Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to Fan Systems
2.2. The Noise Made by a Fan
- z = number of blades
- n = rotation frequency of the fan shaft.
- Vortex shedding noise: due to the diffusion of vortices, a solid’s time-varying circulation creates a fluctuating force that is transferred to the fluid and propagates as sound;
- Interaction between turbulence and the solid structure: the presence of vortices in contact with a solid body induces oscillating forces acting on the surface of the same, due to the time-varying nature of the vortices. These are transferred to the fluid and propagated in the form of pressure waves and therefore noise;
- Trailing edge noise: it results from the interaction between the boundary layer instabilities and the blade edges, which is typical of rotating devices.
2.3. Maintenance of a Fan
2.4. Measurements of the Acoustic Emission of the Fan Blades
- No-Fault: the fan blades have been perfectly cleaned and no accumulations of material have been foreseen on the surface;
- Fault: deposits of material have been artificially made on the fan blades to simulate those that normally occur in the normal operation of the equipment.
2.5. Feature Extraction
- nth sample of the signal
- N is the number of samples contained in the window
- k is the index of discrete frequencies.
2.6. Fan Fault Diagnosis Based on CNN Model
- Convolutional layer;
- Activation layer;
- Pooling layer;
- Densely connected layer.
2.7. Data Augmentation
- Flipping;
- Cropping;
- Rotation;
- Translation;
- Distortion;
- Brightness change;
- Contrast adjustment.
2.8. Transfer Learning
3. Results and Discussion
3.1. Characterization of the Acoustic Emission of the Fan
3.2. Simulation of Dust Deposits on the Blades of an Axial Fan
3.3. Features Extraction for Acoustics Emissions
3.4. Fan Fault Diagnosi Using Convolutional Neural Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mannan, M.; Al-Ghamdi, S.G. Indoor air quality in buildings: A comprehensive review on the factors influencing air pollution in residential and commercial structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef]
- Huizenga, C.; Abbaszadeh, S.; Zagreus, L.; Arens, E.A. Air Quality and Thermal Comfort in Office Buildings: Results of a Large Indoor Environmental Quality Survey; UC Berkeley: Berkeley, CA, USA, 2006. [Google Scholar]
- Lei, L.; Chen, W.; Xue, Y.; Liu, W. A comprehensive evaluation method for indoor air quality of buildings based on rough sets and a wavelet neural network. Build. Environ. 2019, 162, 106296. [Google Scholar] [CrossRef]
- Wyon, D.P. The effects of indoor air quality on performance and productivity. Indoor Air 2004, 14, 92–101. [Google Scholar] [CrossRef]
- Kumar, P.; Martani, C.; Morawska, L.; Norford, L.; Choudhary, R.; Bell, M.; Leach, M. Indoor air quality and energy management through real-time sensing in commercial buildings. Energy Build. 2016, 111, 145–153. [Google Scholar] [CrossRef]
- Salthammer, T. Emerging indoor pollutants. Int. J. Hyg. Environ. Health 2020, 224, 113423. [Google Scholar] [CrossRef]
- Lebowitz, M.D. Health effects of indoor pollutants. Annu. Rev. Public Health 1983, 4, 203–221. [Google Scholar] [CrossRef]
- Pérez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory health effects of indoor air pollution. Int. J. Tuberc. Lung Dis. 2010, 14, 1079–1086. [Google Scholar]
- Domínguez-Amarillo, S.; Fernández-Agüera, J.; Cesteros-García, S.; González-Lezcano, R.A. Bad air can also kill: Residential indoor air quality and pollutant exposure risk during the COVID-19 crisis. Int. J. Environ. Res. Public Health 2020, 17, 7183. [Google Scholar] [CrossRef]
- Urrutia-Pereira, M.; Mello-da-Silva, C.A.; Solé, D. Household pollution and COVID-19: Irrelevant association? Allergol. Et Immunopathol. 2021, 49, 146–149. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Casari, L.; Demaria, G.; Russo, M. Indoor air quality in domestic environments during periods close to Italian COVID-19 lockdown. Int. J. Environ. Res. Public Health 2021, 18, 4060. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Cisak, E.; Sroka, J.; Wójcik-Fatla, A.; Zajac, V. Biological agents as occupational hazards-selected issues. Ann. Agric. Environ. Med. 2011, 18, 286–293. [Google Scholar]
- Santos, J.; Ramos, C.; Vaz-Velho, M.; Vasconcelos Pinto, M. Occupational exposure to biological agents. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Singapore, 2020; pp. 61–67. [Google Scholar]
- Kreiss, K. The epidemiology of building-related complaints and illness. Occup. Med. (Phila. Pa.) 1989, 4, 575–592. [Google Scholar]
- Crook, B.; Burton, N.C. Indoor moulds, sick building syndrome and building related illness. Fungal Biol. Rev. 2010, 24, 106–113. [Google Scholar] [CrossRef]
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-building syndrome. Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef]
- Burge, P.S. Sick building syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Bluyssen, P.M.; Cox, C.; Seppänen, O.; de Oliveira Fernandes, E.; Clausen, G.; Müller, B.; Roulet, C.A. Why, when and how do HVAC-systems pollute the indoor environment and what to do about it? The European AIRLESS project. Build. Environ. 2003, 38, 209–225. [Google Scholar] [CrossRef]
- Batterman, S.A.; Burge, H. HVAC systems as emission sources affecting indoor air quality: A critical review. HVACR Res. 1995, 1, 61–78. [Google Scholar] [CrossRef]
- Brief, R.S.; Bernath, T. Indoor pollution: Guidelines for prevention and control of microbiological respiratory hazards associated with air conditioning and ventilation systems. Appl. Ind. Hyg. 1988, 3, 5–10. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F. Review of modeling methods for HVAC systems. Appl. Therm. Eng. 2014, 67, 507–519. [Google Scholar] [CrossRef]
- McDowall, R. Fundamentals of HVAC Systems: SI Edition; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Perez-Lombard, L.; Ortiz, J.; Maestre, I.R. The map of energy flow in HVAC systems. Appl. Energy 2011, 88, 5020–5031. [Google Scholar] [CrossRef]
- Mishra, R.C.; Pathak, K. Maintenance Engineering and Management; PHI Learning Pvt. Ltd.: New Delhi, India, 2012. [Google Scholar]
- Grigoriev, A.; Van De Klundert, J.; Spieksma, F.C. Modeling and solving the periodic maintenance problem. Eur. J. Oper. Res. 2006, 172, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Envia, E. Fan noise reduction: An overview. Int. J. Aeroacoustics 2002, 1, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Envia, E.; Wilson, A.G.; Huff, D.L. Fan noise: A challenge to CAA. Int. J. Comput. Fluid Dyn. 2004, 18, 471–480. [Google Scholar] [CrossRef]
- Filleul, N.L.S. An investigation of axial flow fan noise. J. Sound Vib. 1966, 3, 147–165. [Google Scholar] [CrossRef]
- Woodward, R.; Hughes, C.; Jeracki, R.; Miller, C. Fan Noise Source Diagnostic Test--Far-field Acoustic Results. In Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, CO, USA, 17–19 June 2002; p. 2427. [Google Scholar] [CrossRef]
- Hughes, C.; Jeracki, R.; Woodward, R.; Miller, C. Fan noise source diagnostic test-rotor alone aerodynamic performance results. In Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, CO, USA, 17–19 June 2002; p. 2426. [Google Scholar]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Fault diagnosis for UAV blades using artificial neural network. Robotics 2019, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2011, 38, 1876–1886. [Google Scholar] [CrossRef]
- Ciaburro, G. Machine fault detection methods based on machine learning algorithms: A review. Math. Biosci. Eng. 2022, 19, 11453–11490. [Google Scholar] [CrossRef]
- Aldrich, C.; Auret, L. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods; Springer: London, UK, 2013; Volume 16, pp. 593–606. [Google Scholar]
- Mitchell, T.M.; Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; Volume 1. [Google Scholar]
- Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A comparison between numerical simulation models for the prediction of acoustic behavior of giant reeds shredded. Appl. Sci. 2020, 10, 6881. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Ciaburro, G.; Brambilla, G.; Garzón, C.; Maffei, L. Representation of the soundscape quality in urban areas through colours. Noise Mapp. 2019, 6, 8–21. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar]
- Ciaburro, G.; Iannace, G. Machine learning-based algorithms to knowledge extraction from time series data: A review. Data 2021, 6, 55. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Guo, L.; Lei, Y.; Xing, S.; Yan, T.; Li, N. Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data. IEEE Trans. Ind. Electron. 2018, 66, 7316–7325. [Google Scholar] [CrossRef]
- Chen, Z.; Gryllias, K.; Li, W. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine. Mech. Syst. Signal Process. 2019, 133, 106272. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, N.; Shen, X.; Xu, L.; Pan, Z.; Pan, F. Proposal and experimental case study on building ventilating fan fault diagnosis based on cuckoo search algorithm optimized extreme learning machine. Sustain. Energy Technol. Assess. 2021, 45, 100975. [Google Scholar] [CrossRef]
- Huang, G.; Qiao, L.; Khanna, S.; Pavlovich, P.A.; Tiwari, S. Research on fan vibration fault diagnosis based on image recognition. J. Vibroeng. 2021, 23, 1366–1382. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, F.; Jia, M. A centrifugal fan blade damage identification method based on the multi-level fusion of vibro-acoustic signals and CNN. Measurement 2022, 199, 111475. [Google Scholar] [CrossRef]
- Xie, X.; Chen, W.; Chen, B.; Cheng, J.; Tan, L. Comprehensive fatigue estimation and fault diagnosis based on Refined Generalized Multi-Scale Entropy method of centrifugal fan blades. Measurement 2020, 166, 108224. [Google Scholar] [CrossRef]
- Choudhary, A.; Goyal, D.; Letha, S.S. Infrared thermography-based fault diagnosis of induction motor bearings using machine learning. IEEE Sens. J. 2020, 21, 1727–1734. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Wang, Y.F.; Lin, K.C.; Chen, M.Y.; Hsu, J.H.Y. Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. IEEE Access 2020, 8, 23427–23439. [Google Scholar] [CrossRef]
- Rauber, T.W.; da Silva Loca, A.L.; de Assis Boldt, F.; Rodrigues, A.L.; Varejão, F.M. An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals. Expert Syst. Appl. 2021, 167, 114022. [Google Scholar] [CrossRef]
- Ibrahim, S.K.; Ahmed, A.; Zeidan, M.A.E.; Ziedan, I.E. Machine learning techniques for satellite fault diagnosis. Ain Shams Eng. J. 2020, 11, 45–56. [Google Scholar] [CrossRef]
- Doe, U. Improving Fan System Performance: A Sourcebook for Industry. Prepared by Lawrence Berkeley National Laboratory and Resource Dynamics Corporation, Washington. Washington. Technical Report, DC DOE/GO-102003-1294. 2003. Available online: https://www.nrel.gov/docs/fy03osti/29166.pdf (accessed on 17 December 2022).
- Liddament, M.W. GV: A Guide to Energy Efficient Ventilation. 1996. Available online: https://www.aivc.org/resource/gv-guide-energy-efficient-ventilation?utm_medium=website&utm_source=archdaily.com.br (accessed on 17 December 2022).
- Santamouris, M.; Wouters, P. Building Ventilation: The State of the Art; Routledge: Oxfordshire, UK, 2015. [Google Scholar]
- Estill, C.F.; Watkins, D.S.; Hall, R.M.; O’Brien, D.M.; Shulman, S.A. The impact of maintenance and design for ventilation systems. Appl. Occup. Environ. Hyg. 2002, 17, 344–351. [Google Scholar] [CrossRef]
- ISO 3745 Standard; Acoustics—Determination of Sound Power Levels of Noise Sources Using Sound Pressure Precision Methods for Anechoic and Hemi-Anechoic Rooms. ISO: Geneva, Switzerland, 2012.
- Guyon, I.; Gunn, S.; Nikravesh, M.; Zadeh, L.A. (Eds.) Feature Extraction: Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 207. [Google Scholar]
- Sakashita, Y.; Aono, M. Acoustic scene classification by ensemble of spectrograms based on adaptive temporal divisions. In Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge; DCASE Community: Washington, DC, USA, 2018. [Google Scholar]
- Ciaburro, G. Sound event detection in underground parking garage using convolutional neural network. Big Data Cogn. Comput. 2020, 4, 20. [Google Scholar] [CrossRef]
- Harčarik, T.; Bocko, J.; Masláková, K. Frequency analysis of acoustic signal using the Fast Fourier Transformation in MATLAB. Procedia Eng. 2012, 48, 199–204. [Google Scholar] [CrossRef]
- Shin, M.; Hong, W.; Lee, K.; Choo, Y. Frequency Analysis of Acoustic Data Using Multiple-Measurement Sparse Bayesian Learning. Sensors 2021, 21, 5827. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Machine-Learning-Based Methods for Acoustic Emission Testing: A Review. Appl. Sci. 2022, 12, 10476. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Chen, T. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Nagoya, Japan, 21–23 August 2017; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, J. Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing Univ. 2017, 5, 495. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Taylor, L.; Nitschke, G. Improving deep learning with generic data augmentation. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; IEEE: Piscataway, NJ, USA; pp. 1542–1547. [Google Scholar]
- Wang, J.; Perez, L. The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Netw. Vis. Recognit 2017, 11, 1–8. [Google Scholar]
- Li, X.; Zhang, W.; Ding, Q.; Sun, J.Q. Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation. J. Intell. Manuf. 2020, 31, 433–452. [Google Scholar] [CrossRef]
- Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and Conference Proceedings, Bellevue, Washington, USA, 2 July 2011; pp. 17–36. [Google Scholar]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the International Conference on Artificial Neural Networks, 2018 October; Springer: Cham, Singapore; pp. 270–279. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inform. 2018, 15, 2446–2455. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv preprint 2016, arXiv:1602.07360. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Fei-Fei, L. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar] [CrossRef]
- Yang, K.; Qinami, K.; Fei-Fei, L.; Deng, J.; Russakovsky, O. Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; pp. 547–558. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Iannace, G.; Ciaburro, G. Modelling sound absorption properties for recycled polyethylene terephthalate-based material using Gaussian regression. Build. Acoust. 2021, 28, 185–196. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
Microphone Position | Min. Velox | Med. Velox | Max. Velox |
---|---|---|---|
180° | 40.0 | 42.9 | 44.4 |
270° | 47.1 | 49.2 | 51.6 |
360° | 40.0 | 43.3 | 44.3 |
Solver | Basic | Advanced |
---|---|---|
sgdm | MaxEpochs = 30 | L2Reg = 0.0001 |
Initial learning rate = 0.01 | MiniBatchSize = 1 | Grad Threshold Methods = l2norm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaburro, G.; Padmanabhan, S.; Maleh, Y.; Puyana-Romero, V. Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods. Informatics 2023, 10, 24. https://doi.org/10.3390/informatics10010024
Ciaburro G, Padmanabhan S, Maleh Y, Puyana-Romero V. Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods. Informatics. 2023; 10(1):24. https://doi.org/10.3390/informatics10010024
Chicago/Turabian StyleCiaburro, Giuseppe, Sankar Padmanabhan, Yassine Maleh, and Virginia Puyana-Romero. 2023. "Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods" Informatics 10, no. 1: 24. https://doi.org/10.3390/informatics10010024
APA StyleCiaburro, G., Padmanabhan, S., Maleh, Y., & Puyana-Romero, V. (2023). Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods. Informatics, 10(1), 24. https://doi.org/10.3390/informatics10010024