Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research
Abstract
:1. Introduction
2. Cuneiform Fragment Collation
2.1. Application Scenarios
2.2. Collation of Various Media Types
3. Methods for Web-Based Visualization of 3D Cuneiform Data
3.1. Related Work
3.2. 3D Cuneiform Data Characteristics and Preparation
3.3. Visualization Methods
3.4. User Interface Design for Cuneiform Analysis
4. Integration into the Hethitologie-Portal Mainz
5. Evaluation
6. Conclusions and Outlook
7. Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cuneiform Digital Library Initiative; University of California, Los Angeles; Max-Planck-Institut für Wissenschaftsgeschichte, Berlin, Gemany. Available online: https://cdli.ucla.edu/ (accessed on 7 December 2017).
- Babeu, A. Rome Wasn’t Digitized in a Day: Building a Cyberinfrastructure for Digital Classics; Council on Library and Information Resources: Washington, DC, USA, 2011. [Google Scholar]
- Müller, G.G.W. Hethitologie-Portal Mainz. 2017. Available online: http://www.hethiter.net/ (accessed on 7 December 2017).
- Khronos Group. WebGL Specification. 2011. Available online: https://www.khronos.org/webgl/ (accessed on 7 December 2017).
- Khronos Group. OpenGL ES 2.0 Specification. 2007. Available online: https://www.khronos.org/registry/OpenGL/specs/es/2.0/es_full_spec_2.0.pdf (accessed on 7 December 2017).
- Cabello, R. Three.js. 2010. Available online: https://threejs.org/ (accessed on 7 December 2017).
- Di Benedetto, M.; Ponchio, F.; Ganovelli, F.; Scopigno, R. SpiderGL: A JavaScript 3D Graphics Library for Next-Generation WWW. In Proceedings of the 15th International Conference on Web 3D Technology, Los Angeles, CA, USA, 24–25 July 2010. [Google Scholar]
- Pinson, C.; Denoyel, A.; Passet, P.A. Sketchfab. 2012. Available online: https://sketchfab.com/ (accessed on 7 December 2017).
- Unity Technologies. Unity. 2005. Available online: https://unity3d.com/ (accessed on 7 December 2017).
- X3D Working Group. X3D Specifications. 2006. Available online: http://www.web3d.org/standards/ (accessed on 7 December 2017).
- Sons, K.; Klein, F.; Rubinstein, D.; Byelozyorov, S.; Slusallek, P. XML3D: Interactive 3D Graphics for the Web. In Proceedings of the 15th International Conference on Web 3D Technology, Los Angeles, CA, USA, 24–25 July 2010; ACM: New York, NY, USA, 2010; pp. 175–184. [Google Scholar]
- Behr, J.; Jung, Y.; Franke, T.; Sturm, T. Using Images and Explicit Binary Container for Efficient and Incremental Delivery of Declarative 3D Scenes on the Web. In Proceedings of the 17th International Conference on 3D Web Technology, Los Angeles, CA, USA, 4–5 August 2012; ACM: New York, NY, USA, 2012; pp. 17–25. [Google Scholar]
- Geelnard, M. OpenCTM. 2009. Available online: http://openctm.sourceforge.net/ (accessed on 7 December 2017).
- Chun, W. WebGL Models: End-to-End. In OpenGL Insights; Cozzi, P., Riccio, C., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 431–453. Available online: http://www.openglinsights.com/ (accessed on 7 December 2017).
- Forsyth, T. Linear-Speed Vertex Cache Optimisation. 2006. Available online: https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html (accessed on 7 December 2017).
- Limper, M.; Wagner, S.; Stein, C.; Jung, Y.; Stork, A. Fast Delivery of 3D Web Content: A Case Study. In Proceedings of the 18th International Conference on 3D Web Technology, San Sebastian, Spain, 20–22 June 2013; ACM: New York, NY, USA, 2013; pp. 11–17. [Google Scholar]
- Limper, M.; Jung, Y.; Behr, J.; Alexa, M. The POP Buffer: Rapid Progressive Clustering by Geometry Quantization. Comput. Graph. Forum 2013, 32, 197–206. [Google Scholar] [CrossRef]
- Ponchio, F. Multiresolution Structures for Interactive Visualization of Very Large 3D Datasets. Ph.D. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2009. [Google Scholar]
- Ponchio, F.; Dellepiane, M. Fast decompression for web-based view-dependent 3D rendering. In Proceedings of the 20th International Conference on 3D Web Technology, Heraklion, Greece, 18–21 June 2015; pp. 199–207. [Google Scholar]
- The British Museum. The British Museum’s 3D models on Sketchfab. Available online: https://sketchfab.com/britishmuseum/models (accessed on 7 December 2017).
- Autodesk. Autodesk ReMake. 2017. Available online: http://remake.autodesk.com (accessed on 7 December 2017).
- Smithonian Institution. Smithonian X 3D. 2013. Available online: https://3d.si.edu/ (accessed on 7 December 2017).
- VR3D CENTER TECH. VR3D. 2017. Available online: http://vr3d.vn/en/ (accessed on 7 December 2017).
- Potenziani, M.; Callieri, M.; Dellepiane, M.; Corsini, M.; Ponchio, F.; Scopigno, R. 3DHOP: 3D Heritage Online Presenter. Comput. Graph. 2015, 52, 129–141. [Google Scholar] [CrossRef]
- Mara, H.; Krömker, S.; Jakob, S.; Breuckmann, B. GigaMesh and Gilgamesh—3D Multiscale Integral Invariant Cuneiform Character Extraction. In Proceedings of the 11th International Conference on Virtual Reality, Archaeology and Cultural Heritage, Paris, France, 21–24 September 2010; pp. 131–138. [Google Scholar]
- Mara, H. Multi-Scale Integral Invariants for Robust Character Extraction from Irregular Polygon Mesh Data. Ph.D. Thesis, Ruprecht-Karls-Universiät Heidelberg, Heidelberg, Germany, 2012. [Google Scholar]
- Fisseler, D.; Weichert, F.; Cammarosano, M.; Müller, G.G.W. Towards an interactive and automated script feature analysis of 3D scanned cuneiform tablets. In Scientific Computing and Cultural Heritage; Springer: New York, NY, USA, 2013. [Google Scholar]
- Krebernik, M. Hilprecht Archive Online. 2017. Available online: https://hilprecht.mpiwg-berlin.mpg.de/ (accessed on 7 December 2017).
- Cignoni, P.; Visual Computing Lab, ISTI-CNR. MeshLabJS. 2006. Available online: http://www.meshlabjs.net/ (accessed on 7 December 2017).
- Cignoni, P.; Corsini, M.; Ranzuglia, G. MeshLab: An Open-Source 3D Mesh Processing System. ERCIM News 2008, 73, 45–46. [Google Scholar]
- Collins, T.; Woolley, S.; Ch’ng, E.; Hernandez-Munoz, L.; Gehlken, E.; Nash, D.; Lewis, A.; Hanes, L. A Virtual 3D Cuneiform Tablet Reconstruction Interaction. In Proceedings of the British HCI Conference, Sunderland, UK, 3–6 July 2017; Available online: http://virtualcuneiform.org (accessed on 7 December 2017).
- Woolley, S.I.; Ch’ng, E.; Hernandez-Munoz, L.; Gehlken, E.; Collins, T.; Nash, D.; Lewis, A.; Hanes, L. A Collaborative Artefact Reconstruction Environment. In Proceedings of the British HCI Conference, Sunderland, UK, 3–6 July 2017. [Google Scholar]
- AICON 3D Systems. OPTOCAT. Available online: https://www.aicon3d.de (accessed on 7 December 2017).
- ISTI-CNR. MeshLab. Available online: https://www.meshlab.net (accessed on 7 December 2017).
- Pharr, M.; Green, S.; Fernando, R. Ambient Occlusion. In GPU Gems; Addison-Wesley: Boston, MA, USA, 2004; pp. 279–292. [Google Scholar]
- Mittring, M. Finding Next Gen: CryEngine 2. In Proceedings of the ACM SIGGRAPH 2007 Courses, San Diego, CA, USA, 5–9 August 2007; ACM: New York, NY, USA, 2007; pp. 97–121. [Google Scholar]
- Sattler, M.; Sarlette, R.; Zachmann, G.; Klein, R. Hardware-accelerated ambient occlusion computation. In Proceedings of the Vision, Modeling, and Visualization 2004, Standford, CA, USA, 16–18 November 2004; Girod, B., Magnor, M., Seidel, H.P., Eds.; Akademische Verlagsgesellschaft Aka GmbH: Berlin, Germany, 2004; pp. 331–338. [Google Scholar]
- Vergne, R.; Pacanowski, R.; Barla, P.; Granier, X.; Schlick, C. Radiance Scaling for Versatile Surface Enhancement. In Proceedings of the Symposium on Interactive 3D Graphics and Games, Washington, DC, USA, 19–21 February 2010. [Google Scholar]
- Vergne, R.; Pacanowski, R.; Barla, P.; Granier, X.; Schlick, C. Improving Shape Depiction under Arbitrary Rendering. IEEE Trans. Vis. Comput. Graph. 2011, 17, 1071–1081. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kemen, B. Outerra: Maximizing Depth Buffer Range and Precision. 2012. Available online: http://outerra.blogspot.de/2012/11/maximizing-depth-buffer-range-and.html (accessed on 7 December 2017).
- Willems, G.; Verbiest, F.; Moreau, W.; Hameeuw, H.; Van Lerberghe, K.; Van Gool, L. Easy and cost-effective cuneiform digitizing. In Proceedings of the 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2005), Prato, Italy, 8–11 November 2005; Eurographics Association: Geneva, Switzerland, 2005; pp. 73–80. [Google Scholar]
- Data Arts Team, Google Creative Lab. dat.GUI, JavaScript Controller Library. 2017. Available online: https://github.com/dataarts/dat.gui (accessed on 7 December 2017).
Aspect | Real Object | Photography | 3D Scan |
---|---|---|---|
lighting | variable | fixed | variable |
viewing direction | variable | fixed | variable |
measurements | x, y | x, y | x, y, depth |
manual measurement precision | − | + | ++ |
separable texture colors | ✗ | ✗ | ✓ |
accessibility | real world fixed location | web-based | web-based |
data size | real object | medium | large |
representation completeness | corrosion dependent | + | + |
Fragment | #Vertices | Ply Size | Nexus Size | Transfer Size | Loading Time |
---|---|---|---|---|---|
104/b | 289,002 | 11.22 MB | 2.70 MB | <1.4 MB | <6 s |
7/a | 938,815 | 36.28 MB | 9.81 MB | <2.0 MB | <7 s |
Bo71/222 | 3,372,959 | 131.84 MB | 31.31 MB | <2.5 MB | <11 s |
Bronzetafel | 77,211,022 | 3089.50 MB | 763.25 MB | <20.0 MB | <80 s |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisseler, D.; Müller, G.G.W.; Weichert, F. Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research. Informatics 2017, 4, 44. https://doi.org/10.3390/informatics4040044
Fisseler D, Müller GGW, Weichert F. Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research. Informatics. 2017; 4(4):44. https://doi.org/10.3390/informatics4040044
Chicago/Turabian StyleFisseler, Denis, Gerfrid G. W. Müller, and Frank Weichert. 2017. "Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research" Informatics 4, no. 4: 44. https://doi.org/10.3390/informatics4040044