Geological Feature Modeling and Reserve Estimation of Uranium Deposits Based on Multiple Interpolation Methods
Abstract
:1. Introduction
2. Theoretical Background
2.1. Principles of Linear Interpolation
2.2. Principles of IDW Interpolation
2.3. Principles of NN Interpolation
2.4. Principles of CT Interpolation
2.5. Principles of Kriging Interpolation
3. Case Study
3.1. Geological and Hydrogeological Characteristics of a Uranium Deposit
3.2. Model Construction and Reserve Calculation Process
4. Result and Analysis
4.1. Analysis of the Distribution of Reserves-Related Parameters
4.2. Analysis of Distribution Frequency of Reserve Parameters
4.3. Semivariogram Analysis
4.4. Cross-Validation and Error Analysis
5. Comparison of Traditional Calculation and Interpolation Estimation Results of Uranium Reserves
5.1. Traditional Calculation Formulas and Interpolation Estimation Formulas
5.2. Comparative Analysis of Uranium Reserve Estimation Results
6. Conclusions and Future Works
- (1)
- Due to complexity of the underground environment in which the sandstone uranium mine is located and the particularity of the leaching method, the study here chooses GMS to combine traditional geological research with computer applications, and the exploration data is quickly converted into a visual 3D model through different interpolation methods, saving calculation time and improving work efficiency. It does not require a large number of auxiliary drawings like the traditional calculation methods. Even if the design conditions change, as long as the corresponding parameters and commands are altered, a new geological model can be built, and a dynamically changing uranium value can be obtained in the subsequent leaching process.
- (2)
- The differences of various interpolation methods are analyzed quantitatively by comparing and analyzing the distribution characteristic map, frequency histogram and statistical characteristic value. These interpolation methods are linear, IDW, CT, NN, spherical, exponential, gaussian and power. The last four models are based on the kriging principle. Both the regional prediction of reserve parameters and estimation of reserve value verified the advantages of the kriging method in interpolation calculation, especially the spherical model, and the relative error of reserves is +3.62%.
- (3)
- Using software to analyze geological data, design of the grid should refer to number of boreholes, and the ratio of the two should be set in an appropriate range (different interpolation methods use different ratios) to improve accuracy and save calculation time and storage space.
- (4)
- Although object of the study is proven (pre-feasibility study) economic basic reserves (121b), the calculation method is also applicable to resource/reserve estimation of other sandstone uranium mines.
- (5)
- Due to limitation of exploration data in the study, uranium distribution of the same borehole is assumed to be homogeneous, and the mineral density is equal to the mean value. The future research can be extended to the field of three-dimensional heterogeneity, so the established model will be more in line with the realistic and complex geological conditions, which will reduce estimation errors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afeni, T.B.; Akeju, V.O.; Aladejare, A.E. A comparative study of geometric and geostatistical methods for qualitative reserve estimation of limestone deposit. Geosci. Front. 2020, 12, 243–253. [Google Scholar] [CrossRef]
- Zhang, J.D.; Wang, C.; Yu, S.Q.; Chen, S.D.; Guo, S.M.; Ding, M.S.; Tan, H.Z. Exploration Specifications on In-Situ Leaching Sandstone Type Uranium Deposits; Standard No. EJ/T 1157-2002; National Defense Science, Technology and Industry Commission: Beijing, China, 2002. [Google Scholar]
- Abzalov, M.Z.; Drobov, S.R.; Gorbatenko, O.; Vershkov, A.F.; Bertoli, O.; Renard, D.; Beucher, H. Resource estimation of In Situ leach uranium projects. Appl. Earth Sci. 2014, 123, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, D.L. A fractal approach to the relationship between ore grade and tonnage. Econ. Geol. 1986, 81, 152–1532. [Google Scholar] [CrossRef]
- Skvortsova, T.; Beucher, H.; Armstrong, M.; Forkes, J.; Thwaites, A.; Turner, R. Simulating the Geometry of a Granite-Hosted Uranium Orebody. In Geostatistics Rio 2000, Proceedings of the 31st International Geological Congress, Rio de Janeiro, Brazil, 6–17 August 2000; Quantitative Geology and Geostatistics; Armstrong, M., Bettini, C., Champigny, N., Galli, A., Remacre, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Petit, G.; Boissezon, H.D.; Langlais, V.; Rumbach, G.; Khairuldin, A.; Oppeneau, T.; Fiet, N. Application of stochastic simulations and quantifying uncertainties in the drilling of roll front uranium deposits. In Geostatistics Oslo 2012; Springer: Dordrecht, The Netherlands, 2012; pp. 321–332. [Google Scholar] [CrossRef]
- Yang, L.R. Research on 3D Modeling of Complex Orebody Structure and Reserve Calculation with Uranium Deposits as an Example. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2013. [Google Scholar]
- Qi, J.Q.; Zhang, J.X.; Liu, Y. The Application of Digital Geological Survey System in Resource Estimation for Uranium Deposit and 3D Orebody Modeling. Uranium Geol. 2019, 35, 373–377. [Google Scholar] [CrossRef]
- Bai, Y.; Zhu, P.F.; Zhu, J.; Kong, W.H.; Li, X.C.; Cao, K.; Sun, L.; Liu, L.Y. Application of geo-statistics in calculation of a uranium deposit. In Earth Geological Energy Mining and Landform Protection, Proceedings of the 2020 2nd International Conference on Geoscience and Environmental Chemistry (ICGEC 2020), Tianjin, China, 9–11 October 2020; E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 206, pp. 1–7. [Google Scholar] [CrossRef]
- Li, Z.K.; Yang, R.; Hu, B.S.; Du, Z.M.; Zhao, L.X. Reserve prediction method of sandstone uranium reservoir based on data of natural gamma logging while drilling. At. Energy Sci. Technol. 2021, 55 (Suppl. S2), 373–379. [Google Scholar] [CrossRef]
- Cui, T.; Yang, Y. An advanced uranium ore grade estimation method based on photofission driven by an e-LINAC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1014, 165710. [Google Scholar] [CrossRef]
- Zhang, J.D.; Yu, H.X.; Yu, S.Q.; Liu, X.Y. Guidebook on Resources/Reserves Estimation for In-Situ Leaching Sandstone Type Uranium Deposits; Standard No. EJ/T 1214-2016; State Administration of Science, Technology and Industry for National Defense: Beijing, China, 2016. [Google Scholar]
- Liang, H.J. China’s Mineral Resources/Reserves Estimation Method. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Lan, Y.R.; Tang, Y. What is the SD method. Geol. Rev. 2000, 46 (Suppl. S1), 329–336. [Google Scholar]
- Gandhi, S.M.; Sarkar, B.C. Chapter 12—Geostatistical resource/reserve Estimation. In Essentials of Mineral Exploration and Evaluation; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 289–308. [Google Scholar] [CrossRef]
- Haldar, S.K. Chapter 9—Statistical and Geostatistical Applications in Geology. In Mineral Exploration, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 167–194. [Google Scholar] [CrossRef]
- Jalloh, A.B.; Kyuro, S.; Jalloh, Y.; Barrie, A.K. Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation: A case study. Int. J. Min. Sci. Technol. 2016, 26, 581–585. [Google Scholar] [CrossRef]
- Kreuzer, O.P.; Markwitz, V.; Porwal, A.K.; McCuaig, T.C. A continent-wide study of Australia’s uranium potential. Ore Geol. Rev. 2010, 38, 334–366. [Google Scholar] [CrossRef]
- Joly, A.; Porwal, A.; McCuaig, T.C.; Chudasama, B.; Dentith, M.C.; Aitken, A.R.A. Mineral systems approach applied to GIS-based 2D-prospectivity modelling of geological regions: Insights from Western Australia. Ore Geol. Rev. 2015, 71, 673–702. [Google Scholar] [CrossRef]
- Zhou, D.; Jiang, Y.B. The building and application of three-dimensional geological model with the 3DMine software in the third belt of Zoujiashan uranium deposit. J. Geol. 2017, 41, 91–96. [Google Scholar] [CrossRef]
- Ciputra, R.; Suharji, S.; Kamajati, D.; Syaeful, H. Application of geostatistics to complete uranium resources estimation of Rabau Hulu Sector, Kalan, West Kalimantan. In Land, Water, and Natural Resources, Proceedings of the 1st Geosciences and Environmental Sciences Symposium (ICST 2020), Yogyakarta, Indonesia, 7–8 September 2020; E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, H.M.; Kong, F.H.; Song, Q.L. Micromine software application on 3D modeling and resource estimate in the ferrum desposit: An example from Cameroon Lobi iron deposit. North China Geol. 2014, 2, 144–148. [Google Scholar] [CrossRef]
- Taghvaeenezhad, M.; Shayestehfar, M.; Moarefvand, P.; Rezaei, A. Quantifying the criteria for classification of mineral resources and reserves through the estimation of block model uncertainty using geostatistical methods: A case study of khoshoumi uranium deposit in Yazd, Iran. Geosyst. Eng. 2020, 23, 216–225. [Google Scholar] [CrossRef]
- Hou, M.Q.; Wu, Z.C.; Guo, F.S.; Luo, J.Q.; Wang, F. Establishment of a three-dimensional geological model of the Zoujiashan-Julong’an area in Le’an of Jiangxi Province. J. Geol. 2016, 40, 118–124. [Google Scholar] [CrossRef]
- GMS: What Is GMS. Available online: https://www.xmswiki.com/wiki/GMS:What_Is_GMS (accessed on 17 July 2021).
- GMS: Linear. Available online: https://www.xmswiki.com/wiki/GMS:Linear (accessed on 17 July 2021).
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- GMS: Inverse Distance Weighted. Available online: https://www.xmswiki.com/wiki/GMS:Inverse_Distance_Weighted (accessed on 17 July 2021).
- Sibson, R. A brief description of natural neighbor interpolation. In Interpreting Multivariate Data; Wiley: Hoboken, NJ, USA, 1981; pp. 21–36. [Google Scholar]
- Beutel, A.; Mølhave, T.; Agarwal, P.K. Natural neighbor interpolation based grid DEM construction using a GPU. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems—GIS ‘10, San Jose, CA, USA, 2–5 November 2010; Agrawal, D., Zhang, P., Abbadi, A.E., Mokbel, M., Eds.; Association for Computing Machinery: New York, NY, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Clough, R.W.; Tocher, J.L. Finite element stiffness matrices for analysis of plate bending. In Proceedings of the Conference on Matrix Methods in Structural MechFinite Element Stiffness Matrices for Analysis of Plate Bendinganics, Fairborn, OH, USA, October 1965. [Google Scholar]
- Lancaster, P.; Šalkauskas, K. Curve and Surface Fitting: An Introduction; Academic Press: London, UK, 1986; Volume 31, pp. 155–157. [Google Scholar] [CrossRef]
- Oqielat, M.N. Surface fitting methods for modelling leaf surface from scanned data. J. King Saud Univ.-Sci. 2019, 31, 215–221. [Google Scholar] [CrossRef]
- Ali Akbar, D. Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method. Int. J. Min. Sci. Technol. 2012, 22, 573–577. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Shao, A.J.; Chen, J.H.; Huang, Y. 3D Visual Geology-Modeling in Wannian Mine of Fengfeng Coalfield. Adv. Mater. Res. 2013, 671–674, 2072–2075. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, D.; Zhang, F.; Xu, Z. A novel three-dimensional mine area hydrogeological model based on groundwater modeling systems. J. Coast. Res. 2020, 105 (Suppl. S1), 141–146. [Google Scholar] [CrossRef]
- Jabbari, E.; Fathi, M.; Moradi, M. Modeling groundwater quality and quantity to manage water resources in the Arak aquifer, Iran. Arab. J. Geosci. 2020, 13, 663. [Google Scholar] [CrossRef]
- Gao, L.M.; Li, J.; Ju, J.H.; Bo, Z.P.; Wang, F.; Yang, Q.; Chen, H.; Wang, H.Y.; Wan, H.; Song, F.; et al. General Requirements for Mineral Exploration; Standard No. GB/T13908-2020; China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2020. [Google Scholar]
- Maroufpoor, S.; Bozorg-Haddad, O.; Chu, X. Chapter 9—Geostatistics: Principles and methods. In Handbook of Probabilistic Models; Pijush, S., Dieu, T.B., Subrata, C., Ravinesh, C.D., Eds.; Butterworth-Heinemann: Kidlington, UK, 2020; pp. 229–242. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Heuvelink, G.B.M.; De Bruin, S.; Brus, D.J. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Model. 2021, 457, 109692. [Google Scholar] [CrossRef]
- Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
Reserve Parameters | Statistical Parameters | Numerical Comparison |
---|---|---|
Ore thickness | interpolation range | IDW = CT = NN > linear > power > spherical > exponential > gaussian |
arithmetic mean | exponential > spherical > power > NN > IDW > gaussian > linear > CT | |
Uranium grade | interpolation range | IDW = CT = NN > linear > power > spherical > exponential > gaussian |
arithmetic mean | gaussian > spherical > exponential > power > NN > IDW > CT > linear | |
Uranium content per square meter | interpolation range | IDW = CT = NN = power > linear > spherical > exponential > gaussian |
arithmetic mean | spherical > exponential > gaussian > power > IDW > NN > CT > linear |
Parameter | Spherical | Exponential | Gaussian | Power | |
---|---|---|---|---|---|
Ore thickness | Nugget | 0.7677 | 0.7677 | 0.7677 | 0.0000 |
Contribution | 2.9852 | 2.9852 | 2.9852 | 0.5118 | |
Range | 78.5296 | 78.5296 | 78.5296 | 0.4400 | |
Uranium grade | Nugget | 0.0003 | 0.0003 | 0.0003 | 0.0000 |
Contribution | 0.0014 | 0.0014 | 0.0014 | 0.0002 | |
Range | 82.6458 | 82.6458 | 82.6458 | 0.5000 | |
Uranium content per square meter | Nugget | 3.3866 | 3.3866 | 3.3866 | 3.3866 |
Contribution | 20.3198 | 20.3198 | 20.3198 | 0.7380 | |
Range | 49.5924 | 49.5924 | 49.5924 | 0.7400 |
Linear | IDW | CT | NN | Spherical | Exponential | Gaussian | Power | |
---|---|---|---|---|---|---|---|---|
MAE | 0.0054 | 0.0037 | 0.0049 | 0.0036 | 0.0022 | 0.0027 | 0.0043 | 0.0031 |
RMSE | 0.0060 | 0.0049 | 0.0056 | 0.0045 | 0.0032 | 0.0034 | 0.0051 | 0.0042 |
SD | 0.0287 | 0.0237 | 0.0301 | 0.0225 | 0.0163 | 0.0166 | 0.0236 | 0.0191 |
COV | 0.3743 | 0.2975 | 0.3812 | 0.2797 | 0.1958 | 0.2001 | 0.3084 | 0.2341 |
Linear | IDW | NN | CT | |
Relative error | −10.98% | +8.16% | +4.20% | −9.22% |
Spherical | Exponential | Gaussian | Power | |
Relative error | +3.62% | +5.13% | −6.49% | +6.32% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Liu, H.; Tan, K.; Zhang, Q. Geological Feature Modeling and Reserve Estimation of Uranium Deposits Based on Multiple Interpolation Methods. Processes 2022, 10, 67. https://doi.org/10.3390/pr10010067
Qu H, Liu H, Tan K, Zhang Q. Geological Feature Modeling and Reserve Estimation of Uranium Deposits Based on Multiple Interpolation Methods. Processes. 2022; 10(1):67. https://doi.org/10.3390/pr10010067
Chicago/Turabian StyleQu, Huiqiong, Hualiang Liu, Kaixuan Tan, and Qinglin Zhang. 2022. "Geological Feature Modeling and Reserve Estimation of Uranium Deposits Based on Multiple Interpolation Methods" Processes 10, no. 1: 67. https://doi.org/10.3390/pr10010067
APA StyleQu, H., Liu, H., Tan, K., & Zhang, Q. (2022). Geological Feature Modeling and Reserve Estimation of Uranium Deposits Based on Multiple Interpolation Methods. Processes, 10(1), 67. https://doi.org/10.3390/pr10010067