C., Wang, J. K., Maleksaeedi, S., He, Z., Wiria, F. E., Choong, C., & Ruys, A. J. (2014). Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. Journal of Materials Science: Materials in Medicine, 25(11), 2471–2480. https://doi.org/10.1007/s10856-014-5277-2
- Espalin, D., Arcaute, K., Rodriguez, D., Medina, F., Posner, M., & Wicker, R. (2010). Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping Journal, 16(3), 164–173. https://doi.org/10.1108/13552541011034825
- Facchini, L., Magalini, E., Robotti, P., & Molinari, A. (2009). Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyping Journal, 15(3), 171–178. https://doi.org/10.1108/13552540910960262
- Falvo D’Urso Labate, G., Catapano, G., Vitale-Brovarone, C., & Baino, F. (2017). Quantifying the micro-architectural similarity of bioceramic scaffolds to bone. Ceramics International, 43(12), 9443–9450. https://doi.org/10.1016/j.ceramint.2017.04.121
- Fatemi, A., Molaei, R., Sharifimehr, S., Shamsaei, N., & Phan, N. (2017). Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect. International Journal of Fatigue, 99, 187–201. https://doi.org/10.1016/J.IJFATIGUE.2017.03.002
- Faure, S. P., Mercier, L., Didier, P., Roux, R., Coulon, J. F., Garel, S., Trenit, J., Buard, H., & Razan, F. (2012). Laser Sintering Process Analysis: Application to Chromium-Cobalt Alloys for Dental Prosthesis Production. Volume 4: Advanced Manufacturing Processes; Biomedical Engineering; Multiscale Mechanics of Biological Tissues; Sciences, Engineering and Education; Multiphysics; Emerging Technologies for Inspection, 9. https://doi.org/10.1115/ESDA2012-82108
- Gallivanone, F., Interlenghi, M., Canervari, C., & Castiglioni, I. (2016). A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions. Journal of Instrumentation, 11(01), C01022–C01022. https://doi.org/10.1088/1748-0221/11/01/C01022
- Gauvin, R., Chen, Y.-C., Lee, J. W., Soman, P., Zorlutuna, P., Nichol, J. W., Bae, H., Chen, S., & Khademhosseini, A. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33(15), 3824–3834. https://doi.org/10.1016/j.biomaterials.2012.01.048
- Gebhardt, A., Schmidt, F.-M., Hötter, J.-S., Sokalla, W., & Sokalla, P. (2010). Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Physics Procedia, 5, 543–549. https://doi.org/10.1016/j.phpro.2010.08.082
- Gmeiner, R., & Deisinger, U. (2015). Additive manufacturing of bioactive glasses and silicate bioceramics. Researchgate.Net.
- Goffard, R., & Sforza, T. (2013). Additive manufacturing of biocompatible ceramics. Search.Proquest.Com.
- Gronet, P. M., Waskewicz, G. A., & Richardson, C. (2003). Preformed acrylic cranial implants using fused deposition modeling: A clinical report. The Journal of Prosthetic Dentistry, 90(5), 429–433. https://doi.org/10.1016/j.prosdent.2003.08.023
- Hagedorn-Hansen, D., Oosthuizen, G. A., & Gerhold, T. (2016). RESOURCE-EFFICIENT PROCESS CHAINS TO MANUFACTURE PATIENT-SPECIFIC PROSTHETIC FINGERS. The South African Journal of Industrial Engineering, 27(1). https://doi.org/10.7166/27-1-1279
- Hinderdael, M., Strantza, M., De Baere, D., Devesse, W., De Graeve, I., Terryn, H., & Guillaume, P. (2017). Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System. Materials, 10(9), 993. https://doi.org/10.3390/ma10090993
- Ho, D., Squelch, A., & Sun, Z. (2017). Modelling of aortic aneurysm and aortic dissection through 3D printing. Journal of Medical Radiation Sciences, 64(1), 10–17. https://doi.org/10.1002/jmrs.212
- Höfer, R., & Hinrichs, K. (2009). Additives for the Manufacture and Processing of Polymers (pp. 97–145). Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_12
- Hong, Y., Wu, M., Chen, G., Dai, Z., Zhang, Y., Chen, G., & Dong, X. (2016). 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Applied Materials & Interfaces, 8(48), 32940–32947. https://doi.org/10.1021/acsami.6b10464
- Hrabe, N., & Quinn, T. (2013a). Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size. Materials Science and Engineering: A, 573, 264–270. https://doi.org/10.1016/J.MSEA.2013.02.064
- Hrabe, N., & Quinn, T. (2013b). Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Materials Science and Engineering: A, 573, 271–277. https://doi.org/10.1016/J.MSEA.2013.02.065
- Huang, H., Xiang, C., Zeng, C., Ouyang, H., Wong, K. K. L., & Huang, W. (2015). Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing. Australasian Physical & Engineering Sciences in Medicine, 38(4), 743–753. https://doi.org/10.1007/s13246-015-0402-1
- Husár, B., Hatzenbichler, M., Mironov, V., Liska, R., Stampfl, J., & Ovsianikov, A. (2014). Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds. In Biomaterials for Bone Regeneration (pp. 149–201). Elsevier. https://doi.org/10.1533/9780857098104.2.149
- Ionita, C. N., Mokin, M., Varble, N., Bednarek, D. R., Xiang, J., Snyder, K. V., Siddiqui, A. H., Levy, E. I., Meng, H., & Rudin, S. (2014). Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing (R. C. Molthen & J. B. Weaver, Eds.; p. 90380M). https://doi.org/10.1117/12.2042266
- Jackson, A., Ray, L. A., Dangi, S., Ben-Zikri, Y. K., & Linte, C. A. (2017). 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models (T. S. Cook & J. Zhang, Eds.; p. 101380T). https://doi.org/10.1117/12.2256181
- Jardini, A. L., Larosa, M. A., Filho, R. M., Zavaglia, C. A. de C., Bernardes, L. F., Lambert, C. S., Calderoni, D. R., & Kharmandayan, P. (2014). Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. Journal of Cranio-Maxillofacial Surgery, 42(8), 1877–1884. https://doi.org/10.1016/j.jcms.2014.07.006
- Ji, Z., Yan, C., Yu, B., Wang, X., & Zhou, F. (2017). Multimaterials 3D Printing for Free Assembly Manufacturing of Magnetic Driving Soft Actuator. Advanced Materials Interfaces, 4(22), 1700629. https://doi.org/10.1002/admi.201700629
- Jiménez, M., Romero, L., Domínguez, M., & Espinosa, M. M. (2015). Rapid prototyping model for the manufacturing by thermoforming of occlusal splints. Rapid Prototyping Journal, 21(1), 56–69. https://doi.org/10.1108/RPJ-11-2012-0101
- Jungst, T., Smolan, W., Schacht, K., Scheibel, T., & Groll, J. (2016). Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chemical Reviews, 116(3), 1496–1539. https://doi.org/10.1021/acs.chemrev.5b00303
- Koike, M., Martinez, K., Guo, L., Chahine, G., Kovacevic, R., & Okabe, T. (2011). Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. Journal of Materials Processing Technology, 211(8), 1400–1408. https://doi.org/10.1016/j.jmatprotec.2011.03.013
- Kong, Y. L., Gupta, M. K., Johnson, B. N., & McAlpine, M. C. (2016). 3D printed bionic nanodevices. Nano Today, 11(3), 330–350. https://doi.org/10.1016/J.NANTOD.2016.04.007
- Koptioug, A., Rännar, L. E., Bäckström, M., & Klingvall, R. P. (2012). Electron Beam Melting: Moving from Macro- to Micro- and Nanoscale. Materials Science Forum, 706–709, 532–537. https://doi.org/10.4028/www.scientific.net/MSF.706-709.532
- Koumoulos, E. P., Gkartzou, E., & Charitidis, C. A. (2017). Additive (nano)manufacturing perspectives: the use of nanofillers and tailored materials. Manufacturing Review, 4, 12. https://doi.org/10.1051/mfreview/2017012
- Kruth, J. P., Wang, X., Laoui, T., & Froyen, L. (2003). Lasers and materials in selective laser sintering. Assembly Automation, 23(4), 357–371. https://doi.org/10.1108/01445150310698652
- Kuk, M., Mitsouras, D., Dill, K. E., Rybicki, F. J., & Dwivedi, G. (2017). 3D Printing from Cardiac Computed Tomography for Procedural Planning. Current Cardiovascular Imaging Reports, 10(7), 21. https://doi.org/10.1007/s12410-017-9420-6
- Kuo, C.-C., Chen, W.-H., Li, J.-F., & Zhu, Y.-J. (2018). Development of a flexible modeling base for additive manufacturing. The International Journal of Advanced Manufacturing Technology, 94(1–4), 1533–1541. https://doi.org/10.1007/s00170-017-1028-0
- Lathers, S., & La Belle, J. (2016). Advanced Manufactured Fused Filament Fabrication 3D Printed Osseointegrated Prosthesis for a Transhumeral Amputation Using Taulman 680 FDA. 3D Printing and Additive Manufacturing, 3(3), 166–174. https://doi.org/10.1089/3dp.2016.0010
- Lee, K.-W., Wang, S., Fox, B. C., Ritman, E. L., Yaszemski, M. J., & Lu, L. (2007). Poly(propylene fumarate) Bone Tissue Engineering Scaffold Fabrication Using Stereolithography: Effects of Resin Formulations and Laser Parameters. Biomacromolecules, 8(4), 1077–1084. https://doi.org/10.1021/bm060834v
- Leonards, H., Engelhardt, S., Hoffmann, A., Pongratz, L., Schriever, S., Bläsius, J., Wehner, M., & Gillner, A. (2015). Advantages and drawbacks of Thiol-ene based resins for 3D-printing (H. Helvajian, A. Piqué, M. Wegener, & B. Gu, Eds.; Vol. 9353, p. 93530F). International Society for Optics and Photonics. https://doi.org/10.1117/12.2081169
- Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300–307. https://doi.org/10.1016/J.IJFATIGUE.2012.11.011
- Li, X., Wang, C., Zhang, W., & Li, Y. (2009). Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Materials Letters, 63(3–4), 403–405. https://doi.org/10.1016/j.matlet.2008.10.065
- Li, X., Wang, Y., Zhao, Y., Liu, J., Xiao, S., & Mao, K. (2017). Multilevel 3D Printing Implant for Reconstructing Cervical Spine with Metastatic Papillary Thyroid Carcinoma. SPINE, 42(22), E1326–E1330. https://doi.org/10.1097/BRS.0000000000002229
- Liravi, F., & Toyserkani, E. (2018). A hybrid additive manufacturing method for the fabrication of silicone bio-structures: 3D printing optimization and surface characterization. Materials & Design, 138, 46–61. https://doi.org/10.1016/J.MATDES.2017.10.051
- Liu, Q., Leu, M. C., & Schmitt, S. M. (2006). Rapid prototyping in dentistry: technology and application. The International Journal of Advanced Manufacturing Technology, 29(3–4), 317–335. https://doi.org/10.1007/s00170-005-2523-2
- Lopes, G., Miranda, R. M., Quintino, L., Rodrigues, J. P. (2007). Additive manufacturing of Ti-6Al-4V based components with high power fiber lasers. Virtual and Rapid Manufacturing, 369–374.
- Lueders, C., Jastram, B., Hetzer, R., & Schwandt, H. (2014). Rapid manufacturing techniques for the tissue engineering of human heart valves. European Journal of Cardio-Thoracic Surgery, 46(4), 593–601. https://doi.org/10.1093/ejcts/ezt510
- Lusquiños, F., del Val, J., Arias-González, F., Comesaña, R., Quintero, F., Riveiro, A., Boutinguiza, M., Jones, J. R., Hill, R. G., & Pou, J. (2014). Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing. Physics Procedia, 56, 309–316. https://doi.org/10.1016/j.phpro.2014.08.176
- M Zanetti, E., Aldieri, A., Terzini, M., Calì, M., Franceschini, G., & Bignardi, C. (2017). ADDITIVELY MANUFACTURED CUSTOM LOAD-BEARING IMPLANTABLE DEVICES. Australasian Medical Journal, 10(08). https://doi.org/10.21767/AMJ.2017.3093
- MacBarb, R. F., Lindsey, D. P., Bahney, C. S., Woods, S. A., Wolfe, M. L., & Yerby, S. A. (2017). Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces. International Journal of Spine Surgery, 11, 15. https://doi.org/10.14444/4015
- McCullough, E. J., & Yadavalli, V. K. (2013). Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology, 213(6), 947–954. https://doi.org/10.1016/j.jmatprotec.2012.12.015
- Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2009). A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 30(23–24), 3801–3809. https://doi.org/10.1016/j.biomaterials.2009.03.055
- Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
- Misra, S. K., Ostadhossein, F., Babu, R., Kus, J., Tankasala, D., Sutrisno, A., Walsh, K. A., Bromfield, C. R., & Pan, D. (2017). 3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite. Advanced Healthcare Materials, 6(11), 1700008. https://doi.org/10.1002/adhm.201700008
- Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3(1), 42–53. https://doi.org/10.1007/s40436-014-0097-7
- Msallem, B., Beiglboeck, F., Honigmann, P., Jaquiéry, C., & Thieringer, F. (2017). Craniofacial Reconstruction by a Cost-Efficient Template-Based Process Using 3D Printing. Plastic and Reconstructive Surgery—Global Open, 5(11), e1582. https://doi.org/10.1097/GOX.0000000000001582
- Mullen, L., Stamp, R. C., Brooks, W. K., Jones, E., & Sutcliffe, C. J. (2009). Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B(2), 325–334. https://doi.org/10.1002/jbm.b.31219
- Murr, L. E., Amato, K. N., Li, S. J., Tian, Y. X., Cheng, X. Y., Gaytan, S. M., Martinez, E., Shindo, P. W., Medina, F., & Wicker, R. B. (2011). Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1396–1411. https://doi.org/10.1016/j.jmbbm.2011.05.010
- Murr, L. E., Gaytan, S. M., Martinez, E., Medina, F., & Wicker, R. B. (2012). Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting. International Journal of Biomaterials, 2012, 1–14. https://doi.org/10.1155/2012/245727
- Nabiyouni, M., Brückner, T., Zhou, H., Gbureck, U., & Bhaduri, S. B. (2018). Magnesium-based bioceramics in orthopedic applications. Acta Biomaterialia, 66, 23–43. https://doi.org/10.1016/j.actbio.2017.11.033
- Nakano, T., & Ishimoto, T. (2015). Powder-based Additive Manufacturing for Development of Tailor-made Implants for Orthopedic Applications. KONA Powder and Particle Journal, 32(0), 75–84. https://doi.org/10.14356/kona.2015015
- Nayar, S., Bhuminathan, S., & Bhat, W. (2015). Rapid prototyping and stereolithography in dentistry. Journal of Pharmacy and Bioallied Sciences, 7(5), 218. https://doi.org/10.4103/0975-7406.155913
- Nocerino, E., Remondino, F., Uccheddu, F., Gallo, M., & Gerosa, G. (2016). 3D MODELLING AND RAPID PROTOTYPING FOR CARDIOVASCULAR SURGICAL PLANNING – TWO CASE STUDIES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprsarchives-XLI-B5-887-2016
- Ogden, K., Ordway, N., Diallo, D., Tillapaugh-Fay, G., & Aslan, C. (2014). Dimensional accuracy of 3D printed vertebra (Z. R. Yaniv & D. R. Holmes, Eds.; p. 903629). https://doi.org/10.1117/12.2043489
- O’Hara, R. P., Chand, A., Vidiyala, S., Arechavala, S. M., Mitsouras, D., Rudin, S., & Ionita, C. N. (2016). Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms (J. Zhang & T. S. Cook, Eds.; p. 978909). https://doi.org/10.1117/12.2217036
- Opolski, A. C., Erbano, B. O., Schio, N. A., de Salles Graça, Y. L. S., Guarinello, G. G., de Oliveira, P. M., Leal, A. G., Foggiatto, J. A., & Kubrusly, L. F. (2014). Experimental Three-Dimensional Biomodel of Complex Aortic Aneurysms by Rapid Prototyping Technology. 3D Printing and Additive Manufacturing, 1(2), 88–94. https://doi.org/10.1089/3dp.2013.0009
- Pan, Y., Patil, A., Guo, P., & Zhou, C. (2017). A novel projection based electro-stereolithography (PES) process for production of 3D polymer-particle composite objects. Rapid Prototyping Journal, 23(2), 236–245. https://doi.org/10.1108/RPJ-02-2016-0030
- Peel, S., Bhatia, S., Eggbeer, D., Morris, D. S., & Hayhurst, C. (2017). Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(6), 509–524. https://doi.org/10.1177/0954411916681346
- Pekkanen, A. M., Mondschein, R. J., Williams, C. B., & Long, T. E. (2017). 3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules, 18(9), 2669–2687. https://doi.org/10.1021/acs.biomac.7b00671
- Petcu, E. B. (2017). 3D Bio-Printing: an Introduction to a New Approach for Cancer Patients at the Interface of Art and Medicine. Leonardo, 50(2), 195–196. https://doi.org/10.1162/LEON_a_01418
- Poh, P. S. P., Chhaya, M. P., Wunner, F. M., De-Juan-Pardo, E. M., Schilling, A. F., Schantz, J.-T., van Griensven, M., & Hutmacher, D. W. (2016). Polylactides in additive biomanufacturing. Advanced Drug Delivery Reviews, 107, 228–246. https://doi.org/10.1016/j.addr.2016.07.006
- Popescu, D., Laptoiu, D., Hadar, A., Ilie, C., & Parvu, C. (2015). How to design and additive manufacture individualized surgical guides for hand osteotomy. 2015 E-Health and Bioengineering Conference (EHB), 1–4. https://doi.org/10.1109/EHB.2015.7391609
- Popescu, D., Lăptoiu, D., Marinescu, R., Hadar, A., & Botezatu, I. (2017). Advanced Engineering in Orthopedic Surgery Applications. Key Engineering Materials, 752, 99–104. https://doi.org/10.4028/www.scientific.net/KEM.752.99
- Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., & Masaylo, D. (2016). Additive manufacturing of individual implants from titanium alloy. 1504–1508.
- Radosh, A., Kuczko, W., Wichniarek, R., & Górski, F. (2017). Prototyping of Cosmetic Prosthesis of Upper Limb Using Additive Manufacturing Technologies. Advances in Science and Technology Research Journal, 11(3), 102–108. https://doi.org/10.12913/22998624/70995
- Rahmati, S., Abbaszadeh, F., & Farahmand, F. (2012). An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies. Rapid Prototyping Journal, 18(5), 389–400. https://doi.org/10.1108/13552541211250382
- Ramakrishnaiah, R., Al kheraif, A. A., Mohammad, A., Divakar, D. D., Kotha, S. B., Celur, S. L., Hashem, M. I., Vallittu, P. K., & Rehman, I. U. (2017). Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi Journal of Biological Sciences, 24(4), 787–796. https://doi.org/10.1016/j.sjbs.2016.05.001
- Ramasamy, M., & Varadan, V. K. (2016). 3D printing of nano- and micro-structures (V. K. Varadan, Ed.; Vol. 9802, p. 98020H). International Society for Optics and Photonics. https://doi.org/10.1117/12.2224069
- Rimell, J. T., & Marquis, P. M. (2000). Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. Journal of Biomedical Materials Research, 53(4), 414–420. https://doi.org/10.1002/1097-4636(2000)53:4<414::AID-JBM16>3.0.CO;2-M
- Rogers, B., Bosker, G. W., Crawford, R. H., Faustini, M. C., Neptune, R. R., Walden, G., & Gitter, A. J. (2007). Advanced Trans-Tibial Socket Fabrication Using Selective Laser Sintering. Prosthetics and Orthotics International, 31(1), 88–100. https://doi.org/10.1080/03093640600983923
- Ryan, J. R., Almefty, K. K., Nakaji, P., & Frakes, D. H. (2016). Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting. World Neurosurgery, 88, 175–181. https://doi.org/10.1016/j.wneu.2015.12.102
- Sahoo, S. (2014). Microstructure simulation of Ti-6Al-4V biomaterial produced by electron beam additive manufacturing process. International Journal of Nano and Biomaterials, 5(4), 228. https://doi.org/10.1504/IJNBM.2014.069811
- Sahoo, S., & Chou, K. (2016). Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process. Additive Manufacturing, 9, 14–24. https://doi.org/10.1016/J.ADDMA.2015.12.005
- Sankar, S., Paulose, J., & Thomas, N. (2017). 3D Printed Quick Healing Cast: The Exoskeletal Immobilizer. Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis, V014T07A008. https://doi.org/10.1115/IMECE2017-71252
- Schantz, J.-T., Brandwood, A., Hutmacher, D. W., Khor, H. L., & Bittner, K. (2005). Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. Journal of Materials Science: Materials in Medicine, 16(9), 807–819. https://doi.org/10.1007/s10856-005-3584-3
- Schmidt, M., Pohle, D., & Rechtenwald, T. (2007). Selective Laser Sintering of PEEK. CIRP Annals, 56(1), 205–208. https://doi.org/10.1016/j.cirp.2007.05.097
- Schrank, E. S., Hitch, L., Wallace, K., Moore, R., & Stanhope, S. J. (2013). Assessment of a Virtual Functional Prototyping Process for the Rapid Manufacture of Passive-Dynamic Ankle-Foot Orthoses. Journal of Biomechanical Engineering, 135(10), 101011. https://doi.org/10.1115/1.4024825
- Shin, J., Sandhu, R. S., & Shih, G. (2017). Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers. Journal of Digital Imaging, 30(5), 572–575. https://doi.org/10.1007/s10278-017-9954-9
- Shishkovsky, I. V., Volova, L. T., Kuznetsov, M. V., Morozov, Yu. G., & Parkin, I. P. (2008). Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi. Journal of Materials Chemistry, 18(12), 1309. https://doi.org/10.1039/b715313a
- Short, D. B., Volk, D., Badger, P. D., Melzer, J., Salerno, P., & Sirinterlikci, A. (2014). 3D Printing (Rapid Prototyping) Photopolymers: An Emerging Source of Antimony to the Environment. 3D Printing and Additive Manufacturing, 1(1), 24–33. https://doi.org/10.1089/3dp.2013.0001
- Sidambe, A. (2014). Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials, 7(12), 8168–8188. https://doi.org/10.3390/ma7128168
- Sindhu, V., & Soundarapandian, S. (2017). Additive Manufacturing Fixture Box for Bone Measurement. Procedia Engineering, 184, 1–9. https://doi.org/10.1016/j.proeng.2017.04.063
- Singare, S., Yaxiong, L., Dichen, L., Bingheng, L., Sanhu, H., & Gang, L. (2006). Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyping Journal, 12(4), 206–213. https://doi.org/10.1108/13552540610682714
- Sljivic, M., Stanojevic, M., Djurdjevic, D., Grujovic, N., & Pavlovic, A. (2016). Implementation of FEM and rapid prototyping in maxillofacial surgery. FME Transaction, 44(4), 422–429. https://doi.org/10.5937/fmet1604422S
- Smith, M. L., McGuinness, J., O’Reilly, M. K., Nolke, L., Murray, J. G., & Jones, J. F. X. (2017). The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Irish Journal of Medical Science (1971-), 186(3), 753–756. https://doi.org/10.1007/s11845-017-1564-5
- Soon, D. S. C., Chae, M. P., Pilgrim, C. H. C., Rozen, W. M., Spychal, R. T., & Hunter-Smith, D. J. (2016). 3D haptic modelling for preoperative planning of hepatic resection: A systematic review. Annals of Medicine and Surgery (2012), 10, 1–7. https://doi.org/10.1016/j.amsu.2016.07.002
- Spallek, J., & Krause, D. (2016). Process Types of Customisation and Personalisation in Design for Additive Manufacturing Applied to Vascular Models. Procedia CIRP, 50, 281–286. https://doi.org/10.1016/j.procir.2016.05.022
- Srivatsan, T., & Sudarshan, T. (2015). Additive manufacturing: innovations, advances, and applications.
- Stieghorst, J., Majaura, D., Wevering, H., & Doll, T. (2016). Toward 3D Printing of Medical Implants: Reduced Lateral Droplet Spreading of Silicone Rubber under Intense IR Curing. ACS Applied Materials & Interfaces, 8(12), 8239–8246. https://doi.org/10.1021/acsami.5b12728
- Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology, 213(4), 589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011
- Sugioka, K., & Cheng, Y. (2014). Femtosecond laser three-dimensional micro- and nanofabrication. Applied Physics Reviews, 1(4), 041303. https://doi.org/10.1063/1.4904320
- Suwanprateeb, J., Thammarakcharoen, F., & Suvannapruk, W. (2014). Preparation and Characterization of 3D Printed Porous Polyethylene for Medical Applications by Novel Wet Salt Bed Technique. J. Sci. Chiang Mai J. Sci, 41(411), 200–212.
- Thomas, D. J., Azmi, M. A. B. M., & Tehrani, Z. (2014). 3D additive manufacture of oral and maxillofacial surgical models for preoperative planning. The International Journal of Advanced Manufacturing Technology, 71(9–12), 1643–1651. https://doi.org/10.1007/s00170-013-5587-4
- Tie, Y., Ma, R., Ye, M., Wang, D., & Wang, C. (2006). Rapid prototyping fabrication and finite element evaluation of the three-dimensional medical pelvic model. The International Journal of Advanced Manufacturing Technology, 28(3–4), 302–306. https://doi.org/10.1007/s00170-004-2377-z
- Tröger, C., Bens, A. T., Bermes, G., Klemmer, R., Lenz, J., & Irsen, S. (2008). Ageing of acrylate-based resins for stereolithography: thermal and humidity ageing behaviour studies. Rapid Prototyping Journal, 14(5), 305–317. https://doi.org/10.1108/13552540810907983
- Vaezi, M., & Yang, S. (2015). Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual and Physical Prototyping, 10(3), 123–135. https://doi.org/10.1080/17452759.2015.1097053
- Vandenbroucke, B., & Kruth, J. (2007). Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 13(4), 196–203. https://doi.org/10.1108/13552540710776142
- Vitali, A., Regazzoni, D., Rizzi, C., & Colombo, G. (2017). Design and Additive Manufacturing of Lower Limb Prosthetic Socket. Volume 11: Systems, Design, and Complexity, V011T15A021. https://doi.org/10.1115/IMECE2017-71494
- Walker, J. M., Bodamer, E., Krebs, O., Luo, Y., Kleinfehn, A., Becker, M. L., & Dean, D. (2017). Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds. Biomacromolecules, 18(4), 1419–1425. https://doi.org/10.1021/acs.biomac.7b00146
- Wang, M., Lin, X., & Huang, W. (2016). Laser additive manufacture of titanium alloys. Materials Technology, 1–8. https://doi.org/10.1179/1753555715Y.0000000079
- Wei, Q., Li, S., Han, C., Li, W., Cheng, L., Hao, L., & Shi, Y. (2015). Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties. Journal of Materials Processing Technology, 222, 444–453. https://doi.org/10.1016/j.jmatprotec.2015.02.010
- Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, S. E., Hollister, S. J., & Das, S. (2005). Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23), 4817–4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
- Winder, J., & Bibb, R. (2005). Medical Rapid Prototyping Technologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery. Journal of Oral and Maxillofacial Surgery, 63(7), 1006–1015. https://doi.org/10.1016/j.joms.2005.03.016
- Winder, J., Cooke, R. S., Gray, J., Fannin, T., & Fegan, T. (1999). Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. Journal of Medical Engineering & Technology, 23(1), 26–28. https://doi.org/10.1080/030919099294401
- Witowski, J. S., Coles-Black, J., Zuzak, T. Z., Pędziwiatr, M., Chuen, J., Major, P., & Budzyński, A. (2017). 3D Printing in Liver Surgery: A Systematic Review. Telemedicine and E-Health, 23(12), 943–947. https://doi.org/10.1089/tmj.2017.0049
- Witowski, J. S., Pędziwiatr, M., Major, P., & Budzyński, A. (2017). Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. International Journal of Computer Assisted Radiology and Surgery, 12(12), 2047–2054. https://doi.org/10.1007/s11548-017-1527-3
- Wong, K. C. (2016). 3D-printed patient-specific applications in orthopedics. Orthopedic Research and Reviews, Volume 8, 57–66. https://doi.org/10.2147/ORR.S99614
- Wu, W., Qin, X., Chen, Y., Wang, W., & Rosen, D. W. (2010). Employing Rapid Prototyping biomedical model to assist the surgical planning of defect mandibular reconstruction. 2010 3rd International Conference on Biomedical Engineering and Informatics, 1863–1866. https://doi.org/10.1109/BMEI.2010.5639569
- Wu, W. Z., Geng, P., Zhao, J., Zhang, Y., Rosen, D. W., & Zhang, H. B. (2014). Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Materials Research Innovations, 18(sup5), S5-12-S5-16. https://doi.org/10.1179/1432891714Z.000000000898
- Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., & He, D. (2014). 3D Artificial Bones for Bone Repair Prepared by Computed Tomography-Guided Fused Deposition Modeling for Bone Repair. ACS Applied Materials & Interfaces, 6(17), 14952–14963. https://doi.org/10.1021/am502716t
- Yang, Y., Lu, J., Luo, Z., & Wang, D. (2012). Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting. Rapid Prototyping Journal, 18(6), 482–489. https://doi.org/10.1108/13552541211272027
- Yves-Christian, H., Jan, W., Wilhelm, M., Konrad, W., & Reinhart, P. (2010). High value manufacturing Net shaped high performance oxide ceramic parts by selective laser melting. Physics Procedia. 5, 587–594. https://doi.org/https://doi.org/10.1016/J.PHPRO.2010.08.086 ad
- Zein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185. https://doi.org/10.1016/S0142-9612(01)00232-0
- Zhai, Y., Galarraga, H., & Lados, D. A. (2016). Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Engineering Failure Analysis, 69, 3–14. https://doi.org/10.1016/J.ENGFAILANAL.2016.05.036
- Zhang, L. C., Klemm, D., Eckert, J., Hao, Y. L., & Sercombe, T. B. (2011). Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia, 65(1), 21–24. https://doi.org/10.1016/j.scriptamat.2011.03.024
- Zuniga, J., Katsavelis, D., Peck, J., Stollberg, J., Petrykowski, M., Carson, A., & Fernandez, C. (2015). Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Research Notes, 8(1), 10. https://doi.org/10.1186/s13104-015-0971-9
References
- Nuñez Rodriguez, J.; Andrade Sosa, H.H.; Villarreal Archila, S.M.; Ortiz, A. System Dynamics Modeling in Additive Manufacturing Supply Chain Management. Processes 2021, 9, 982. [Google Scholar] [CrossRef]
- Fung, R.Y.; Tang, J.; Wang, D. Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2003, 33, 302–313. [Google Scholar] [CrossRef]
- Sinha, K.K.; Kohnke, E.J. Health Care Supply Chain Design: Toward Linking the Development and Delivery of Care Globally. Decis. Sci. 2009, 40, 197–212. [Google Scholar] [CrossRef]
- Kim, D. An Integrated Supply Chain Management System: A Case Study in Healthcare Sector. Managing 2005, 3590, 218–227. [Google Scholar]
- Ellram, L.M.; Cooper, M.C. Supply chain management: It’s all about the journey, not the destination. J. Supply Chain. Manag. 2014, 50, 8–20. [Google Scholar] [CrossRef]
- De Vries, J.; Huijsman, R. Supply chain management in health services: An overview. Supply Chain. Manag. Int. J. 2011, 16, 159–165. [Google Scholar] [CrossRef]
- Camargo-García, S.C.; Cortés-Bermeo, A.M.; Abreu-Flechas, A.K.; Suárez-Rativa, M.E.; Jiménez-Barbosa, W.G. Incentives and actors of Health Systems in Costa Rica, The United States of America, Canada, Chile and Ecuador-2015. Univ. Salud 2016, 18, 385–406. [Google Scholar] [CrossRef]
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci. 2018, 93, 45–111. [Google Scholar] [PubMed]
- Wei, Q.; Li, S.; Han, C.; Li, W.; Cheng, L.; Hao, L.; Shi, Y. Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties. J. Mater. Processing Technol. 2015, 222, 444–453. [Google Scholar] [CrossRef]
- Šljivić, M.; Stanojević, M.; Djurdjevic, D.; Grujovic, N.; Pavlović, A. Implementation of FEM and rapid prototyping in maxillofacial surgery. FME Trans. 2016, 44, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Budzik, G.; Burek, J.; Bazan, A.; Turek, P. Analysis of the Accuracy of Reconstructed Two Teeth Models Manufactured Using the 3DP and FDM Technologies. Strojniški Vestnik. J. Mech. Eng. 2016, 62, 11–20. [Google Scholar]
- Stratasys. Industrias. 2015. [Online]. Available online: http://www.stratasys.com/es/industrias (accessed on 30 May 2022).
- Sankar, S.; Paulose, J.; Thomas, N. 3D Printed Quick Healing Cast: The Exoskeletal Immobilizer. In Proceedings of the Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis, Tampa, FL, USA, 3–9 November 2017; Volume 14. Available online: https://asmedigitalcollection.asme.org/IMECE/proceedings-abstract/IMECE2017/58493/V014T07A008/264585 (accessed on 30 May 2022).
- Lathers, S.; La Belle, J. Advanced Manufactured Fused Filament Fabrication 3D Printed Osseointegrated Prosthesis for a Transhumeral Amputation Using Taulman 680 FDA. 3D Print. Addit. Manuf. 2016, 3, 166–174. [Google Scholar] [CrossRef]
- O’Hara, R.P.; Chand, A.; Vidiyala, S.; Arechavala, S.M.; Mitsouras, D.; Rudin, S.; Ionita, C.N. Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms. In Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovation; Society of Photo-Optical Instrumentation Engineers: San Diego, CA, USA, 2016; Volume 9789. [Google Scholar]
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Rojas, N.M.; Sosa, H.H.A. Integración de la lógica difusa a la dinámica de sistemas para la selección de terrenos de cultivos agrícolas. Elementos 2016, 6, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Chen, J.; Jiang, Y.; Li, Y. The application of digital medical 3D printing technology on tumor operation. Laser 3D Manuf. III 2016, 9738, 162–168. [Google Scholar]
- Witowski, J.S.; Coles-Black, J.; Zuzak, T.Z.; Pędziwiatr, M.; Chuen, J.; Major, P.; Budzyński, A. 3D Printing in Liver Surgery: A Systematic Review. Telemed. E-Health 2017, 23, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Michalski, M.H.; Ross, J.S. The shape of things to come: 3D printing in medicine. JAMA—J. Am. Med. Assoc. 2014, 312, 2213–2214. [Google Scholar] [CrossRef] [PubMed]
- Monje, L. Aplicaciones De La Impresión 3D (I). Medicina. Available online: http://www.dima3d.com/aplicaciones-de-la-impresion-3d-i-medicina/ (accessed on 16 May 2022).
- Jardini, A.L.; Larosa, M.A.; Maciel Filho, R.; de Carvalho Zavaglia, C.A.; Bernardes, L.F.; Lambert, C.S.; Kharmandayan, P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Cranio-Maxillofac. Surg. 2014, 42, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Hedenstierna, C.P.T.; Disney, S.M.; Eyers, D.R.; Holmström, J.; Syntetos, A.A.; Wang, X. Economies of collaboration in build-to-model operations. J. Oper. Manag. 2019, 65, 753–773. [Google Scholar] [CrossRef]
Aggregate Demand | Region 1 | Region 2 | Region 3 | Annual Total | |||
---|---|---|---|---|---|---|---|
Annual | Monthly | Annual | Monthly | Annual | Monthly | ||
Total Product 1: Biomodel | 534 | 45 | 267 | 22 | 89 | 7 | 890 |
Total Product 2: Cutting Guide | 224 | 19 | 112 | 9 | 37 | 3 | 373 |
Total Product 3: Implant | 101 | 8 | 51 | 4 | 17 | 1 | 169 |
Total | 859 | 430 | 143 |
Application Cases | |
---|---|
INPUTS | Materials: (Sidambe, 2014), (Bose et al., 2018). Titanium: (Abe et al., 2003), (Leuders et al., 2013), (Yves-Christian, H., Jan, W., Wilhelm, M., Konrad, W., & Reinhart, 2010), (Hrabe & Quinn, 2013a), (Hrabe & Quinn, 2013b), (Sahoo, 2014), (El-Hajje et al., 2014), (Beaucamp et al., 2015), (Elahinia et al., 2016), (Dadbakhsh et al., 2016), (Wang et al., 2016), (Zhai et al., 2016), (Sahoo & Chou, 2016), (Hinderdael et al., 2017), (MacBarb et al., 2017), (Fatemi et al., 2017). Polymers: (Cruz & Coole, 2006a), (Lopes, G., Miranda, R. M., Quintino, L., Rodrigues, 2007), (Tröger et al., 2008), (Höfer & Hinrichs, 2009), (Suwanprateeb et al., 2014), (Husár et al., 2014), (Short et al., 2014), (W. Z. Wu et al., 2014), (Vaezi & Yang, 2015), (Leonards et al., 2015), (Poh et al., 2016), (Jungst et al., 2016), (Stieghorst et al., 2016), (Pan et al., 2017), (Walker et al., 2017), (Pekkanen et al., 2017), (Shin et al., 2017), (Liravi & Toyserkani, 2018), (Kuo et al., 2018). Ceramics: (Cruz & Coole, 2006), (Yves-Christian et al., 2010), (Goffard & Sforza, 2013), (Lusquiños et al., 2014), (Gmeiner & Deisinger, 2015), (Falvo D’Urso Labate et al., 2017), (Nabiyouni et al., 2018), (Choi et al., 2018). Metals: (Srivatsan & Sudarshan, 2015), (Hong et al., 2016). Nanomaterials: (Dobrzański, 2007), (Sugioka & Cheng, 2014), (Kong et al., 2016), (Ramasamy & Varadan, 2016), (Koumoulos et al., 2017), (BRUBAKER et al., 2017), (Ji et al., 2017), (Misra et al., 2017a). |
TRANSFORMATION | Stereolithography: (Melchels et al., 2010), (Cooke et al., 2003), (Gauvin et al., 2012), (Melchels et al., 2009), (Dhariwala et al., 2004), (Bill et al., 1995), (D’Urso et al., 2000), (Lee et al., 2007). Fused deposition modeling (FDM): (Zein et al., 2002), (Schantz et al., 2005), (McCullough & Yadavalli, 2013), (Mohamed et al., 2015), (Espalin et al., 2010), (Gronet et al., 2003), (Xu et al., 2014). Selective laser sintering (SLS): (Rogers et al., 2007), (Clinkenbeard et al., 2002), (Berry et al., 1997), (Schmidt et al., 2007), (Rimell & Marquis, 2000), (Shishkovsky et al., 2008), (Williams et al., 2005), (Edith Wiria, Sudarmadji, et al., 2010), (Edith Wiria, Fai Leong, et al., 2010), (Kruth et al., 2003), (Duan & Wang, 2011). Selective laser melting (SLM): (Vandenbroucke & Kruth, 2007), (Strano et al., 2013), (Attar et al., 2014), (Chlebus et al., 2011), (Mullen et al., 2009), (Zhang et al., 2011), (Wei et al., 2015), (Yang et al., 2012). Electron beam melting: (Facchini et al., 2009), (Cronskär et al., 2013), (Ramakrishnaiah et al., 2017), (Koptioug et al., 2012), (Murr et al., 2011), (Li et al., 2009), (Murr et al., 2012), (Koike et al., 2011). |
OUTPUTS | Aneurysm: (Opolski et al., 2014), (Ho et al., 2017), (Ryan et al., 2016). Cancer: (Petcu, 2017), (Witowski, Pędziwiatr, et al., 2017), (Gallivanone et al., 2016). Cardiovascular: (Nocerino et al., 2016), (Kuk et al., 2017), (Misra et al., 2017b), (Lueders et al., 2014), (Arcaute & Wicker, 2008), (Smith et al., 2017), (Cheng & Chen, 2006). Skull: (Berretta et al., 2018), (Jardini et al., 2014), (Peel et al., 2017), (Winder et al., 1999), (Msallem et al., 2017). Surgical guides: (Popescu et al., 2015), (Bibb et al., 2009), (Dahake et al., 2017), (Dahake et al., 2016). Maxillofacial: (Thomas et al., 2014), (Daniel & Eggbeer, 2016), (Singare et al., 2006), (Sljivic et al., 2016), (W. Wu et al., 2010), (Al-Ahmari et al., 2015), (Winder & Bibb, 2005), (Brito et al., 2016). Dentistry: (Gebhardt et al., 2010), (Budzik et al., 2016), (Jiménez et al., 2015), (Nayar et al., 2015), (Liu et al., 2006), (Faure et al., 2012). Orthopedic: (Sankar et al., 2017), (Jackson et al., 2017), (Wong, 2016), (Sindhu & Soundarapandian, 2017), (Popovich et al., 2016), (M Zanetti et al., 2017), (Popescu et al., 2017), (Chougule et al., 2014), (Nakano & Ishimoto, 2015), (Li et al., 2017), (Blaya et al., 2017), (de Beer & van der Merwe, 2013), (Huang et al., 2015), (Ahn et al., 2006), (Tie et al., 2006), (Ogden et al., 2014). Prosthesis: (Lathers & La Belle, 2016), (Rahmati et al., 2012), (Radosh et al., 2017), (Hagedorn-Hansen et al., 2016), (Zuniga et al., 2015), (Schrank et al., 2013), (Vitali et al., 2017). Vascular: (O’Hara et al., 2016), (Ionita et al., 2014), (Spallek & Krause, 2016). Others: Liver surgery (Witowski, Coles-Black, et al., 2017), (Soon et al., 2016). Plastic surgery: (Bauermeister et al., 2016). |
V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 |
---|---|---|---|---|---|---|---|---|
FM 1 | FM 2 | FM 3 | ||||||
P1R1 | P1R2 | P1R3 | P2R1 | P2R2 | P2R3 | P3R1 | P3R2 | P3R3 |
FM 1 | FM 2 | FM 3 | ||
---|---|---|---|---|
Supplier | Material consumption | Grams | Grams | Grams |
Product 1 | 81 | |||
Product 2 | 14 | |||
Product 3 | 21 | |||
Lead-time supplier–supplier | 120 | 120 | 120 | |
Focal Manufacturing | Production conditions | Units | Units | Units |
Number of machines | 4 | 4 | 4 | |
Load per machine | 0.25% | 0.25% | 0.25% | |
Processing time | ||||
Product 1 | 12 | |||
Product 2 | 4 | |||
Product 3 | 5 | |||
Distribution | Distribution time | Region 1 | Region 2 | Region 3 |
Region 1—central | 24 | 48 | 48 | |
Region 2—north | 48 | 24 | 72 | |
Region 3—south | 48 | 72 | 24 |
Region Priority | FM 1 | FM 2 | FM 3 |
---|---|---|---|
Product 1—biomodel | High | Medium | Medium |
Product 2—cutting guide | Medium | High | Low |
Product 3—implant | Low | Low | High |
FM1/Product1 | FM 2/Product 2 | FM 3/Product 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Hour | R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 |
7 | 12 | 5 | 2 | 5 | 2 | 1 | 2 | 1 | 1 |
175 | 11 | 6 | 1 | 5 | 2 | 1 | 2 | 1 | |
343 | 11 | 5 | 2 | 5 | 2 | 1 | 2 | 1 | |
511 | 11 | 6 | 2 | 4 | 3 | 2 | 1 | ||
45 | 22 | 7 | 19 | 9 | 3 | 8 | 4 | 1 |
FM 1 | |
---|---|
Material consumption | Grams |
Product 1 | 81 |
Product 2 | 14 |
Product 3 | 21 |
Production conditions | Units |
Number of machines/printers | 3 |
Total load per machine | 1 |
Chain times | Hours |
Procurement times | |
Raw material | 120 |
Printing times | |
Product 1 | 12 |
Product 2 | 4 |
Product 3 | 5 |
Distribution lead time | |
Region 1 | 24 |
Region 2 | 48 |
Region 3 | 72 |
Region 1 | Region 2 | Region 3 | |
---|---|---|---|
Product 1—biomodel | High | Medium | Low |
Product 2—cutting guide | High | Medium | Low |
Product 3—implant | High | Medium | Low |
Region 1 | Region 2 | Region 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Product | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 |
Priority | High | High | High | Medium | Medium | Medium | Low | Low | Low |
Hour | Number of Products | ||||||||
7 | 12 | 6 | 2 | 6 | 3 | 1 | 2 | 1 | 1 |
175 | 11 | 5 | 2 | 6 | 3 | 1 | 2 | 1 | 0 |
343 | 11 | 4 | 2 | 5 | 2 | 1 | 2 | 1 | 0 |
511 | 11 | 4 | 2 | 5 | 1 | 1 | 1 | 0 | 0 |
45 | 19 | 8 | 22 | 9 | 4 | 7 | 3 | 1 |
FM 1 | FM 2 | FM 3 | |
---|---|---|---|
Material consumption | Grams | Grams | Grams |
Product 1 | 81 | 81 | 81 |
Product 2 | 14 | 14 | 14 |
Product 3 | 21 | 21 | 21 |
Production conditions | Units | Units | Units |
Number of machines/printers | 1 | 1 | 1 |
Total load per machine | 1 | 1 | 1 |
Chain times | Hours | Hours | Hours |
Procurement times | |||
Raw material | 120 | 120 | 120 |
Printing times | |||
Product 1 | 12 | 12 | 12 |
Product 2 | 4 | 4 | 4 |
Product 3 | 5 | 5 | 5 |
Distribution lead time | |||
Region 1 | 24 | ||
Region 2 | 24 | ||
Region 3 | 24 |
Region 1 | Region 2 | Region 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Product | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | ||
Priority | High | Medium | Low | High | Medium | Low | High | Medium | Low | ||
Week | Day | Hour | Number of Products | ||||||||
1 | 1 | 7 | 12 | 6 | 2 | 6 | 3 | 1 | 2 | 1 | 1 |
2 | 8 | 175 | 11 | 5 | 2 | 6 | 3 | 1 | 2 | 1 | 0 |
3 | 15 | 343 | 11 | 4 | 2 | 5 | 2 | 1 | 2 | 1 | 0 |
4 | 22 | 511 | 11 | 4 | 2 | 5 | 1 | 1 | 1 | 0 | 0 |
45 | 19 | 8 | 22 | 9 | 4 | 7 | 3 | 1 |
Region | Region 1 | Region 2 | Region 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Product | P1R1 | P2R1 | P3R1 | P1R2 | P2R2 | P3R2 | P1R3 | P2R3 | P3R3 |
Total Units | 45 | 19 | 8 | 22 | 9 | 4 | 7 | 3 | 1 |
Lead-time FM1 (hours) | 748 | 716 | 693 | 1048 | 672 | 723 | 1163 | 577 | 159 |
Lead-time FM2 (hours) | 671 | 588 | 674 | 724 | 736 | 742 | 803 | 802 | 804 |
Lead-time FM3 (hours) | 763 | 833 | 881 | 728 | 559 | 733 | 670 | 520 | 189 |
Variation FM2—FM1 (%) | −11.48 | −21.77 | −2.82 | −44.75 | 8.7 | 2.56 | −44.83 | 28.05 | 80.22 |
Variation FM3—FM1 (%) | −2.01 | −16.34 | −27.13 | 30.53 | 16.82 | −1.38 | 42.39 | 9.88 | −18.87 |
Variation FM2—FM3 (%) | 12.06 | 29.41 | 23.5 | 0.55 | −31.66 | −1.23 | −19.85 | −54.23 | −325.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez Rodriguez, J.; Andrade Sosa, H.H.; Villarreal-Archila, S.M.; Ortiz, A. The Impact of Additive Manufacturing on Supply Chain Management from a System Dynamics Model—Scenario: Traditional, Centralized, and Distributed Supply Chain. Processes 2022, 10, 2489. https://doi.org/10.3390/pr10122489
Nuñez Rodriguez J, Andrade Sosa HH, Villarreal-Archila SM, Ortiz A. The Impact of Additive Manufacturing on Supply Chain Management from a System Dynamics Model—Scenario: Traditional, Centralized, and Distributed Supply Chain. Processes. 2022; 10(12):2489. https://doi.org/10.3390/pr10122489
Chicago/Turabian StyleNuñez Rodriguez, Jairo, Hugo Hernando Andrade Sosa, Sylvia Maria Villarreal-Archila, and Angel Ortiz. 2022. "The Impact of Additive Manufacturing on Supply Chain Management from a System Dynamics Model—Scenario: Traditional, Centralized, and Distributed Supply Chain" Processes 10, no. 12: 2489. https://doi.org/10.3390/pr10122489