Sintering and Smelting Property Investigations of Ludwigite
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Sintering Properties
3.1.1. Cold Metallurgical Properties
3.1.2. Low-Temperature Reduction and Pulverization
3.1.3. Comprehensive Weighted Scoring Method Analysis of Sintering Characteristics
3.2. Smelting Property of Ludwigite Sinters
3.2.1. Softening-Melting-Dripping Property
3.2.2. Shrinkage Behavior and Gas Permeability
3.2.3. Comprehensive Weighted Scoring Method Analysis of Smelting Property
3.3. Comprehensive Weighted Scoring Method Analysis of Integrated Metallurgical Properties
4. Conclusions
- (1)
- Considering the sintering characteristics of the vertical sintering speed, yield, drum strength and low-temperature reduction pulverization index for ludwigite ore, the primary and secondary influencing factors are: ordinary ore ratio, carbon content and basicity, and the optimal ore blending scheme is: basicity 1.7, ordinary ore blending ratio 60% and carbon content 5%.
- (2)
- Considering the smelting property of the softening start temperature, softening end temperature, softening zone, smelting start temperature, dripping temperature, smelting-dripping zone, maximum pressure difference and gas permeability index for ludwigite sinters, the primary and secondary influencing factors are: the carbon content, ordinary ore blending ratio and the basicity, and the optimal ore blending scheme: basicity 1.9, ordinary ore blending ratio 60% and carbon content 5.5%.
- (3)
- Comprehensively, considering the sintering characteristics and smelting properties of ludwigite sinters, the primary and secondary influencing factors are: carbon content, ordinary ore ratio and basicity, and the optimal ore blending plan is: basicity 1.9, ordinary ore blending ratio 60% and carbon content of 5.5%.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Zheng, X.-J. Boron Iron Ore Processing; Chemical Industry Press: Beijing, China, 2009. [Google Scholar]
- Zhao, Q.-J.; He, C.-Q.; Gao, M.-H. Comprehensive utilization of ludwigite ore: Activation of ludwigite concentrate and mechanism of ludwigite-containing iron concentrate to improve the properties of sintered pellets. J. East China Inst. Metall. 1997, 14, 262–263. [Google Scholar]
- Zhang, J.-Y.; Cheng, J.; Li, Z.-L. Research on the new technology of flash roasting of ludwigite ore. Inorg. Salt Ind. 2009, 41, 42–43. [Google Scholar]
- Zhang, J.-L.; Cai, H.-T. Enrichment of ludwigite in low-grade ludwigite ore. J. Univ. Sci. Technol. Beijing 2009, 31, 36–40. [Google Scholar]
- Yuan, B.-F.; Zhang, L.-Q.; Zhang, F.-J. Study on sulfuric acid co-leaching of ludwigite, magnesium and iron from ludwigite and mafic ore. J. Shenyang Univ. Chem. Technol. 2013, 27, 20–24. [Google Scholar]
- Lu, Y.-P.; Long, T.; Feng, Q.-M. Floatability and mechanism of fine-grained serpentine. Chin. J. Nonferrous Met. 2009, 19, 1493–1497. [Google Scholar]
- United States Geological Survey. USGS 2020 Statistics; China Engineering Science and Technology Knowledge Center: Beijing, China, 2020.
- An, J.; Xue, X.-X.; Jiang, T. Study on ecological pressure of pyro-method separation process for ludwigite ore. J. Northeast. Univ. 2013, 34, 542–545. [Google Scholar]
- Zhang, L.-Q.; Yuan, B.-F.; Zhou, H.-F.; Liu, Z.-G. Extraction of magnesium sulfate from acid leaching solution of ludwigite and maficite by ethanol crystallization. J. Cent. South Univ. 2013, 44, 2681–2686. [Google Scholar]
- Li, Y.-L.; Qu, J.-K.; Wei, G.-Y.; Qi, T. Influence of Na2CO3 as additive on direct reduction of boron-bearing magnetite concentrate. J. Iron Steel Res. Int. 2016, 23, 103–108. [Google Scholar] [CrossRef]
- Wang, G.; Xue, Q.-G.; Wang, J.-S. Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag. Trans. Nonferrous Met. Soc. China 2016, 26, 282–293. [Google Scholar] [CrossRef]
- Fu, X.-J.; Zhao, J.-Q.; Chen, S.-Y.; Liu, Z.-G.; Guo, T.-L.; Chu, M.-S. Comprehensive utilization of ludwigite ore based on metallizing reduction and magnetic separation. J. Iron Steel Res. Int. 2015, 22, 672–680. [Google Scholar] [CrossRef]
- Li, G.-H.; Liang, B.-J.; Rao, M.-J.; Zhang, Y.-B.; Jiang, T. An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore. Miner. Eng. 2014, 56, 57–60. [Google Scholar] [CrossRef]
- Guo, H.-W.; Bai, J.-L.; Zhang, J.-L.; Li, H.-G. Mechanism of strength improvement of magnetite pellet by adding boron-bearing iron concentrate. J. Iron Steel Res. Int. 2014, 21, 9–15. [Google Scholar] [CrossRef]
- Liu, S.-L.; Cui, C.-M.; Zhang, X.-P. Pyrometallurgical separation of boron from iron in ludwigite ore. ISIJ Int. 1998, 38, 1077–1079. [Google Scholar] [CrossRef][Green Version]
- Yang, Z.-D.; Liu, S.-L.; Li, Z.-F.; Xue, X.-X. Oxidation of silicon and boron in boron containing molten iron. J. Iron Steel Res. Int. 2007, 14, 32–36. [Google Scholar] [CrossRef]
- Sui, Z.-T.; Zhang, P.-X.; Yamauchi, C. Precipitation selectivity of boron compounds from slags. Acta Mater. 1999, 47, 1337–1344. [Google Scholar] [CrossRef]
- Jiang, T.; Xue, X.-X. Synthesis of (Ca, Mg)-α′-Sialon-AlNBN powders from boron-rich blast furnace slag by microwave carbothermal reduction-nitridation. Trans. Nonferrous Met. Soc. China 2012, 22, 2984–2990. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, J.-B.; Xue, X.-X.; Duan, P.-N.; Chu, M.-S. Carbothermal formation and microstructural evolution of α’-Sialon-AlN-BN powders from boron-rich blast furnace slag. Adv. Powder Technol. 2012, 23, 406–413. [Google Scholar] [CrossRef]
- Song, H.-L.; Zhang, J.-P.; Cheng, G.-J.; Yang, S.-T.; Xue, X.-X. The effect of abandoned basic oxygen furnace gas blowing on the softening-melting-dripping performance of full high Cr-Bearing vanadia-titania magnetite pellets. Steel Res. Int. 2020, 91, 1900501. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Yang, S.-T.; Tang, W.-D.; Yang, H.; Xue, X.-X. Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium-titanium magnetite. Ironmak. Steelmak. 2020, 47, 821–827. [Google Scholar] [CrossRef]
- Tang, W.-D.; Yang, S.-T.; Zhang, L.-H.; Huang, Z.; Yang, H.; Xue, X.-X. Effects of basicity and temperature on mineralogy and reduction behaviors of high-chromium vanadium-titanium magnetite sinters. J. Cent. South Univ. 2019, 26, 132–145. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Chu, M.-S.; Wang, H.-T.; Zhao, W.; Xue, X.-X. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite. Int. J. Miner. Metall. Mater. 2016, 23, 25–32. [Google Scholar] [CrossRef]
Item | TFe | CaO | MgO | SiO2 | Al2O3 | TiO2 | V2O5 | P | Cr2O3 | B2O3 | VM | C Fix | CaCO3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ludwigite | 51.47 | 0.32 | 12.65 | 5.33 | 0.36 | 0.016 | 0.81 | 6.34 | |||||
Ordinary ore | 67.67 | 0.075 | 0.3 | 4.06 | 0.73 | 0.02 | 0 | ||||||
Returned sinter below 5 mm | 47.24 | 13.56 | 2.42 | 5.89 | 2.19 | 5.23 | 0.53 | 0.02 | 0.34 | ||||
Quicklime | 60.8 | 2.87 | 3.42 | 1.11 | 12.35 | ||||||||
Coke | 3.27 | 0.14 | 5.5 | 3.77 | 0.02 | 76.90 | 0.559 |
Parameter | Index | Parameter | Index |
---|---|---|---|
Material height | 700 mm | Sintering cup diameter | 320 mm |
Ignition negative pressure | 8.0 kPa | Ventilation negative Pressure | 10.0 kPa |
Ignition temperature | 1050 °C | Ignition time | 2.0 min |
Carbon content | 4.5~5.5% | Mixture moisture | 8.0 ± 0.1% |
Percent of return sinter below 5 mm | 15.00% | Thickness of base material | 30 mm |
Basicity | 1.7~2.1 | Granulation time | 10 min |
Level | Factor | ||
---|---|---|---|
A (Basicity/-) | C (Ordinary Ore Ratio/%) | B (Carbon Content/%) | |
I | 1.7 | 0 | 4.5 |
II | 1.9 | 30 | 5.0 |
III | 2.1 | 60 | 5.5 |
Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Basicity | 1.7 | 1.7 | 1.7 | 1.9 | 1.9 | 1.9 | 2.1 | 2.1 | 2.1 |
Ordinary ore ratio | 0 | 30% | 60% | 0 | 30% | 60% | 0 | 30% | 60% |
Carbon content | 4.5% | 5% | 5.5% | 5% | 5.5% | 4.5% | 5.5% | 4.5% | 5% |
Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Ludwigite | 73.35 | 44.2 | 15.1 | 71.6 | 42.7 | 13.7 | 69.9 | 41 | 12.3 |
Ordinary ore | 0 | 30 | 60 | 0 | 30 | 60 | 0 | 30 | 60 |
Carbon content | 4.5 | 5 | 5.5 | 5 | 5.5 | 4.5 | 5.5 | 4.5 | 5 |
Returned sinter below 5 mm | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Quicklime | 11.65 | 10.8 | 9.9 | 13.4 | 12.3 | 11.3 | 15.1 | 14 | 12.7 |
Total | 104.5 | 105 | 105.5 | 105.5 | 104.5 | 105 | 105 | 105.5 | 104.5 |
Basicity | 1.7 | 1.7 | 1.7 | 1.9 | 1.9 | 1.9 | 2.1 | 2.1 | 2.1 |
Temperature/°C | Room Temperature→200 | 200→500 | 500→900 | 900→1020 | 1020→Td |
---|---|---|---|---|---|
Temperature increasing rate/°C·min | 10 | 10 | 10 | 3 | 5 |
Gas atmosphere | - | N2, 5 L/min | N2, 3.5 L/min CO, 1.5 L/min | N2, 3.5 L/min CO, 1.5 L/min | N2, 3.5 L/min CO, 1.5 L/min |
Item | TFe | B2O3 | CaO | SiO2 | MgO | Al2O3 | MnO |
---|---|---|---|---|---|---|---|
1 | 48.90 | 5.57 | 10.55 | 7.47 | 9.29 | 1.00 | 0.74 |
2 | 47.65 | 3.68 | 12.24 | 7.94 | 9.01 | 1.67 | 0.60 |
3 | 51.77 | 1.82 | 9.93 | 10.04 | 3.09 | 1.70 | 0.77 |
4 | 48.85 | 5.46 | 11.50 | 8.21 | 8.65 | 0.86 | 0.53 |
5 | 52.91 | 3.63 | 8.85 | 10.01 | 3.04 | 1.41 | 0.62 |
6 | 50.38 | 1.73 | 10.70 | 8.53 | 6.38 | 1.20 | 0.45 |
7 | 50.92 | 5.36 | 10.86 | 8.73 | 5.25 | 1.13 | 0.72 |
8 | 51.59 | 3.36 | 10.98 | 9.75 | 3.14 | 1.27 | 0.66 |
9 | 51.12 | 1.68 | 9.49 | 8.76 | 6.48 | 1.08 | 0.62 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | Vertical Sintering Speed (VSS)/mm·min−1 | Yield Rate (YR)/% | Drum Strength (DS)/% |
---|---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 15.70 | 73.32 | 53.44 |
Experiment #2 | 1.7 | 30 | 5.0 | 19.44 | 75.34 | 62.21 |
Experiment #3 | 1.7 | 60 | 5.5 | 14.58 | 83.13 | 62.85 |
Experiment #4 | 1.9 | 0 | 5.0 | 21.21 | 78.36 | 60.41 |
Experiment #5 | 1.9 | 30 | 5.5 | 17.95 | 77.51 | 56.50 |
Experiment #6 | 1.9 | 60 | 4.5 | 17.5 | 82.31 | 59.24 |
Experiment #7 | 2.1 | 0 | 5.5 | 18.92 | 80.88 | 63.78 |
Experiment #8 | 2.1 | 30 | 4.5 | 21.21 | 73.40 | 54.21 |
Experiment #9 | 2.1 | 60 | 5 | 21.73 | 75.69 | 60.97 |
Average value 1 of VSS | 16.573 | 18.610 | 18.137 | |||
Average value 2 of VSS | 18.887 | 19.533 | 20.793 | |||
Average value 3 of VSS | 20.620 | 17.937 | 17.150 | |||
Range analyzing value of VSS | 4.047 | 1.596 | 3.643 | |||
Average value 1 of YR | 77.263 | 77.520 | 76.343 | |||
Average value 2 of YR | 79.393 | 75.417 | 76.463 | |||
Average value 3 of YR | 76.657 | 80.377 | 80.507 | |||
Range analyzing value of YR | 2.736 | 4.960 | 4.164 | |||
Average value 1 of DS | 59.500 | 59.210 | 55.630 | |||
Average value 2 of DS | 58.717 | 57.640 | 61.197 | |||
Average value 3 of DS | 59.653 | 61.020 | 61.043 | |||
Range analyzing value of DS | 0.936 | 3.380 | 5.567 |
Item | mD0 /g | m+6.3 /g | m3.15~6.3 /g | m0.5~3.15 /g | m−0.5 /g | RDI+6.3 /% | RDI+3.15 /% | RDI−0.5 /% |
---|---|---|---|---|---|---|---|---|
1 | 499.59 | 482.82 | 5.53 | 4.34 | 6.90 | 96.64 | 97.75 | 1.38 |
2 | 498.62 | 485.23 | 6.97 | 2.69 | 3.73 | 97.31 | 98.71 | 0.75 |
3 | 498.72 | 479.01 | 12.37 | 3.86 | 3.48 | 96.05 | 98.53 | 0.70 |
4 | 500.32 | 476.49 | 13.54 | 5.68 | 4.61 | 95.24 | 97.95 | 0.92 |
5 | 499.02 | 464.35 | 19.59 | 8.98 | 6.10 | 93.05 | 96.98 | 1.22 |
6 | 501.79 | 486.83 | 7.48 | 2.69 | 4.79 | 97.02 | 98.51 | 0.95 |
7 | 500.32 | 476.49 | 13.54 | 5.68 | 4.61 | 95.24 | 97.95 | 0.92 |
8 | 501.00 | 488.46 | 5.19 | 3.10 | 4.25 | 97.50 | 98.54 | 0.85 |
9 | 497.26 | 482.03 | 6.96 | 3.35 | 4.92 | 96.94 | 98.34 | 0.99 |
Item | TFe | B2O3 | CaO | SiO2 | MgO | Al2O3 | MnO |
---|---|---|---|---|---|---|---|
1 | 48.01 | 6.02 | 10.70 | 7.468 | 11.14 | 0.71 | 0.74 |
2 | 46.24 | 4.10 | 12.58 | 8.07 | 11.44 | 0.76 | 0.57 |
3 | 50.40 | 2.04 | 10.00 | 10.31 | 5.17 | 1.29 | 0.69 |
4 | 47.81 | 5.98 | 9.92 | 9.50 | 9.33 | 1.51 | 0.66 |
5 | 51.74 | 4.15 | 9.20 | 10.29 | 3.92 | 1.35 | 0.72 |
6 | 49.43 | 2.09 | 10.53 | 8.46 | 8.38 | 0.89 | 0.66 |
7 | 49.70 | 5.89 | 10.89 | 8.56 | 7.72 | 0.95 | 0.44 |
8 | 49.83 | 3.95 | 10.93 | 10.20 | 5.29 | 1.36 | 0.48 |
9 | 50.24 | 2.01 | 9.38 | 8.46 | 8.41 | 0.91 | 0.63 |
Item | Basicity | Ordinary Ore Ratio/% | Carbon Content/% | RDI+3.15/% |
---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 97.75 |
Experiment #2 | 1.7 | 30 | 5.0 | 98.71 |
Experiment #3 | 1.7 | 60 | 5.5 | 98.53 |
Experiment #4 | 1.9 | 0 | 5.0 | 97.95 |
Experiment #5 | 1.9 | 30 | 5.5 | 96.98 |
Experiment #6 | 1.9 | 60 | 4.5 | 98.51 |
Experiment #7 | 2.1 | 0 | 5.5 | 97.95 |
Experiment #8 | 2.1 | 30 | 4.5 | 98.54 |
Experiment #9 | 2.1 | 60 | 5.0 | 98.34 |
Average value 1 of RDI+3.15 | 98.883 | 97.883 | 98.267 | |
Average value 2 of RDI+3.15 | 97.813 | 98.077 | 98.333 | |
Average value 3 of RDI+3.15 | 98.277 | 98.460 | 97.820 | |
Range analyzing value of RDI+3.15 | 0.517 | 0.577 | 0.513 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | Vertical Sintering Speed (VSS)/mm·min−1 | Yield Rate (YR)/% | Drum Strength (DS)/% | RDI+3.15/% | /- |
---|---|---|---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 15.7 | 73.32 | 53.44 | 97.75 | 27.80 |
Experiment #2 | 1.7 | 30 | 5 | 19.44 | 75.34 | 62.21 | 98.71 | 63.72 |
Experiment #3 | 1.7 | 60 | 5.5 | 14.58 | 83.13 | 62.85 | 98.53 | 79.96 |
Experiment #4 | 1.9 | 0 | 5 | 21.21 | 78.36 | 60.41 | 97.95 | 56.20 |
Experiment #5 | 1.9 | 30 | 5.5 | 17.95 | 77.51 | 56.50 | 96.98 | 18.33 |
Experiment #6 | 1.9 | 60 | 4.5 | 17.5 | 82.31 | 59.24 | 98.51 | 70.06 |
Experiment #7 | 2.1 | 0 | 5.5 | 18.92 | 80.88 | 63.78 | 97.95 | 73.19 |
Experiment #8 | 2.1 | 30 | 4.5 | 21.21 | 73.40 | 54.21 | 98.54 | 38.90 |
Experiment #9 | 2.1 | 60 | 5 | 21.73 | 75.69 | 60.97 | 98.34 | 55.05 |
Average value 1 | 57.160 | 52.397 | 45.587 | w1 = 0.16; w2 = 0.24; w3 = 0.28; w4 = 0.33 Factor order: ordinary ore ratio, carbon content, basicity Optimal ore blending scheme: basicity 1.7, ordinary ore ratio 60%, carbon content 5.0% | ||||
Average value 2 | 48.197 | 40.317 | 58.323 | |||||
Average value 3 | 55.713 | 68.357 | 57.160 | |||||
Range analyzing value | 8.963 | 28.040 | 12.734 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | T4/°C | T40/°C | Ts/°C | Td/°C | T40-T4/ °C | Ts-T4/ °C | Td-Ts/ °C |
---|---|---|---|---|---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 606 | 966 | 1133 | 1410 | 360 | 527 | 277 |
Experiment #2 | 1.7 | 30 | 5 | 905 | 1072 | 1143 | 1360 | 167 | 238 | 217 |
Experiment #3 | 1.7 | 60 | 5.5 | 1032 | 1127 | 1186 | 1325 | 95 | 154 | 139 |
Experiment #4 | 1.9 | 0 | 5 | 898 | 951 | 1128 | 1351 | 53 | 230 | 223 |
Experiment #5 | 1.9 | 30 | 5.5 | 946 | 1080 | 1147 | 1316 | 136 | 201 | 169 |
Experiment #6 | 1.9 | 60 | 4.5 | 910 | 1072 | 1154 | 1378 | 162 | 244 | 224 |
Experiment #7 | 2.1 | 0 | 5.5 | 970 | 997 | 1216 | 1365 | 27 | 246 | 149 |
Experiment #8 | 2.1 | 30 | 4.5 | 630 | 970 | 1120 | 1339 | 340 | 490 | 219 |
Experiment #9 | 2.1 | 60 | 5 | 970 | 1086 | 1150 | 1375 | 116 | 180 | 225 |
Average value 1 of t4 | 847.667 | 824.667 | 715.333 | |||||||
Average value 2 of t4 | 918.000 | 827.000 | 924.333 | |||||||
Average value 3 of t4 | 856.667 | 970.667 | 982.667 | |||||||
Range analyzing value of t4 | 70.333 | 146.000 | 87.666 | |||||||
Average value 1 of ts | 1154.000 | 1159.000 | 1135.667 | |||||||
Average value 2 of ts | 1143.000 | 1136.667 | 1144.333 | |||||||
Average value 3 of ts | 1162.000 | 1163.333 | 1183.000 | |||||||
Range analyzing value of ts | 19.000 | 26.667 | 47.333 | |||||||
Average value 1 of td | 1365.000 | 1375.333 | 1375.667 | |||||||
Average value 2 of td | 1348.333 | 1338.333 | 1362.000 | |||||||
Average value 3 of td | 1359.667 | 1359.333 | 1335.333 | |||||||
Range analyzing value of td | 16.667 | 37.000 | 40.334 | |||||||
Average value 1 of t40-t4 | 207.333 | 146.667 | 287.333 | |||||||
Average value 2 of t40-t4 | 117.000 | 214.333 | 112.000 | |||||||
Average value 3 of t40-t4 | 161.000 | 124.333 | 86.000 | |||||||
Range analyzing value of t40-t4 | 90.333 | 90.000 | 201.333 | |||||||
Average value 1 of ts-t4 | 306.33 | 334.33 | 420.33 | |||||||
Average value 2 of ts-t4 | 225.00 | 309.67 | 216.00 | |||||||
Average value 3 of ts-t4 | 305.33 | 192.67 | 200.33 | |||||||
Range analyzing value of ts-t4 | 81.33 | 141.66 | 220.00 | |||||||
Average value 1 of td-ts | 194.333 | 199.667 | 223.333 | |||||||
Average value 2 of td-ts | 205.333 | 201.667 | 221.667 | |||||||
Average value 3 of td-ts | 197.667 | 196.000 | 152.333 | |||||||
Range analyzing value of td-ts | 11.000 | 5.667 | 71.000 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | △Pmax/kPa | S/kPa·°C |
---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 26.9 | 4300 |
Experiment #2 | 1.7 | 30 | 5 | 9.4 | 1075 |
Experiment #3 | 1.7 | 60 | 5.5 | 2.8 | 312 |
Experiment #4 | 1.9 | 0 | 5 | 9.7 | 1453 |
Experiment #5 | 1.9 | 30 | 5.5 | 2 | 336 |
Experiment #6 | 1.9 | 60 | 4.5 | 14.5 | 1489 |
Experiment #7 | 2.1 | 0 | 5.5 | 5.4 | 252 |
Experiment #8 | 2.1 | 30 | 4.5 | 13.9 | 1902 |
Experiment #9 | 2.1 | 60 | 5 | 8.1 | 971 |
Average value 1 of △Pmax | 14.000 | 18.433 | 12.333 | ||
Average value 1 of △Pmax | 8.433 | 9.067 | 9.767 | ||
Average value 1 of △Pmax | 8.467 | 3.400 | 8.800 | ||
Range analyzing value of △Pmax | 5.567 | 15.033 | 3.533 | ||
Average value 1 of S | 2001.667 | 2563.667 | 1869.000 | ||
Average value 2 of S | 1104.333 | 1166.333 | 938.667 | ||
Average value 3 of S | 924.000 | 300.000 | 1222.333 | ||
Range analyzing value of S | 1077.667 | 2263.667 | 930.333 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | /- |
---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 2.62 |
Experiment #2 | 1.7 | 30 | 5 | 51.85 |
Experiment #3 | 1.7 | 60 | 5.5 | 84.83 |
Experiment #4 | 1.9 | 0 | 5 | 52.89 |
Experiment #5 | 1.9 | 30 | 5.5 | 71.57 |
Experiment #6 | 1.9 | 60 | 4.5 | 47.69 |
Experiment #7 | 2.1 | 0 | 5.5 | 85.00 |
Experiment #8 | 2.1 | 30 | 4.5 | 30.95 |
Experiment #9 | 2.1 | 60 | 5 | 55.07 |
Average value 1 | 46.343 | 46.837 | 27.087 | w1 = 0.14; w2 = 0.10; w3 = 0.15; w4 = 0.19; w5 = 0.13; w6 = 0.15; w7 = 0.14 Factor order: carbon content, ordinary ore ratio, basicity Optimal ore blending scheme: basicity 1.9, ordinary ore ratio 60%, carbon content 5.5% |
Average value 2 | 57.383 | 51.367 | 53.180 | |
Average value 3 | 57.007 | 62.530 | 80.467 | |
Range analyzing value of t4 | 11.040 | 15.693 | 53.380 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | /- |
---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 8.38 |
Experiment #2 | 1.7 | 30 | 5 | 59.86 |
Experiment #3 | 1.7 | 60 | 5.5 | 82.12 |
Experiment #4 | 1.9 | 0 | 5 | 67.35 |
Experiment #5 | 1.9 | 30 | 5.5 | 63.24 |
Experiment #6 | 1.9 | 60 | 4.5 | 67.69 |
Experiment #7 | 2.1 | 0 | 5.5 | 80.57 |
Experiment #8 | 2.1 | 30 | 4.5 | 37.18 |
Experiment #9 | 2.1 | 60 | 5 | 60.07 |
Average value 1 | 50.120 | 52.100 | 37.750 | w1 = 0.09, w2 = 0.06, w3 = 0.09, w4 = 0.12, w5 = 0.08, w6 = 0.09, w7 = 0.08, w8 = 0.10, w9 = 0.10, w10 = 0.11, w11 = 0.13 Factor order: carbon content, ordinary ore ratio, basicity Optimal ore blending scheme: basicity 1.9, ordinary ore ratio 60%, carbon content 5.5% |
Average value 2 | 66.096 | 53.427 | 62.427 | |
Average value 3 | 59.273 | 69.960 | 75.310 | |
Range analyzing value | 15.973 | 17.860 | 37.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, G.; Liu, X.; Yang, H.; Xue, X.; Li, L. Sintering and Smelting Property Investigations of Ludwigite. Processes 2022, 10, 159. https://doi.org/10.3390/pr10010159
Cheng G, Liu X, Yang H, Xue X, Li L. Sintering and Smelting Property Investigations of Ludwigite. Processes. 2022; 10(1):159. https://doi.org/10.3390/pr10010159
Chicago/Turabian StyleCheng, Gongjin, Xuezhi Liu, He Yang, Xiangxin Xue, and Lanjie Li. 2022. "Sintering and Smelting Property Investigations of Ludwigite" Processes 10, no. 1: 159. https://doi.org/10.3390/pr10010159
APA StyleCheng, G., Liu, X., Yang, H., Xue, X., & Li, L. (2022). Sintering and Smelting Property Investigations of Ludwigite. Processes, 10(1), 159. https://doi.org/10.3390/pr10010159