# Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Economic Motivations

#### 1.2. Review of Consumption-Investment Models and Reinsurance Models

#### 1.3. Review of the AIG Case

#### 1.4. Contributions

## 2. The Model

**Remark**

**1.**

**Remark**

**2.**

**Problem**

**1.**

## 3. The Verification Theorem

**Theorem**

**1.**

**Proof.**

## 4. Construction of Explicit Solutions

- $U(x)=\mathrm{ln}(x),\phantom{\rule{0.166667em}{0ex}}x>0$;
- $U(x)=\frac{1}{\alpha}{x}^{\alpha},\phantom{\rule{0.166667em}{0ex}}x>0$, where $\alpha <1$ and $\alpha \ne 0$.

#### 4.1. $U(x)=\mathrm{ln}(x),\phantom{\rule{0.166667em}{0ex}}x>0$

**Lemma**

**1.**

**Proof.**

**Theorem**

**2.**

#### 4.2. $U(x)=\frac{1}{\alpha}{x}^{\alpha},\phantom{\rule{0.166667em}{0ex}}x>0,\phantom{\rule{4.pt}{0ex}}where\phantom{\rule{4.pt}{0ex}}\alpha <1$ and $\alpha \ne 0$

**Lemma**

**2.**

**Proof.**

**Proof.**

**Theorem**

**3.**

## 5. Economic Analysis

**Remark**

**3.**

- Denote the loading factor of the insurer by χ. We apply the expected value principle to calculate the premium rate ${p}_{i}$ by:$${p}_{i}=(1+\chi )\xb7E[{R}_{i}]=(1+\chi )\xb7({a}_{i}+\lambda \phantom{\rule{0.166667em}{0ex}}{\gamma}_{i}),\phantom{\rule{1.em}{0ex}}where\phantom{\rule{4.pt}{0ex}}i=1,2.$$

#### 5.1. Analysis of the Impact of the Risk Aversion Parameter α on the Optimal Policy

#### 5.2. Analysis on the Impact of the Correlation Coefficient ρ on the Optimal Policy

#### 5.3. Analysis of the Impact of the Regimes on the Optimal Policy

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- T. Atkinson, D. Luttrell, and H. Rosenblum. “How bad was it? The costs and consequences of the 2007–09 financial crisis.” In Federal Reserve Bank of Dallas Staff Papers. Dallas, TX, USA: The Federal Reserve Bank of Dallas, 2013, Number 20. [Google Scholar]
- W.K. Sjostrom. “The AIG bailout.” Wash. Lee Law Rev. 943 (2009): 977–983. [Google Scholar]
- R.C. Merton. “Lifetime portfolio selection under uncertainty: The continuous-time case.” Rev. Econ. Stat. 51 (1969): 247–257. [Google Scholar] [CrossRef]
- I. Karatzas, J.P. Lehoczky, S.P. Sethi, and S.E. Shreve. “Explicit solution of a general consumption/investment problem.” Math. Oper. Res. 11 (1986): 261–294. [Google Scholar] [CrossRef]
- I. Karatzas, and S.E. Shreve. Methods of Mathematical Finance. Berlin/Heidelberg, Germany: Springer Science & Business Media, 1998, Volume 39. [Google Scholar]
- S.P. Sethi. OptimaL Consumption and Investment with Bankruptcy. Berlin, Germany: Springer Science & Business Media, 2012. [Google Scholar]
- S. Browne. “Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin.” Math. Oper. Res. 20 (1995): 937–958. [Google Scholar] [CrossRef]
- H. Yang, and L. Zhang. “Optimal investment for insurer with jump-diffusion risk process.” Insur.: Math. Econ. 37 (2005): 615–634. [Google Scholar] [CrossRef]
- Z. Wang, J. Xia, and L. Zhang. “Optimal investment for an insurer: The martingale approach.” Insur.: Math. Econ. 40 (2007): 322–334. [Google Scholar] [CrossRef]
- K.S. Moore, and V.R. Young. “Optimal insurance in a continuous-time model.” Insur.: Math. Econ. 39 (2006): 47–68. [Google Scholar] [CrossRef]
- B. Zou, and A. Cadenillas. “Explicit solutions of optimal consumption, investment and insurance problems with regime switching.” Insur.: Math. Econ. 58 (2014): 159–167. [Google Scholar] [CrossRef]
- K. Frauendorfer, U. Jacoby, and A. Schwendener. “Regime switching based portfolio selection for pension funds.” J. Bank. Finance 31 (2007): 2265–2280. [Google Scholar] [CrossRef]
- D. Hainaut. “Impulse control of pension fund contributions, in a regime switching economy.” Eur. J. Oper. Res. 239 (2014): 810–819. [Google Scholar] [CrossRef]
- R. Korn, T.K. Siu, and A. Zhang. “Asset allocation for a DC pension fund under regime switching environment.” Eur. Actuar. J. 1 (2011): 361–377. [Google Scholar] [CrossRef]
- H. Yao, P. Chen, and X. Li. “Multi-period defined contribution pension funds investment management with regime-switching and mortality risk.” Insur.: Math. Econ. 71 (2016): 103–113. [Google Scholar] [CrossRef]
- H. Schmidli. “Optimal proportional reinsurance policies in a dynamic setting.” Scand. Actuar. J. 2001 (2001): 55–68. [Google Scholar] [CrossRef]
- M.I. Taksar. “Optimal risk and dividend distribution control models for an insurance company.” Math. Methods Oper. Res. 51 (2000): 1–42. [Google Scholar] [CrossRef]
- B. Højgaard, and M. Taksar. “Optimal proportional reinsurance policies for diffusion models.” Scand. Actuar. J. 1998 (1998): 166–180. [Google Scholar] [CrossRef]
- M. Kaluszka. “Optimal reinsurance under mean-variance premium principles.” Insur.: Math. Econ. 28 (2001): 61–67. [Google Scholar] [CrossRef]
- J. Liu, K.F.C. Yiu, T.K. Siu, and W.K. Ching. “Optimal investment-reinsurance with dynamic risk constraint and regime switching.” Scand. Actuar. J. 2013 (2013): 263–285. [Google Scholar] [CrossRef]
- J.L. Stein. Stochastic Optimal Control and the US Financial Debt Crisis. Berlin, Germany: Springer, 2012. [Google Scholar]
- B. Zou, and A. Cadenillas. “Optimal investment and risk control policies for an insurer: Expected utility maximization.” Insur.: Math. Econ. 58 (2014): 57–67. [Google Scholar] [CrossRef]
- N. Bauerle, and U. Rieder. “Portfolio optimization with Markov-modulated stock prices and interest rates.” IEEE Trans. Automat. Control 49 (2004): 442–447. [Google Scholar] [CrossRef]
- L.R. Sotomayor, and A. Cadenillas. “Explicit solutions of consumption-investment problems in financial markets with regime switching.” Math. Finance 19 (2009): 251–279. [Google Scholar] [CrossRef]
- X.Y. Zhou, and G. Yin. “Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model.” SIAM J. Control Optim. 42 (2003): 1466–1482. [Google Scholar] [CrossRef]
- S.E. Harrington. “The financial crisis, systemic risk, and the future of insurance regulation.” J. Risk Insur. 76 (2009): 785–819. [Google Scholar] [CrossRef]
- Z. Jin, G. Yin, and F. Wu. “Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods.” Insur.: Math. Econ. 53 (2013): 733–746. [Google Scholar] [CrossRef]
- J. Cawley, A.S. Moriya, and K.I. Simon. The Impact of the Macroeconomy on Health Insurance Coverage: Evidence From the Great Recession. Technical report; Cambridge, MA, USA: National Bureau of Economic Research, 2011. [Google Scholar]
- J. Molka III. The Impact of the Economic Crisis on the P&C Insurance Industry. Technical report; New York, NY, USA: Advisen Transforming Insurance, 2009. [Google Scholar]
- E.F. Fama, and K.R. French. “Business conditions and expected returns on stocks and bonds.” J. Financ. Econ. 25 (1989): 23–49. [Google Scholar] [CrossRef]
- K.R. French, G.W. Schwert, and R.F. Stambaugh. “Expected stock returns and volatility.” J. Financ. Econ. 19 (1987): 3–29. [Google Scholar] [CrossRef]
- J.D. Hamilton, and G. Lin. “Stock market volatility and the business cycle.” J. Appl. Econom. 11 (1996): 573–593. [Google Scholar] [CrossRef]
- J.D. Haley. “A cointegration analysis of the relationship between underwriting margins and interest rates: 1930–1989.” J. Risk Insur. 60 (1993): 480–493. [Google Scholar] [CrossRef]
- L. Norden, and M. Weber. “The co-movement of credit default swap, bond and stock markets: An empirical analysis.” Eur. Financ. Manag. 15 (2009): 529–562. [Google Scholar] [CrossRef]
- B. Zou. “Stochastic Control in Optimal Insurance and Investment with Regime Switching.” Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]

^{1}We use subscript i to denote the dependence on the regime ${\u03f5}_{t}$ when ${\u03f5}_{t}=i$.

Regime | ${\mathit{\mu}}_{\mathit{i}}$ | ${\mathit{r}}_{\mathit{i}}$ | ${\mathit{\sigma}}_{\mathit{i}}$ | ${\mathit{a}}_{\mathit{i}}$ | ${\mathit{b}}_{\mathit{i}}$ | ${\mathit{\gamma}}_{\mathit{i}}$ | ${\mathit{p}}_{\mathit{i}}$ | λ |
---|---|---|---|---|---|---|---|---|

1 (bull market) | 0.1 | 0.03 | 0.15 | 0.04 | 0.05 | 0.2 | 0.1 | 0.1 |

2 (bear market) | 0.05 | 0.01 | 0.25 | 0.08 | 0.1 | 0.4 | 0.2 |

ρ | Regime | ${\mathit{\pi}}^{*}$ (Investment) | ${\mathit{\kappa}}^{*}$ (Liability Ratio) |
---|---|---|---|

−0.9 | 1 | 2.4031 | 2.3600 |

2 | 0.0905 | 1.5263 | |

−0.5 | 1 | 2.6628 | 2.6900 |

2 | 0.3386 | 1.5069 | |

−0.1 | 1 | 3.0108 | 3.0088 |

2 | 0.5787 | 1.5314 |

α | Case of ${\mathit{\rho}}_{1}$ and ${\mathit{\rho}}_{2}$ | ${\mathit{\pi}}_{1}^{*}$ | ${\mathit{\kappa}}_{1}^{*}$ | ${\mathit{\pi}}_{2}^{*}$ | ${\mathit{\kappa}}_{2}^{*}$ |
---|---|---|---|---|---|

$\alpha =-5$ | Case 1 | 0.3932 | 0.5372 | −0.0227 | 0.3594 |

Case 2 | 0.4221 | 0.5785 | 0.0094 | 0.3474 | |

Case 3 | 0.4561 | 0.6237 | 0.0383 | 0.3417 | |

Case 4 | 0.4961 | 0.6737 | 0.0657 | 0.3415 | |

$\alpha =-2$ | Case 1 | 0.7983 | 1.0233 | −0.0274 | 0.6688 |

Case 2 | 0.8537 | 1.1000 | 0.0311 | 0.6508 | |

Case 3 | 0.9188 | 1.1823 | 0.0848 | 0.6426 | |

Case 4 | 0.9947 | 1.2714 | 0.1361 | 0.6433 | |

$\alpha =0$ | Case 1 | 2.5214 | 2.5275 | 0.0905 | 1.5263 |

Case 2 | 2.6628 | 2.6900 | 0.2170 | 1.5108 | |

Case 3 | 2.8261 | 2.8502 | 0.3386 | 1.5069 | |

Case 4 | 3.0108 | 3.0088 | 0.4583 | 1.5140 | |

$\alpha =0.2$ | Case 1 | 3.2027 | 2.9408 | 0.1760 | 1.7333 |

Case 2 | 3.3696 | 3.1157 | 0.3178 | 1.7220 | |

Case 3 | 3.5606 | 3.2827 | 0.4558 | 1.7211 | |

Case 4 | 3.7741 | 3.4426 | 0.5924 | 1.7299 | |

$\alpha =0.5$ | Case 1 | 5.3301 | 3.8234 | 0.5142 | 2.1272 |

Case 2 | 5.5565 | 3.9941 | 0.6848 | 2.1257 | |

Case 3 | 5.8080 | 4.1423 | 0.8539 | 2.1303 | |

Case 4 | 6.0799 | 4.2711 | 1.0232 | 2.1404 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zou, B.; Cadenillas, A.
Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model. *Risks* **2017**, *5*, 6.
https://doi.org/10.3390/risks5010006

**AMA Style**

Zou B, Cadenillas A.
Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model. *Risks*. 2017; 5(1):6.
https://doi.org/10.3390/risks5010006

**Chicago/Turabian Style**

Zou, Bin, and Abel Cadenillas.
2017. "Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model" *Risks* 5, no. 1: 6.
https://doi.org/10.3390/risks5010006