Cooperative Game Theory of Hierarchies: One Approach to Solving the Low-Risk Puzzle?
Abstract
:1. Introduction
2. Cooperative Game Theory
2.1. Games
2.2. Games
- there is one player , such that and , and
- for every player , we have .
2.3. Games
3. Simulation
3.1. General Setting
3.2. Analytical Framework
- a rank correction between assets 1 and 2;
- any partial correction (two assets change ranks); or
- full correction
3.3. Results for the H Value
3.4. Results for the Value
3.5. Results for the Value
3.6. Comparison of the Results
4. Research Outlook
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Benchmark results for the Shapley value (Table A1);
- Results for H and equal asset shares (Table A2);
- Results for H and random asset shares (Table A3);
- Results for and equal asset shares (Table A4);
- Results for and random asset shares (Table A5);
- Results for and equal asset shares (Table A6);
- Results for and random asset shares (Table A7).
Asset Share | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. | |
equal | 0.1260 | 0.1789 | 0.0024 | 0.0109 |
random | 0.1652 | 0.2303 | 0.0018 | 0.0099 |
risk min. | 0.0961 | 0.1414 | 0.0024 | 0.0134 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 1.0000 * | 1.0000 * | 0.1776 * | 1.0000 * |
B | 0 | 1.0000 * | 0 | 0.1782 * |
C | 0.3888 * | 0.3888 * | 0 | 0 |
D | 1.0000 * | 1.0000 * | 0.6069 * | 1.0000 * |
E | 1.0000 * | 1.0000 * | 0.1923 * | 1.0000 * |
F | 0 | 1.0000 * | 0 | 0 |
G | 0 | 1.0000 * | 0 | 0.5922 * |
H | 0 | 0 | 0 | 0 |
I | 1.0000 * | 1.0000 * | 0 | 0 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 1.0000 * | 1.0000 * | 0.2520 * | 1.0000 * |
B | 0 | 1.0000 * | 0 | 0.1740 * |
C | 0.3588 * | 0.3588 * | 0 | 0 |
D | 1.0000 * | 1.0000 * | 0.6149 * | 1.0000 * |
E | 1.0000 * | 1.0000 * | 0.2183 * | 1.0000 * |
F | 0 | 1.0000 * | 0 | 0 |
G | 0 | 1.0000 * | 0 | 0.5588 * |
H | 0 | 0 | 0 | 0 |
I | 1.0000 * | 1.0000 * | 0 | 0 |
Hierarchy | Weight | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|---|
Vector | 1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 0.25 | 0.2351 * | 0.2855 * | 0.0050 * | 0.0230 * |
0.50 | 0.4697 * | 0.5100 * | 0.0151 * | 0.0745 * | |
0.75 | 0.8738 * | 0.8855 * | 0.0437 * | 0.4364 * | |
rand. | 0.5312 * | 0.5638 * | 0.0227 * | 0.2576 * | |
B | 0.25 | 0.0601 | 0.1933 * | 0.0024 | 0.0109 |
0.50 | 0.0195 | 0.3280 * | 0.0006 | 0.0109 | |
0.75 | 0.0143 | 0.6474 * | 0.0001 | 0.0109 | |
rand. | 0.0412 | 0.4405 * | 0.0012 | 0.0109 | |
C | 0.25 | 0.1260 | 0.1499 | 0.0010 | 0.0051 |
0.50 | 0.1260 | 0.1371 | 0.0005 | 0.0025 | |
0.75 | 0.1260 | 0.1372 | 0.0006 | 0.0046 | |
rand. | 0.1260 | 0.1464 | 0.0010 | 0.0064 | |
D | 0.25 | 0.0385 | 0.1528 | 0.0053 * | 0.0180 * |
0.50 | 0.0531 | 0.2536 * | 0.0175 * | 0.0441 * | |
0.75 | 0.2169 * | 0.4575 * | 0.1129 * | 0.2224 * | |
rand. | 0.2167 * | 0.3572 * | 0.1010 * | 0.1955 * | |
E | 0.25 | 0.2796 * | 0.3065 * | 0.0029 * | 0.0179 * |
0.50 | 0.4807 * | 0.4928 * | 0.0040 * | 0.0531 * | |
0.75 | 0.8410 * | 0.8440 * | 0.0057 * | 0.3689 * | |
rand. | 0.5371 * | 0.5538 * | 0.0041 * | 0.2495 * | |
F | 0.25 | 0.3898 * | 0.4618 * | 0.0025 * | 0.0139 * |
0.50 | 0.4729 * | 0.6314 * | 0.0020 | 0.0192 * | |
0.75 | 0.3601 * | 0.7947 * | 0.0002 | 0.0295 * | |
rand. | 0.3333 * | 0.6246 * | 0.0016 | 0.0228 * | |
G | 0.25 | 0.0444 | 0.3027 * | 0.0015 | 0.0087 |
0.50 | 0.0150 | 0.5414 * | 0.0007 | 0.0066 | |
0.75 | 0.0073 | 0.8687 * | 0.0002 | 0.0052 | |
rand | 0.0321 | 0.5752 * | 0.0007 | 0.0070 | |
H | 0.25 | 0.0759 | 0.1206 | 0.0016 | 0.0077 |
0.50 | 0.0575 | 0.0831 | 0.0010 | 0.0048 | |
0.75 | 0.0517 | 0.0674 | 0.0005 | 0.0052 | |
rand. | 0.0668 | 0.0978 | 0.0011 | 0.0079 | |
I | 0.25 | 0.2056 * | 0.2185 * | 0.0015 | 0.0066 |
0.50 | 0.2896 * | 0.2938 * | 0.0007 | 0.0030 | |
0.75 | 0.3783 * | 0.3806 * | 0.0011 | 0.0029 | |
rand. | 0.2927 * | 0.3034 * | 0.0021 | 0.0061 |
Hierarchy | Weight | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|---|
Vector | 1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 0.25 | 0.2803 * | 0.3421 * | 0.0051 * | 0.0269 * |
0.50 | 0.5139 * | 0.5608 * | 0.0200 * | 0.1257 * | |
0.75 | 0.8307 * | 0.8451 * | 0.0525 * | 0.5355 * | |
rand. | 0.5514 * | 0.5906 * | 0.0277 * | 0.2944 * | |
B | 0.25 | 0.0983 | 0.2517 * | 0.0022 * | 0.0099 |
0.50 | 0.0447 | 0.4048 * | 0.0011 | 0.0099 | |
0.75 | 0.0164 | 0.7263 * | 0.0004 | 0.0099 | |
rand. | 0.0604 | 0.4960 * | 0.0010 | 0.0099 | |
C | 0.25 | 0.1652 | 0.1876 | 0.0006 | 0.0043 |
0.50 | 0.1652 | 0.1712 | 0.0003 | 0.0018 | |
0.75 | 0.1652 | 0.1698 | 0.0003 | 0.0017 | |
rand. | 0.1652 | 0.1816 | 0.0006 | 0.0040 | |
D | 0.25 | 0.0712 | 0.1958 | 0.0054 * | 0.0192 * |
0.50 | 0.0892 | 0.2975 * | 0.0266 * | 0.0656 * | |
0.75 | 0.3810 * | 0.5891 * | 0.1781 * | 0.3472 * | |
rand. | 0.2718 * | 0.4174 * | 0.1207 * | 0.2277 * | |
E | 0.25 | 0.2999 * | 0.3278 * | 0.0023 * | 0.0197 * |
0.50 | 0.5092 * | 0.5171 * | 0.0034 * | 0.0892 * | |
0.75 | 0.8066 * | 0.8082 * | 0.0031 * | 0.5189 * | |
rand. | 0.5507 * | 0.5674 * | 0.0025 * | 0.2833 * | |
F | 0.25 | 0.3523 * | 0.4446 * | 0.0028 * | 0.0139 * |
0.50 | 0.4130 * | 0.6081 * | 0.0019 * | 0.0213 * | |
0.75 | 0.2787 * | 0.7895 * | 0.0007 | 0.0378 * | |
rand. | 0.2914 * | 0.6176 * | 0.0017 | 0.0287 * | |
G | 0.25 | 0.0849 | 0.3595 * | 0.0010 | 0.0074 |
0.50 | 0.0347 | 0.6212 * | 0.0006 | 0.0051 | |
0.75 | 0.0108 | 0.8911 * | 0.0001 | 0.0035 | |
rand | 0.0523 | 0.6213 * | 0.0006 | 0.0055 | |
H | 0.25 | 0.1388 | 0.1909 | 0.0011 | 0.0058 |
0.50 | 0.1173 | 0.1431 | 0.0006 | 0.0025 | |
0.75 | 0.1006 | 0.1109 | 0.0002 | 0.0020 | |
rand. | 0.1199 | 0.1510 | 0.0007 | 0.0047 | |
I | 0.25 | 0.2054 * | 0.2143 | 0.0012 | 0.0059 |
0.50 | 0.2578 * | 0.2596 * | 0.0007 | 0.0027 | |
0.75 | 0.3258 * | 0.3265 * | 0.0006 | 0.0016 | |
rand. | 0.2684 * | 0.2775 * | 0.0012 | 0.0044 |
Hierarchy | Weight | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|---|
Vector | 1 and 2 | Correction | Correction | Risk-Return Rel. | |
A | 0.25 | 0 | 0.0553 | 0 | 0 |
0.50 | 0.0035 | 0.0588 | 0.0001 | 0.0008 | |
0.75 | 0.2777 * | 0.3184 * | 0.0147 * | 0.0954 * | |
rand. | 0.0618 * | 0.1138 | 0.0033 * | 0.0194 * | |
B | 0.25 | 0.7745 * | 0.7745 * | 0 | 0.0109 |
0.50 | 0.6158 * | 0.6283 * | 0.0002 | 0.0109 | |
0.75 | 0.2808 * | 0.5821 * | 0.0008 | 0.0109 | |
rand. | 0.4404 * | 0.5624 * | 0.0011 | 0.0109 | |
C | 0.25 | 0.1260 | 0.4697 * | 0.0306 * | 0.1327 * |
0.50 | 0.1260 | 0.3378 * | 0.0194 * | 0.0860 * | |
0.75 | 0.1260 | 0.2069 * | 0.0070 * | 0.0424 * | |
rand. | 0.1260 | 0.2509 * | 0.0111 * | 0.0581 * | |
D | 0.25 | 0.6266 * | 0.6266 * | 0 | 0.0128 * |
0.50 | 0.2771 * | 0.2771 * | 0 | 0.0284 * | |
0.75 | 0.4033 * | 0.4042 * | 0.0014 | 0.1646 * | |
rand. | 0.2791 * | 0.2791 * | 0 | 0.0701 * | |
E | 0.25 | 0.2540 * | 0.6093 * | 0.0426 * | 0.1475 * |
0.50 | 0.4283 * | 0.7044 * | 0.0680 * | 0.1766 * | |
0.75 | 0.7826 * | 0.9140 * | 0.1352 * | 0.5150 * | |
rand. | 0.6016 * | 0.8001 * | 0.1022 * | 0.2709 * | |
F | 0.25 | 0 | 0.0443 | 0 | 0 |
0.50 | 0.0974 | 0.1857 * | 0 | 0 | |
0.75 | 0.1514 * | 0.4847 * | 0 | 0 | |
rand. | 0.1587 * | 0.3479 * | 0 | 0 | |
G | 0.25 | 0.0586 | 0.5680 * | 0.0300 * | 0.1691 * |
0.50 | 0.0298 | 0.6890 * | 0.0207 * | 0.1731 * | |
0.75 | 0.0158 | 0.9130 * | 0.0106 * | 0.1802 * | |
rand | 0.0186 | 0.8056 * | 0.0143 * | 0.1774 * | |
H | 0.25 | 0 | 0.0908 | 0 | 0 |
0.50 | 0 | 0.0848 | 0 | 0 | |
0.75 | 0 | 0.0523 | 0 | 0.0001 | |
rand. | 0 | 0.0654 | 0 | 0 | |
I | 0.25 | 0.8714 * | 0.8714 * | 0 | 0.0109 |
0.50 | 0.9005 * | 0.9005 * | 0 | 0.0087 | |
0.75 | 0.9285 * | 0.9285 * | 0.0001 | 0.0080 | |
rand. | 0.9174 * | 0.9174 * | 0 | 0.0075 |
Hierarchy | Weight | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|---|
Vector | 1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 0.25 | 0.0068 | 0.0737 | 0 | 0 |
0.50 | 0.0716 | 0.1380 | 0.0006 | 0.0037 | |
0.75 | 0.4233 * | 0.4651 * | 0.0252 * | 0.2354 * | |
rand. | 0.0008 | 0.0677 | 0 | 0 | |
B | 0.25 | 0.6727 * | 0.6765 * | 0 | 0.0099 |
0.50 | 0.4763 * | 0.5409 * | 0.0004 | 0.0099 | |
0.75 | 0.2194 * | 0.6422 * | 0.0007 | 0.0099 | |
rand. | 0.7473 * | 0.7475 * | 0 | 0.0099 | |
C | 0.25 | 0.1652 | 0.4742 * | 0.0243 * | 0.1021 * |
0.50 | 0.1652 | 0.3467 * | 0.0128 * | 0.0542 * | |
0.75 | 0.1652 | 0.2257 | 0.0043 * | 0.0221 * | |
rand. | 0.1652 | 0.5235 * | 0.0284 * | 0.1279 * | |
D | 0.25 | 0.5414 * | 0.5419 * | 0 | 0.0136 * |
0.50 | 0.3127 * | 0.3156 * | 0.0013 | 0.0466 * | |
0.75 | 0.5351 * | 0.5353 * | 0.0199 * | 0.2962 * | |
rand. | 0.6937 * | 0.6938 * | 0 | 0.0104 * | |
E | 0.25 | 0.2773 * | 0.6012 * | 0.0426 * | 0.1343 * |
0.50 | 0.4669 * | 0.6985 * | 0.0740 * | 0.2096 * | |
0.75 | 0.7666 * | 0.8690 * | 0.1251 * | 0.6042 * | |
rand. | 0.2022 * | 0.5640 * | 0.0335 * | 0.1345 * | |
F | 0.25 | 0.0232 | 0.0855 | 0 | 0 |
0.50 | 0.0978 | 0.2255 | 0 | 0 | |
0.75 | 0.1275 | 0.5504 * | 0 | 0 | |
rand. | 0.0040 | 0.0627 | 0 | 0 | |
G | 0.25 | 0.0951 | 0.6043 * | 0.0217 * | 0.1397 * |
0.50 | 0.0446 | 0.7359 * | 0.0123 * | 0.1381 * | |
0.75 | 0.0160 | 0.9177 * | 0.0055 * | 0.1394 * | |
rand | 0.1354 | 0.5631 * | 0.0272 * | 0.1410 * | |
H | 0.25 | 0 | 0.0909 | 0 | 0 |
0.50 | 0 | 0.0756 | 0 | 0 | |
0.75 | 0 | 0.0363 | 0 | 0 | |
rand. | 0 | 0.0796 | 0 | 0 | |
I | 0.25 | 0.8153 * | 0.8153 * | 0 | 0.0087 |
0.50 | 0.8490 * | 0.8490 * | 0 | 0.0059 | |
0.75 | 0.8835 * | 0.8835 * | 0 | 0.0039 | |
rand. | 0.7958 * | 0.7958 * | 0 | 0.0097 |
1 | With the same approach, Hougaard et al. (2017) distributed revenues in hierarchical structures. |
2 | For a literature survey on CO games, see Slikker and van den Nouweland (2001) and Gilles (2010). The connection between CO games and hierarchical games is explained in more detail in van den Brink (2012). |
3 | In contrast to Auer and Hiller (2019, 2021), we do not assume the invertibility of , because we do not consider minimum-variance weights. Therefore, our results may differ from those of Auer and Hiller (2019, 2021) with respect to the Shapley concept. |
References
- Algaba, Encarnación, and René van den Brink. 2019. Handbook of the Shapley Value. Boca Raton: CRC Press, chap. 4. [Google Scholar]
- Algaba, Encarnación, Jesús Mario Bilbao, René van den Brink, and Andres Jiménez-Losada. 2003. Axiomatizations of the Shapley value for cooperative games on antimatroids. Mathematical Methods of Operations Research 57: 49–65. [Google Scholar] [CrossRef]
- Algaba, Encarnación, René van den Brink, and Chris Dietz. 2018. Network Structures with Hierarchy and Communication. Journal of Optimization Theory and Applications 179: 265–82. [Google Scholar] [CrossRef]
- Alvarez-Mozos, Mikel, René van den Brink, Gerard van der Laan, and Oriol Tejada. 2017. From hierarchies to levels: New solutions for games with hierarchical structure. International Journal of Game Theory 46: 1089–113. [Google Scholar] [CrossRef]
- Alvarez-Mozos, Mikel, Ziv Hellman, and Eyal Winter. 2013. Spectrum value for coalitional games. Games and Economic Behavior 82: 132–42. [Google Scholar] [CrossRef]
- Auer, Benjamin R., and Frank Schuhmacher. 2021. Are there multiple independent risk anomalies in the cross section of stock returns? Journal of Risk 24: 43–87. [Google Scholar] [CrossRef]
- Auer, Benjamin R., and Tobias Hiller. 2019. Can cooperative game theory solve the low risk puzzle? International Journal of Finance and Economics 24: 884–89. [Google Scholar] [CrossRef]
- Auer, Benjamin R., and Tobias Hiller. 2021. Cost gap, Shapley or nucleolus allocation: Which is the best game-theoretic remedy for the low-risk anomaly? Managerial and Decision Economics 42: 876–84. [Google Scholar] [CrossRef]
- Aumann, Robert John, and Jacques H. Drèze. 1974. Cooperative Games with Coalition Structures. International Journal of Game Theory 3: 217–37. [Google Scholar] [CrossRef]
- Baker, Malcolm, Brendan Bradley, and Jeffrey Wurgler. 2011. Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly. Financial Analysts Journal 67: 40–54. [Google Scholar] [CrossRef]
- Balog, Dóra, Tamás László Bátyi, Péter Csóka, and Miklós Pintér. 2017. Properties and comparison of risk capital allocation methods. European Journal of Operational Research 259: 614–25. [Google Scholar] [CrossRef]
- Banzhaf, John F. 1965. Weighted Voting Doesn’t Work: A Mathematical Analysis. Rutgers Law Review 19: 317–43. [Google Scholar]
- Bekaert, Geert, and Campbell Raymond Harvey. 1995. Time-Varying World Market Integration. Journal of Finance 50: 403–44. [Google Scholar]
- Besner, Manfred. 2019. Weighted Shapley hierarchy levels values. Operations Research Letters 47: 122–26. [Google Scholar] [CrossRef]
- Besner, Manfred. 2022. Harsanyi support levels solutions. Theory and Decision 93: 105–30. [Google Scholar] [CrossRef]
- Bilbao, Jesús Mario, Nieves Jiménez, and Jorge J. López. 2006. A note on a value with incomplete communication. Games and Economic Behavior 54: 419–29. [Google Scholar] [CrossRef]
- Blitz, David C., and Pim van Vliet. 2007. The Volatility Effect. Journal of Portfolio Management 34: 102–13. [Google Scholar] [CrossRef]
- Blitz, David C., Eric Falkenstein, and Pim van Vliet. 2014. Explanations for the volatility effect: An overview based on the CAPM assumptions. Journal of Portfolio Management 40: 61–76. [Google Scholar] [CrossRef]
- Bollobás, Béla. 2002. Modern Graph Theory, 3rd ed. New York and Heidelberg: Springer. [Google Scholar]
- Borm, Peter, and René van Den Brink. 2002. Digraph competitions and cooperative games. Theory and Decision 53: 327–42. [Google Scholar]
- Borm, Peter, Guillerom Owen, and Stif Tijs. 1992. On the Position Value for Communication Situations. SIAM Journal on Discrete Mathematics 5: 305–20. [Google Scholar] [CrossRef]
- Béal, Sylvain, Eric Rémila, and Philippe Solal. 2010. Rooted-tree solutions for tree games. European Journal of Operational Research 203: 404–8. [Google Scholar] [CrossRef]
- Béal, Sylvain, Eric Rémila, and Philippe Solal. 2022. Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution. Journal of Combinatorial Optimization 43: 818–49. [Google Scholar] [CrossRef]
- Béal, Sylvain, Sylvain Ferrières, Eric Rémila, and Philippe Solal. 2018. The proportional Shapley value and applications. Games and Economic Behavior 108: 93–112. [Google Scholar] [CrossRef]
- Casajus, André. 2009. Outside Options, Component Efficiency, and Stability. Games and Economic Behavior 65: 49–61. [Google Scholar] [CrossRef]
- Casajus, André, Tobias Hiller, and Harald Wiese. 2009. Hierarchie und Entlohnung. Zeitschrift für Betriebswirtschaft 79: 929–54. [Google Scholar] [CrossRef]
- Colini-Baldeschi, Riccardo, Marco Scarsini, and Stefano Vaccari. 2018. Variance allocation and Shapley value. Methodology and Computing in Applied Probability 20: 919–33. [Google Scholar] [CrossRef]
- del Pozo, Mónica, Conrado Manuel, Enrique González-Arangüena, and Guillermo Owen. 2011. Centrality in directed social networks. A game theoretic approach. Social Networks 33: 191–200. [Google Scholar] [CrossRef]
- Dutt, Tanuj, and Mark Humphery-Jenner. 2013. Stock return volatility, operating performance and stock returns: International evidence on drivers of the ’low volatility’ anomaly. Journal of Banking and Finance 37: 999–1017. [Google Scholar] [CrossRef]
- Frazzini, Andrea, and Lasse Pedersen. 2014. Betting against beta. Journal of Financial Economics 111: 1–25. [Google Scholar] [CrossRef]
- Gilles, Robert P. 2010. The Cooperative Game Theory of Networks and Hierarchies. Berlin: Springer. [Google Scholar]
- Gilles, Robert P., Guillermo Owen, and René van den Brink. 1992. Games with Permission Structures: The Conjunctive Approach. International Journal of Game Theory 20: 277–93. [Google Scholar] [CrossRef]
- Gómez, Daniel, Enrique González-Arangüena, Conrado Manuel, Guillermo Owen, Mónica del Pozo, and Juan Tejada. 2003. Centrality and power in social networks: A game theoretic approach. Mathematical Social Sciences 46: 27–54. [Google Scholar] [CrossRef]
- Haeringer, Guillaume. 2006. A New Weight Scheme for the Shapley Value. Mathematical Social Sciences 52: 88–98. [Google Scholar] [CrossRef]
- Hamiache, Gérard. 1999. A Value with Incomplete Communication. Games and Economic Behavior 26: 59–78. [Google Scholar] [CrossRef]
- Hamiache, Gérard. 2004. A mean value for games with communication structures. International Journal of Game Theory 32: 533–44. [Google Scholar] [CrossRef]
- Hamlen, Susan S., William A. Hamlen, and John T. Tschirhart. 1977. The use of core theory in evaluating joint cost allocation schemes. Accounting Review 52: 616–27. [Google Scholar]
- Herings, P. Jean Jacques, Gerard Van Der Laan, and Dolf Talman. 2008. The average tree solution for cycle-free graph games. Games and Economic Behavior 62: 77–92. [Google Scholar] [CrossRef]
- Hiller, Tobias. 2014. The generalized wH value. Theoretical Economics Letters 4: 247–53. [Google Scholar] [CrossRef]
- Hiller, Tobias. 2021. Hierarchy and the size of a firm. International Review of Economics 68: 389–404. [Google Scholar] [CrossRef]
- Hiller, Tobias. 2023. Portfolio structures: Can they contribute to solving the low-risk puzzle? Managerial and Decision Economics 44: 4193–200. [Google Scholar] [CrossRef]
- Hiller, Tobias. 2025. Allocation of portfolio risk considering structures on assets: Which is the best cooperation structure value to solve the low-risk anomaly? Applied Economics Letters. [Google Scholar] [CrossRef]
- Homburg, Carsten, and Peter Scherpereel. 2008. How should the cost of joint risk capital be allocated for performance measurement? European Journal of Operational Research 187: 208–27. [Google Scholar] [CrossRef]
- Hougaard, Jens Leth, Juan D. Moreno-Ternero, Mich Tvede, and Lars Peter Østerdal. 2017. Sharing the proceeds from a hierarchical venture. Games and Economic Behavior 102: 98–110. [Google Scholar] [CrossRef]
- Jorion, Philippe. 1985. International portfolio diversification with estimation risk. Journal of Business 58: 259–78. [Google Scholar] [CrossRef]
- Kalai, Ehud, and Dov Samet. 1987. On Weighted Shapley Values. International Journal of Game Theory 16: 205–22. [Google Scholar] [CrossRef]
- Kang, Liying, Anna Khmelnitskaya, Erfang Shan, Dolf Talman, and Guang Zhang. 2022. The two-step average tree value for graph and hypergraph games. Annals of Operations Research 323: 109–29. [Google Scholar] [CrossRef]
- Lintner, John. 1965. Security prices, risk, and maximal gains from diversification. The Journal of Finance 20: 587–615. [Google Scholar]
- Lopez de Prado, Marcos. 2016. Building diversified portfolios that outperform out of sample. Journal of Portfolio Management 42: 59–69. [Google Scholar] [CrossRef]
- Markowitz, Harry. 1952. Portfolio Selection. The Journal of Finance 7: 77–91. [Google Scholar]
- Modigliani, Franco, and Merton H. Miller. 1958. The cost of capital, corporation finance and the theory of investment. The American Economic Review 48: 261–97. [Google Scholar]
- Mossin, Jan. 1966. Equilibrium in a Capital Asset Market. Econometrica 34: 768–83. [Google Scholar] [CrossRef]
- Mussard, Stephane, and Virginie Terraza. 2008. The Shapley decomposition for portfolio risk. Applied Economics Letters 15: 713–15. [Google Scholar] [CrossRef]
- Muzy, Jean-François, Didier Sornette, J. Delour, and A. Arneodo. 2010. Multifractal returns and hierarchical portfolio theory. Quantitative Finance 1: 131–48. [Google Scholar] [CrossRef]
- Myerson, Roger B. 1977. Graphs and Cooperation in Games. Mathematics of Operations Research 2: 225–29. [Google Scholar] [CrossRef]
- Navarro, Florian. 2020. The center value: A sharing rule for cooperative games on acyclic graphs. Mathematical Social Sciences 105: 1–13. [Google Scholar] [CrossRef]
- Ortmann, Karl Michael. 2016. The link between the Shapley value and the beta factor. Decisions in Economics and Finance 39: 311–25. [Google Scholar] [CrossRef]
- Ortmann, Karl Michael. 2018. Preservation of risk in capital markets. Operations Research Letters 46: 329–34. [Google Scholar] [CrossRef]
- Owen, Guilliermo. 1977. Values of Games with a Priori Unions. In Essays in Mathematical Economics & Game Theory. Edited by Rudolf Henn and Otto Moeschlin. Berlin: Springer, pp. 76–88. [Google Scholar]
- Roth, Alvin E., ed. 1988. Introduction to the Shapley Value. In The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge: Cambridge University Press, pp. 1–27. [Google Scholar]
- Rubinstein, Mark. 2002. Markowitz’s “Portfolio Selection”: A Fifty-Year Retrospective. The Journal of Finance 57: 1041–45. [Google Scholar] [CrossRef]
- Schmeidler, David. 1969. The nucleolus of a Characteristic Function Game. SIAM Journal on Applied Mathematics 17: 1163–70. [Google Scholar] [CrossRef]
- Schneider, Paul, Christian Wagner, and Josef Zechner. 2020. Low-Risk Anomalies? The Journal of Finance 5: 2673–718. [Google Scholar] [CrossRef]
- Shalit, Haim. 2020. The Shapley value of regression portfolios. Journal of Asset Management 21: 506–12. [Google Scholar] [CrossRef]
- Shalit, Haim. 2023. Weighted Shapley values of efficient portfolios. Risk and Decision Analysis 9: 31–38. [Google Scholar] [CrossRef]
- Shapley, Lloyd S. 1953. A Value for N-Person Games. In Contributions to the Theory of Games. Edited by Harold W. Kuhn and Albert W. Tucker. Princeton: Princeton University Press, vol. 2, pp. 307–17. [Google Scholar]
- Sharpe, William F. 1964. Capital asset prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance 19: 425–42. [Google Scholar]
- Simonian, Joseph. 2019. Portfolio Selection: A Game-Theoretic Approach. The Journal of Portfolio Management 45: 108–16. [Google Scholar] [CrossRef]
- Slikker, Marco, and Anne van den Nouweland. 2001. Social and Economic Networks in Cooperative Game Theory. Boston: Kluwer Academic Publishers. [Google Scholar]
- Khmelnitskaya, Anna, Selçuk Özer, and Dolf Talman. 2016. The Shapley value for directed graph games. Operations Research Letters 44: 143–47. [Google Scholar] [CrossRef]
- Terraza, Virginie, and Stéphane Mussard. 2007. New trading risk indexes: Application of the Shapley value in finance. Economics Bulletin 3: 1–7. [Google Scholar]
- Tijs, Stef H., and Theo S. H. Driessen. 1986. Game Theory and Cost Allocation Problems. Management Science 32: 1015–28. [Google Scholar] [CrossRef]
- Traut, Joshua. 2023. What we know about the low-risk anomaly: A literature review. Financial Markets and Portfolio Management 37: 297–324. [Google Scholar] [CrossRef]
- van den Brink, René. 1997. An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure. International Journal of Game Theory 26: 27–43. [Google Scholar] [CrossRef]
- van den Brink, René. 2010. Axiomatizations of Banzhaf permission values for games with a permission structure. International Journal of Game Theory 39: 445–66. [Google Scholar] [CrossRef]
- van den Brink, René. 2012. On hierarchies and communication. Social Choice and Welfare 39: 721–35. [Google Scholar] [CrossRef]
- van den Brink, René. 2017. Games with a permission structure—A survey on generalizations and applications. Top 25: 1–33. [Google Scholar] [CrossRef]
- van den Brink, René, and Chris Dietz. 2014. Games with a local permission structure: Separation of authority and value generation. Theory and Decision 76: 343–61. [Google Scholar] [CrossRef]
- van den Brink, René, and Robert P. Gilles. 1996. Axiomatizations of the Conjunctive Permission Value for Games with Permission Structure. Games and Economic Behavior 12: 113–26. [Google Scholar] [CrossRef]
- van den Brink, René, Chris Dietz, Gerard van der Laan, and Genjiu Xu. 2017. Comparable characterizations of four solutions for permission tree games. Economic Theory 63: 903–23. [Google Scholar] [CrossRef]
- Wang, Jiawei, and Zhen Chen. 2023. Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach. Mathematics 11: 3220. [Google Scholar] [CrossRef]
Correction | Directional | Full | Proportion Pos. |
---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. |
0.0961 | 0.1414 | 0.0024 | 0.0134 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 1.0000 * | 1.0000 * | 0.4077 * | 1.0000 * |
B | 0 | 1.0000 * | 0 | 0.1945 * |
C | 0.2436 * | 0.2436 * | 0 | 0 |
D | 1.0000 * | 1.0000 * | 0.1684 * | 1.0000 * |
E | 1.0000 * | 1.0000 * | 0.7416 * | 1.0000 * |
F | 0 | 1.0000 * | 0 | 0 |
G | 0 | 1.0000 * | 0 | 0.8370 * |
H | 0 | 0 | 0 | 0 |
I | 1.0000 * | 1.0000 * | 0 | 0 |
Hierarchy | Weight | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|---|
Vector | 1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 0.25 | 0.1254 * | 0.1688 * | 0.0043 * | 0.0222 * |
0.50 | 0.1859 * | 0.2247 * | 0.0089 * | 0.0518 * | |
0.75 | 0.3052 * | 0.3350 * | 0.0180 * | 0.1420 * | |
rand. | 0.2349 * | 0.2708 * | 0.0119 * | 0.1096 * | |
B | 0.25 | 0.0815 | 0.1596 * | 0.0028 * | 0.0134 |
0.50 | 0.0737 | 0.2167 * | 0.0024 | 0.0134 | |
0.75 | 0.0828 | 0.3468 * | 0.0015 | 0.0134 | |
rand. | 0.0912 | 0.2835 * | 0.0021 | 0.0134 | |
C | 0.25 | 0.0961 | 0.1312 | 0.0015 | 0.0100 |
0.50 | 0.0961 | 0.1287 | 0.0014 | 0.0087 | |
0.75 | 0.0961 | 0.1427 * | 0.0024 | 0.0155 * | |
rand. | 0.0961 | 0.1457 * | 0.0028 * | 0.0218 * | |
D | 0.25 | 0.0451 | 0.1563 * | 0.0045 * | 0.0184 * |
0.50 | 0.0482 | 0.2483 * | 0.0134 * | 0.0346 * | |
0.75 | 0.1044 * | 0.3921 * | 0.0519 * | 0.0983 * | |
rand. | 0.1061 | 0.2948 * | 0.0447 * | 0.0866 * | |
E | 0.25 | 0.1888 * | 0.2138 * | 0.0028 * | 0.0209 * |
0.50 | 0.2779 * | 0.2922 * | 0.0034 * | 0.0482 * | |
0.75 | 0.3974 * | 0.4048 * | 0.0045 * | 0.1420 * | |
rand. | 0.3050 * | 0.3225 * | 0.0034 * | 0.1102 * | |
F | 0.25 | 0.3473 * | 0.3931 * | 0.0030 * | 0.0161 * |
0.50 | 0.5008 * | 0.5755 * | 0.0026 * | 0.0209 * | |
0.75 | 0.5679 * | 0.7288 * | 0.0019 | 0.0299 * | |
rand. | 0.4294 * | 0.5597 * | 0.0022 | 0.0242 * | |
G | 0.25 | 0.0614 | 0.3379 * | 0.0018 | 0.0115 |
0.50 | 0.0446 | 0.5427 * | 0.0011 | 0.0098 | |
0.75 | 0.0409 | 0.7223 * | 0.0006 | 0.0089 | |
rand | 0.0616 | 0.5322 * | 0.0012 | 0.0101 | |
H | 0.25 | 0.0706 | 0.1463 * | 0.0018 | 0.0101 |
0.50 | 0.0586 | 0.1559 * | 0.0015 | 0.0089 | |
0.75 | 0.0515 | 0.1630 * | 0.0012 | 0.0159 * | |
rand. | 0.0626 | 0.1608 * | 0.0015 | 0.0218 * | |
I | 0.25 | 0.1788 * | 0.1910 * | 0.0029 * | 0.0110 |
0.50 | 0.2674 * | 0.2733 * | 0.0030 * | 0.0095 | |
0.75 | 0.3718 * | 0.3777 * | 0.0048 * | 0.0117 | |
rand. | 0.2786 * | 0.2926 * | 0.0082 * | 0.0189 * | |
sum | 17 | 34 | 20 | 21 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | ↑ | ↑ | ↑ | ↑ |
B | ∪ | ↑ | ↓ | ~ |
C | ~ | ∪ | ∪ | ∪ |
D | ↑ | ↑ | ↑ | ↑ |
E | ↑ | ↑ | ↑ | ↑ |
F | ↑ | ↑ | ↓ | ↑ |
G | ↓ | ↑ | ↓ | ↓ |
H | ↓ | ↑ | ↓ | ∪ |
I | ↑ | ↑ | ↑ | ∪ |
Hierarchy | Weight | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|---|
Vector | 1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | 0.25 | 0 | 0.0478 | 0 | 0 |
0.50 | 0.0011 | 0.0488 | 0.0001 | 0.0004 | |
0.75 | 0.0450 | 0.0885 | 0.0043 * | 0.0291 * | |
rand. | 0 | 0.0478 | 0 | 0 | |
B | 0.25 | 0.8807 * | 0.8807 * | 0 | 0.0134 |
0.50 | 0.8434 * | 0.8448 * | 0.0001 | 0.0134 | |
0.75 | 0.7164 * | 0.7703 * | 0.0005 | 0.0134 | |
rand. | 0.8841 * | 0.8841 * | 0 | 0.0134 | |
C | 0.25 | 0.0961 | 0.5794 * | 0.0384 * | 0.2053 * |
0.50 | 0.0961 | 0.5421 * | 0.0318 * | 0.1688 * | |
0.75 | 0.0961 | 0.4522 * | 0.0217 * | 0.1304 * | |
rand. | 0.0961 | 0.5833 * | 0.0392 * | 0.2113 * | |
D | 0.25 | 0.6883 * | 0.6883 * | 0 | 0.0121 |
0.50 | 0.3198 * | 0.3198 * | 0 | 0.0206 * | |
0.75 | 0.2092 * | 0.2092 * | 0 | 0.0705 * | |
rand. | 0.7434 * | 0.7434 * | 0 | 0.0120 | |
E | 0.25 | 0.1631 * | 0.6306 * | 0.0443 * | 0.1845 * |
0.50 | 0.2301 * | 0.6464 * | 0.0611 * | 0.1735 * | |
0.75 | 0.3406 * | 0.6639 * | 0.1055 * | 0.2237 * | |
rand. | 0.1491 * | 0.6245 * | 0.0428 * | 0.1916 * | |
F | 0.25 | 0.0012 | 0.0271 | 0 | 0 |
0.50 | 0.0126 | 0.0501 | 0 | 0 | |
0.75 | 0.2662 * | 0.3699 * | 0 | 0 | |
rand. | 0.0006 | 0.0280 | 0 | 0 | |
G | 0.25 | 0.0769 | 0.6529 * | 0.0394 * | 0.2392 * |
0.50 | 0.0686 | 0.7315 * | 0.0367 * | 0.2611 * | |
0.75 | 0.0661 | 0.8148 * | 0.0304 * | 0.2957 * | |
rand | 0.0796 | 0.6372 * | 0.0399 * | 0.2358 * | |
H | 0.25 | 0 | 0.1491 * | 0 | 0 |
0.50 | 0 | 0.2171 * | 0 | 0 | |
0.75 | 0 | 0.2433 * | 0 | 0.0002 | |
rand. | 0 | 0.1285 | 0 | 0 | |
I | 0.25 | 0.9260 * | 0.9260 * | 0 | 0.0166 * |
0.50 | 0.9605 * | 0.9605 * | 0 | 0.0190 * | |
0.75 | 0.9887 * | 0.9887 * | 0.0002 | 0.0263 * | |
rand. | 0.9181 * | 0.9181 * | 0 | 0.0161 * | |
sum | 17 | 28 | 13 | 19 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
1 and 2 | Correction | Correction | Risk–Return Rel. | |
A | ↑ | ↑ | ↑ | ↑ |
B | ↓ | ↓ | ↑ | ~ |
C | ~ | ↓ | ↓ | ↓ |
D | ↓ | ↓ | ~ | ↑ |
E | ↑ | ↑ | ↑ | ∪ |
F | ↑ | ↑ | ~ | ~ |
G | ↓ | ↑ | ↓ | ↑ |
H | ~ | ↑ | ~ | ↑ |
I | ↑ | ↑ | ↑ | ↑ |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
Category | 1 and 2 | Correction | Correction | Risk–Return Rel. |
3 | 3 | 3 | 3 | |
and | 1 | 4 | 0 | 2 |
1 | 1 | 0 | 0 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
Category | 1 and 2 | Correction | Correction | Risk–Return Rel. |
9 | 16 | 12 | 14 | |
and | 0 | 2 | 1 | 2 |
8 | 16 | 7 | 5 |
Hierarchy | Correction | Directional | Full | Proportion Pos. |
---|---|---|---|---|
Category | 1 and 2 | Correction | Correction | Risk–Return Rel. |
8 | 11 | 5 | 7 | |
and | 0 | 4 | 4 | 4 |
9 | 13 | 4 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiller, T. Cooperative Game Theory of Hierarchies: One Approach to Solving the Low-Risk Puzzle? Risks 2025, 13, 86. https://doi.org/10.3390/risks13050086
Hiller T. Cooperative Game Theory of Hierarchies: One Approach to Solving the Low-Risk Puzzle? Risks. 2025; 13(5):86. https://doi.org/10.3390/risks13050086
Chicago/Turabian StyleHiller, Tobias. 2025. "Cooperative Game Theory of Hierarchies: One Approach to Solving the Low-Risk Puzzle?" Risks 13, no. 5: 86. https://doi.org/10.3390/risks13050086
APA StyleHiller, T. (2025). Cooperative Game Theory of Hierarchies: One Approach to Solving the Low-Risk Puzzle? Risks, 13(5), 86. https://doi.org/10.3390/risks13050086