Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets
Abstract
:1. Introduction
2. Experiments and Methods
3. Results and Discussion
3.1. Relationship between Primary Combustion Air Ratio “λ1” and NOx
3.2. Relationship between NH3 Mixing Rate “ENH3” and NOx
3.3. Relationship between Secondary Nozzles Diameter “D2” and NOx
3.4. Relationship between Distance between Burner and Secondary Nozzles “L” and NOx
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrogen Energy 2019, 44, 18179–18192. [Google Scholar] [CrossRef]
- Takizawa, K.; Takahashi, A.; Tokuhashi, K.; Kondo, S.; Sekiya, A. Burning velocity measurements of nitrogen-containing compounds. J. Hazard. Mater. 2008, 155, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Takashiro, S.; Tatsumi, T.; Ogasawara, M.; Tatsumi, T. Fundamental study on the formation of NO and CO in combustion gas and the method for their reduction. Trans. JSME 1978, 44, 4282–4291. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Kurata, O.; Iki, N.; Matsunuma, T.; Inoue, T.; Tsujimura, T.; Furutani, H.; Kobayashi, H.; Hayakawa, A. Performances and emission characteristics of NH3–air and NH3–CH4–air combustion gas-turbine power generations. Proc. Combust. Inst. 2017, 36, 3351–3359. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Marsh, R.; Runyon, J.; Pugh, D.; Beasley, P.; Hughes, T. Phil Bowen, Ammonia–methane combustion in tangential swirl burners for gas turbine power generation. Appl. Energy 2017, 185, 1362–1371. [Google Scholar] [CrossRef] [Green Version]
- Ali Hussein, N.; Valera-Medina, A.; Safa Alsaegh, A. Ammonia- hydrogen combustion in a swirl burner with reduction of NOx emissions. Energy Procedia 2019, 158, 2305–2310. [Google Scholar] [CrossRef]
- Rocha, R.C.; Costa, M.; Bai, X.S. Combustion and Emission Characteristics of Ammonia under Conditions Relevant to Modern Gas Turbines. Combust. Sci. Technol. 2021, 193, 2514–2533. [Google Scholar] [CrossRef]
- Miller, J.A.; Smooke, M.D.; Green, R.M.; Kee, R.J. Kinetic modeling of the oxidation of ammonia in flames. Combust. Sci. Technol. 1983, 34, 149–176. [Google Scholar] [CrossRef]
- Lindstedt, R.P.; Lockwood, F.C.; Selim, M.A. Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation. Combust. Sci. Technol. 1994, 99, 253–276. [Google Scholar] [CrossRef]
- Bian, J.; Vandooren, J.; Van Tiggelen, P.J. Experimental study of the formation of nitrous and nitric oxides in H2-O2-Ar flames seeded with NO and/or NH3. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1991; Volume 23, pp. 379–386. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Kunkuma, K.D.; Okafor, E.C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Kobayashi, N.; He, Z.; Nagai, Y. Study on using hydrogen and ammonia as fuels: Combustion characteristics and NOx formation. Int. J. Energy Res. 2014, 38, 1214–1223. [Google Scholar] [CrossRef]
- Uchida, M.; Ito, S.; Suda, T.; Fujimori, T. Performance of Ammonia/Natural Gas Co-Fired Gas Turbine with Two-Stage Combustor. In Proceedings of the 2019 AIChE Annual Meeting, Orland, FL, USA, 10–15 November 2019; p. 367d. [Google Scholar]
- Kunkuma, K.D.; Okafer, E.C.; Sugawara, D.; Hayakawa, A.; Kobayashi, H. Effects of OH concentration and temperature on NO emission characteristics of turbulent non-premixed CH4/NH3/air flames in a two-stage gas turbine like combustor at high pressure. Proc. Combust. Inst. 2021, 38, 5163–5170. [Google Scholar] [CrossRef]
- Tamura, M.; Gotou, T.; Ishii, H.; Riechelmann, D. Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace. Appl. Energy 2020, 277, 115580. [Google Scholar] [CrossRef]
- Duynslaegher, C.; Jeanmart, H.; Vandooren, J. Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: Experimental and numerical investigation. Proc. Combust. Inst. 2009, 32, 1277–1284. [Google Scholar] [CrossRef]
- Lyon, R.K.; Benn, D. Kinetics of the NO-NH3-O2 reaction. Int. J. Chem. Kinet. 1976, 8, 315–318. [Google Scholar] [CrossRef]
- Miller, J.A.; Bowman, C.T. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 1989, 15, 287–338. [Google Scholar] [CrossRef]
- Kasuya, F.; Glarborg, P.; Johnsson, J.E.; Kim, D.J. The thermal DeNOx process: Influence of partial pressures and temperature. Chem. Eng. Sci. 1995, 50, 1455–1466. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, J. Influences of O2 concentration on NO reduction and N2O formation in thermal deNOx process. Combust. Flame 2009, 156, 1303–1315. [Google Scholar] [CrossRef]
- Ishii, H.; Ohno, E.; Kozaki, T.; Ito, T.; Fujimori, T. Development of co-firing technology of pulverized coal and ammonia for suppressing the NOx generation. Trans. JSME 2020, 86, 19-00363. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, F. Fundamental characterization and technology development of ammonia combustion. In Completion Report of SIP (Cross-Ministerial Strategic Innovation Promotion Program), Energy Career, Ammonia Direct Combustion; Japan Science and Technology Agency: Saitama, Japan, 2019. (In Japanese) [Google Scholar]
- Matsushita, Y.; Sugawara, K.; Morozumi, Y.; Aoki, H.; Miura, T.; Tominaga, H. A Numerical Investigation of Temperature Measurement Error upon Insertion of a Suction Pyrometer into a Combustor. Kagaku Kogaku Ronbunshu 2006, 32, 494–499. (In Japanese) [Google Scholar] [CrossRef]
- Saito, T.; Yamaguchi, M.; Yamamoto, Y.; Hagihara, Y. Improvement of Self-Induced Oscillating Burner for Multi-Burner Furnace: “Innova-Jet F.H.”. In Proceedings of the 56th Symposium (Japanese) on Combustion, Osaka, Japan, 14–16 November 2018; p. C344. [Google Scholar]
- Morita, M.; Mochida, S.; Murakami, H.; Akiyama, T.; Uede, M. Combustion Characteristics in High Temperature Air Combustion (I) –High Efficient Heat Transfer-. J. Jpn. Inst. Energy 2001, 80, 165–176. (In Japanese) [Google Scholar] [CrossRef]
- Fujimine, T.; Nakamachi, I.; Hayakawa, A. Combustion Stabilization of Gas Burners. J. Combust. Soc. Jpn. 2009, 51, 85–93. (In Japanese) [Google Scholar] [CrossRef]
- Toshigasunoseijou. Available online: https://www.osakagas.co.jp/company/about/business/service06.html (accessed on 19 October 2021). (In Japanese).
- Hayakawa, A.; Goto, T.; Mimoto, R.; Kudo, T.; Kobayashi, H. NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures. Mech. Eng. J. 2015, 2, 14-00402. [Google Scholar] [CrossRef] [Green Version]
- The Japan Society of Mechanical Engineers (Ed.) Nensho no Sekkei–Riron to Jissai-; Ohmsha, Ltd.: Tokyo, Japan, 1990; p. 134. (In Japanese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, K.; Murai, R.; Hori, T.; Akamatsu, F. Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets. Processes 2022, 10, 23. https://doi.org/10.3390/pr10010023
Kikuchi K, Murai R, Hori T, Akamatsu F. Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets. Processes. 2022; 10(1):23. https://doi.org/10.3390/pr10010023
Chicago/Turabian StyleKikuchi, Kenta, Ryuichi Murai, Tsukasa Hori, and Fumiteru Akamatsu. 2022. "Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets" Processes 10, no. 1: 23. https://doi.org/10.3390/pr10010023
APA StyleKikuchi, K., Murai, R., Hori, T., & Akamatsu, F. (2022). Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets. Processes, 10(1), 23. https://doi.org/10.3390/pr10010023