Symmetric Positive Semi-Definite Fourier Estimator of Spot Covariance Matrix with High Frequency Data
Abstract
1. Introduction
2. The Positive Semi-Definite Spot Covariance Estimator
3. Asymptotic Properties of the PDF Estimator with Gaussian Kernel
- (A)
- the volatility processes , satisfy
- (i)
- Under the assumption (A), for any the -error between and the estimator is estimated as
- (ii)
- In the case of synchronous and regular sampling, when for , , Equation (10) is improved as
- (iii)
- Consequently, for the general sampling scheme, if4 and , the consistency is attained if
- (iv)
- In the case of synchronous and regular sampling, when for , , the consistency is attained if
4. Simulation Study
4.1. Simulation Settings
- the One Factor stochastic volatility model (SVF1);
- the Two Factor stochastic volatility model (SVF2), by Chernov et al. (2003);
- the Rough Heston model (RH), by El Euch and Rosenbaum (2019);
- no noise case;
- noise coming from rounding;
- i.i.d. noise;
- autocorrelated noise;
- general noise auto-correlated and dependent of the efficient price process.
4.1.1. Efficient Price Process
Heston Model
Factor Volatility Models
Rough Volatility
4.1.2. Market Microstructure Noise Specifications
Noise Coming from Rounding
Noise i.i.d.
4.2. Selection of Parameters N and M
4.3. Performance Comparison
- The Gaussian positive definite Fourier estimator proposed in this work (GPDF);
- the smoothed two-scale spot estimator, by Mykland et al. (2019) (STS);
- the local method of moments spot estimators, by Bibinger et al. (2019) (LMM).
4.3.1. Absence of Noise
4.3.2. Data Contaminated by Microstructure Noise
4.4. Alternative Volatility Models
5. Empirical Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Proof of Theorem 2
Appendix C. Additional Results of Comparison for Alternative Models
Estimator | SV1F | SV2F | RH | SV1F | SV2F | RH | SV1F | SV2F | RH | SV1F | SV2F | RH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
d = 5, | d = 5, | d = 5, | d = 5, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99.92% | 99.53% | 97.12% | 94.18% | 95.06% |
STS | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99.76% | 99.62% | 98.53% | 96.64% | 98.01% |
d = 10, | d = 10, | d = 10, | d = 10, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 100% | 100% | 99.84% | 100% | 100% | 99.58% | 99.13% | 95.33 | 90.27% | 86.01% | 86.83% |
STS | 99.68% | 99.93% | 99.95% | 98.82% | 98.71% | 98.55% | 87.86% | 89.35% | 88.16% | 55.23% | 49.79% | 59.43% |
d = 15, | d = 15, | d = 15, | d = 15, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 100% | 99.98% | 99.97% | 99.74% | 99.63% | 99.15% | 98.02% | 98.31% | 78.15% | 10.71% | 76.37% |
STS | 96.69% | 99.35% | 96.93% | 76.07% | 72.45% | 75.91% | 34.70% | 29.01% | 28.72% | 6.95% | 7.44% | 8.26% |
d = 20, | d = 20, | d = 20, | d = 20, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 100% | 99.99% | 99.94% | 98.38% | 99.07% | 97.21% | 95.80% | 95.99% | 66.13% | 62.74% | 64.50% |
STS | 64.78% | 67.24% | 65.87% | 12.89% | 12.45% | 16.93% | 4.33% | 2.47% | 0.98% | 0.0% | 0.0% | 0.0% |
Estimator | SV1F | SV2F | RH | SV1F | SV2F | RH | SV1F | SV2F | RH | SV1F | SV2F | RH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
d = 5, | d = 5, | d = 5, | d = 5, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 99.98% | 99.84% | 98.43% | 98.21% | 98.02% | 93.21% | 90.42% | 90.16% | 99.86% | 98.41% | 97.62% |
STS | 99.01% | 99.73% | 99.61% | 98.23% | 98.11% | 99.04% | 99.16% | 99.73% | 99.88% | 98.90% | 98.75% | 99.00% |
d = 10, | d = 10, | d = 10, | d = 10, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 99.56% | 99.58% | 95.86% | 95.92% | 96.02% | 79.20% | 80.11% | 81.56% | 91.25% | 89.37% | 90.84% |
STS | 92.80% | 93.04% | 93.52% | 79.23% | 73.21% | 80.01% | 90.93% | 89.15% | 89.37% | 76.41% | 74.86% | 77.75% |
d = 15, | d = 15, | d = 15, | d = 15, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 100% | 98.12% | 99.03% | 85.48% | 88.23% | 90.03% | 68.21% | 67.39% | 68.98% | 80.16% | 77.56% | 81.43% |
STS | 51.67% | 45.47% | 50.93% | 45.88% | 43.92% | 45.78% | 39.66% | 35.31% | 37.40% | 79.65% | 38.04% | 39.61% |
d = 20, | d = 20, | d = 20, | d = 20, | |||||||||
100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
LMM | 99.98% | 96.15% | 98.78% | 84.38% | 81.51% | 85.00% | 53.11% | 52.05% | 55.15% | 75.82% | 74.83% | 72.68% |
STS | 8.99% | 7.15% | 8.01% | 21.67% | 21.42% | 12.89% | 4.57% | 3.66% | 3.01% | 75.43% | 14.38% | 15.02% |
1 | Hereafter, we accept abuse of notation by denoting the estimator as . |
2 | Here the notation highlights the dependence on the two parameters . |
3 | The fact that the drift does not contribute to the asymptotics can be proved analogously as in Malliavin and Mancino (2009). |
4 | Here means both and are finite. |
5 | Since all the simulations are conducted under irregularly-spaced and asynchronous observations, we follow point of Theorem 2. Moreover, for the the Heston, the SVF1 and the SVF2 models the Hölder parameter is , while the Rough Heston model it depends on the chosen Hurst exponent. |
6 | Note that, according with Theorem 1, the semi-definite positiveness of the proposed estimator is granted when the optimal cutting frequency N is the same for each spot volatility-covariance entries estimates. |
7 | Computations are performed using a machine with 2.30 GHz clock speed Intel i7-11800H, 16 GB RAM on Arch Linux kernel 6.14.10-arch1-1 with MATLAB R2024a update 6. |
References
- Aït-Sahalia, Yacine, and Dacheng Xiu. 2019. Principal component analysis of high-frequency data. Journal of the American Statistical Association 114: 287–303. [Google Scholar]
- Aït-Sahalia, Yacine, and Jean Jacod. 2014. High-Frequency Financial Econometrics. Princeton: Princeton University Press. [Google Scholar]
- Alòs, Elisa, and Christian-Oliver Ewald. 2008. Malliavin differentiability of the heston volatility and applications to option pricing. Advances in Applied Probability 40: 144–62. [Google Scholar] [CrossRef]
- Bandi, Federico M., and Jeffrey R. Russell. 2008. Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies 75: 339–69. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2004. Econometric analysis of realized covariation: High frequency-based covariance, regression, and correlation in financial economics. Econometrica 72: 885–925. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., Peter Reinhard Hansen, Asger Lunde, and Neil Shephard. 2011. Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. Journal of Econometrics 162: 149–69. [Google Scholar] [CrossRef]
- Bibinger, Markus, Nikolaus Hautsch, Peter Malec, and Markus Reiss. 2019. Estimating the spot covariation of asset prices—Statistical theory and empirical evidence. Journal of Business & Economic Statistics 37: 419–35. [Google Scholar]
- Bu, Ruijun, Degui Li, Oliver Linton, and Hanchao Wang. 2023. Nonparametric estimation of large spot volatility matrices for high-frequency financial data. arXiv arXiv:2307.01348. [Google Scholar] [CrossRef]
- Chen, Dachuan, Per A. Mykland, and Lan Zhang. 2020. The five trolls under the bridge: Principal component analysis with asynchronous and noisy high frequency data. Journal of the American Statistical Association 115: 1960–77. [Google Scholar] [CrossRef]
- Chernov, Mikhail, A. Ronald Gallant, Eric Ghysels, and George Tauchen. 2003. Alternative models for stock price dynamics. Journal of Econometrics 116: 225–57. [Google Scholar] [CrossRef]
- Clement, Emmanuelle, and Arnaud Gloter. 2011. Limit theorems in the Fourier transform method for the estimation of multivariate volatility. Stochastic Processes and Their Applications 121: 1097–124. [Google Scholar] [CrossRef]
- Cui, Liyuan, Yongmiao Hong, Yingxing Li, and Junhui Wang. 2024. Regularized High-Dimensional Positive Definite Covariance Estimator with High-Frequency Data. Management Science 70: 7242–7264. [Google Scholar] [CrossRef]
- El Euch, Omar, and Mathieu Rosenbaum. 2019. The characteristic function of rough Heston models. Mathematical Finance 29: 3–38. [Google Scholar] [CrossRef]
- Engle, Robert, and Riccardo Colacito. 2006. Testing and valuing dynamic correlations for asset allocation. Journal of Business & Economic Statistics 24: 238–53. [Google Scholar] [CrossRef]
- Figueroa-López, José E., and Bei Wu. 2022. Kernel estimation of spot volatility with microstructure noise using pre-averaging. Econometric Theory 40: 558–607. [Google Scholar] [CrossRef]
- Gatheral, Jim, Thibault Jaisson, and Mathieu Rosenbaum. 2018. Volatility is rough. Quantitative Finance 18: 933–49. [Google Scholar] [CrossRef]
- Hansen, Peter R., and Asger Lunde. 2006. Realized variance and market microstructure noise. Journal of Business & Economic Statistics 24: 127–161. [Google Scholar] [CrossRef]
- Hasbrouck, Joel. 2007. Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading. Oxford: Oxford University Press. [Google Scholar]
- Heston, Steven L. 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Rreview of Financial Studies 6: 327–43. [Google Scholar] [CrossRef]
- Huang, Xin, and George Tauchen. 2005. The relative contribution of jumps to total price variance. Journal of Financial Econometrics 3: 456–99. [Google Scholar] [CrossRef]
- Inahama, Yuzuru. 2014. Malliavin differentiability of solutions of rough differential equations. Journal of Functional Analysis 267: 1566–84. [Google Scholar] [CrossRef]
- Jacod, Jean, Yingying Li, and Xinghua Zheng. 2017. Statistical properties of microstructure noise. Econometrica 85: 1133–74. [Google Scholar] [CrossRef]
- Jacod, Jean, Yingying Li, and Xinghua Zheng. 2019. Estimating the integrated volatility with tick observations. Journal of Econometrics 208: 80–100. [Google Scholar] [CrossRef]
- Liu, Nien-Lin, and Hoang-Long Ngo. 2017. Approximation of eigenvalues of spot cross volatility matrix with a view toward principal component analysis. Japan Journal of Industrial and Applied Mathematics 34: 747–61. [Google Scholar] [CrossRef]
- Malliavin, Paul, and Maria Elvira Mancino. 2009. A Fourier transform method for nonparametric estimation of multivariate volatility. The Annals of Statistics 37: 1983–2010. [Google Scholar] [CrossRef]
- Mancino, Maria Elvira, Maria Cristina Recchioni, and Simona Sanfelici. 2017. Fourier-Malliavin Volatility Estimation: Theory and Practice. Berlin: Springer International Publishing. [Google Scholar]
- Mancino, Maria Elvira, Tommaso Mariotti, and Giacomo Toscano. 2024. Asymptotic normality and finite-sample robustness of the Fourier spot volatility estimator in the presence of microstructure noise. Journal of Business & Economic Statistics, 1–23. [Google Scholar] [CrossRef]
- Mancino, Maria Elvira, Tommaso Mariotti, and Giacomo Toscano. 2025. Spot beta estimation with asynchronous noisy prices. Quantitative Finance 25: 733–55. [Google Scholar] [CrossRef]
- Mykland, Per A., Lan Zhang, and Dachuan Chen. 2019. The algebra of two scales estimation, and the s-tsrv: High frequency estimation that is robust to sampling times. Journal of Econometrics 208: 101–19. [Google Scholar] [CrossRef]
- Park, Sujin, Seok Young Hong, and Oliver Linton. 2016. Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error. Journal of Econometrics 191: 325–47. [Google Scholar] [CrossRef]
- Richard, Alexandre, Xiaolu Tan, and Fan Yang. 2023. On the discrete-time simulation of the rough heston model. SIAM Journal on Financial Mathematics 14: 223–49. [Google Scholar] [CrossRef]
- Roll, Richard. 1984. A simple implicit measure of the effective bid-ask spread in an efficient market. The Journal of Finance 39: 1127–39. [Google Scholar] [CrossRef]
- Shepard, Neil, and Dacheng Xiu. 2017. Econometric analysis of multivariate realised qml: Estimation of the covariation of equity prices under asynchronous trading. Journal of Econometrics 201: 19–42. [Google Scholar] [CrossRef]
- Zu, Yang, and H. Peter Boswijk. 2014. Estimating spot volatility with high-frequency financial data. Journal of Econometrics 181: 117–35. [Google Scholar] [CrossRef]
Heston | SVF1 | SVF2 | RH | |
---|---|---|---|---|
No noise | ||||
5, 1 | 5, 1 | 5, 1 | 5, 1 | |
r | Noise from rounding | |||
0.01 | 5, 1 | 5, 1 | 5, 1 | 5, 1 |
0.05 | 5, 1 | 5, 1 | 5, 1 | 5, 1 |
I.i.d. noise | ||||
1 | 3, 0.5 | 3, 0.5 | 3, 0.5 | 3, 0.5 |
1.5 | 3, 0.5 | 3, 0.5 | 3, 0.5 | 3, 0.5 |
2 | 3, 0.5 | 3, 0.5 | 3, 0.5 | 3, 0.5 |
2.5 | 1, 0.5 | 1, 0.5 | 1, 0.5 | 1, 0.5 |
Auto-correlated noise | ||||
0.2 | 1, 0.5 | 1, 0.5 | 1, 0.5 | 1, 0.5 |
0.3 | 1, 0.5 | 1, 0.5 | 1, 0.5 | 1, 0.5 |
0.4 | 3, 0.5 | 3, 0.5 | 3, 0.5 | 3, 0.5 |
General noise | ||||
0.3, 0.3 | 3, 0.5 | 3, 0.5 | 3, 0.5 | 3, 0.5 |
0.3, 0.9 | 3, 0.5 | 3, 0.5 | 1, 0.5 | 1, 0.5 |
0.45, 0.3 | 1, 0.5 | 1, 0.5 | 1, 0.5 | 1, 0.5 |
0.45, 0.9 | 1, 0.5 | 1, 0.5 | 1, 0.5 | 1, 0.5 |
Heston—No noise | ||||||
/ | 0.5 | 1 | 2 | 3 | 4 | 5 |
0.5 | 3.068 · | 4.370 · | 6.193 · | 7.539 · | 8.646 · | 9.510 · |
1 | 1.539 · | 2.124 · | 2.971 · | 3.619 · | 4.164 · | 4.331 · |
3 | 5.172 · | 7.101 · | 1.002 · | 1.232 · | 1.427 · | 1.553 · |
5 | 3.985 · | 5.238 · | 7.081 · | 8.488 · | 9.660 · | 1.023 · |
7 | 4.657 · | 5.541 · | 6.846 · | 7.847 · | 8.687 · | 9.636 · |
9 | 5.732 · | 6.524 · | 6.989 · | 8.874 · | 9.113 · | 9.995 · |
Heston—I.i.d. noise | ||||||
/ | 0.5 | 1 | 2 | 3 | 4 | 5 |
0.5 | 3.215 · | 4.562 · | 6.456 · | 7.856 · | 9.006 · | 9.228 · |
1 | 1.046 · | 1.509 · | 2.173 · | 2.676 · | 3.096 · | 3.261 · |
3 | 1.543 · | 2.125 · | 2.968 · | 3.613 · | 4.159 · | 4.365 · |
5 | 1.768 · | 2.408 · | 3.349 · | 4.073 · | 4.683 · | 4.883 · |
7 | 2.506 · | 3.286 · | 4.447 · | 5.347 · | 6.115 · | 6.510 · |
9 | 2.732 · | 3.682 · | 4.770 · | 5.618 · | 6.663 · | 6.798 · |
SVF2—No noise | ||||||
/ | 0.5 | 1 | 2 | 3 | 4 | 5 |
0.5 | 8.197 · | 1.234 · | 1.855 · | 2.328 · | 2.723 · | 2.982 · |
1 | 4.804 · | 6.877 · | 9.867 · | 1.212 · | 1.403 · | 1.633 · |
3 | 2.392 · | 3.066 · | 4.066 · | 4.826 · | 5.462 · | 5.701 · |
5 | 1.860 · | 2.161 · | 2.639 · | 3.020 · | 3.354 · | 3.411 · |
7 | 2.068 · | 2.183 · | 2.449 · | 2.699 · | 2.931 · | 3.028 · |
9 | 2.236 · | 2.421 · | 2.563 · | 2.784 · | 2.988 · | 3.295 · |
SVF2—I.i.d. noise | ||||||
/ | 0.5 | 1 | 2 | 3 | 4 | 5 |
0.5 | 8.616 · | 1.311 · | 1.974 · | 2.473 · | 2.884 · | 3.115 · |
1 | 4.529 · | 6.001 · | 8.176 · | 9.825 · | 1.117 · | 1.228 · |
3 | 5.701 · | 8.084 · | 1.144 · | 1.394 · | 1.604 · | 1.773 · |
5 | 6.232 · | 8.579 · | 1.163 · | 1.377 · | 1.553 · | 1.640 · |
7 | 6.173 · | 8.607 · | 1.254 · | 1.574 · | 1.849 · | 1.930 · |
9 | 6.454 · | 8.773 · | 1.296 · | 1.602 · | 1.890 · | 1.981 · |
Estimator | MISE | % SPSD | MISE | % SPSD |
---|---|---|---|---|
d = 2 | d = 20 | |||
GPDF | 6.773 · | 100% | 5.395 · | 100% |
LMM | 2.563 · | 100% | 1.133 · | 100% |
STS | 2.240 · | 100% | 2.156 · | 88.60% |
d = 5 | d = 25 | |||
GPDF | 5.670 · | 100% | 5.258 · | 100% |
LMM | 1.495 · | 100% | 9.659 · | 100% |
STS | 2.201 · | 100% | 2.138 · | 66.22% |
d = 10 | d = 30 | |||
GPDF | 5.316 · | 100% | 5.142 · | 100% |
LMM | 1.215 · | 100% | 9.604 · | 100% |
STS | 2.022 · | 100% | 2.006 · | 9.87% |
d = 15 | d = 40 | |||
GPDF | 5.299 · | 100% | 5.223 · | 100% |
LMM | 9.977 · | 100% | 9.501 · | 99.54% |
STS | 2.019 · | 95.43% | 1.994 · | 3.02% |
Estimator | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD |
---|---|---|---|---|---|---|
d = 5, | d = 5, | d = 5, | ||||
GPDF | 6.314 · | 100% | 7.798 · | 100% | 9.723 · | 100% |
LMM | 1.610 · | 100% | 1.885 · | 100% | 2.503 · | 99.54% |
STS | 2.426 · | 100% | 2.603 · | 100% | 2.686 · | 100% |
d = 10, | d = 10, | d = 10, | ||||
GPDF | 6.397 · | 100% | 7.339 · | 100% | 9.188 · | 100% |
LMM | 1.956 · | 100% | 1.882 · | 100% | 1.975 · | 98.58% |
STS | 2.303 · | 100% | 2.344 · | 100% | 2.395 · | 100% |
d = 15, | d = 15, | d = 15, | ||||
GPDF | 6.322 · | 100% | 7.451 · | 100% | 9.169 · | 100% |
LMM | 1.717 · | 100% | 1.445 · | 98.05% | 1.918 · | 97.68% |
STS | 2.285 · | 99.90% | 2.310 · | 99.15% | 2.383 · | 98.54 % |
d = 20, | d = 20, | d = 20, | ||||
GPDF | 6.325 · | 100% | 7.258 · | 100% | 9.224 · | 100% |
LMM | 1.651 · | 99.83% | 1.322 · | 90.18% | 1.782 · | 96.67% |
STS | 2.213 · | 91.45% | 2.289 · | 88.01% | 2.330 · | 82.66 % |
Estimator | MISE | % SPSD | MISE | % SPSD |
---|---|---|---|---|
d = 5, r = 0.01 | d = 5, r = 0.05 | |||
GPDF | 5.583 · | 100% | 5.587 · | 100% |
LMM | 1.638 · | 100% | 1.641 · | 100% |
STS | 2.188 · | 100% | 2.188 · | 100% |
d = 10, r = 0.01 | d = 10, r = 0.05 | |||
GPDF | 5.376 · | 100% | 5.377 · | 100% |
LMM | 1.094 · | 100% | 1.095 · | 100% |
STS | 2.022 · | 100% | 2.023 · | 100% |
d = 15, r = 0.01 | d = 15, r = 0.05 | |||
GPDF | 5.284 · | 100% | 5.284 · | 100% |
LMM | 1.111 · | 100% | 1.113 · | 100% |
STS | 1.998 · | 99.97% | 1.997 · | 99.85% |
d = 20, r = 0.01 | d = 20, r = 0.05 | |||
GPDF | 5.203 · | 100% | 5.204 · | 100% |
LMM | 1.011 · | 100% | 1.011 · | 100% |
STS | 1.902 · | 97.66% | 1.902 · | 97.03% |
Estimator | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD |
---|---|---|---|---|---|---|---|---|
d = 5, | d = 5, | d = 5, | d = 5, | |||||
GPDF | 8.229 · | 100% | 8.242 · | 100% | 1.350 · | 100% | 2.054 · | 100% |
LMM | 1.485 · | 100% | 1.588 · | 100% | 1.727 · | 100% | 1.991 · | 100% |
STS | 2.478 · | 100% | 2.567 · | 100% | 2.910 · | 100% | 3.361 · | 97.25% |
d = 10, | d = 10, | d = 10, | d = 10, | |||||
GPDF | 6.922 · | 100% | 7.901 · | 100% | 1.503 · | 100% | 1.889 · | 100% |
LMM | 1.320 · | 100% | 1.191 · | 100% | 1.583 · | 100% | 2.198 · | 99.25% |
STS | 2.236 · | 98.85% | 2.369 · | 98.25% | 2.610 · | 86.47% | 3.028 · | 55.67% |
d = 15, | d = 15, | d = 15, | d = 15, | |||||
GPDF | 6.873 · | 100% | 7.588 · | 100% | 1.474 · | 100% | 1.801 · | 100% |
LMM | 1.225 · | 100% | 1.348 · | 100% | 1.920 · | 100% | 1.955 · | 98.42% |
STS | 2.042 · | 97.43% | 2.187 · | 76.01% | 2.738 · | 28.10% | 3.008 · | 20.13% |
d = 20, | d = 20, | d = 20, | d = 20, | |||||
GPDF | 6.468 · | 100% | 7.622 · | 100% | 1.497 · | 100% | 1.628 · | 100% |
LMM | 1.008 · | 100% | 1.581 · | 97.83% | 1.621 · | 96.26% | 2.044 · | 92.10% |
STS | 2.250 · | 65.27% | 2.390 · | 15.17% | 2.503 · | 6.27% | 2.817 · | 0.0% |
Estimator | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD |
---|---|---|---|---|---|---|
d = 5, | d = 5, | d = 5, | ||||
GPDF | 2.093 · | 100% | 1.956 · | 100% | 1.743 · | 100% |
LMM | 2.187 · | 100% | 2.632 · | 100% | 2.693 · | 100% |
STS | 4.134 · | 90.47% | 3.026 · | 98.98% | 2.945 · | 97.23% |
d = 10, | d = 10, | d = 10, | ||||
GPDF | 1.887 · | 100% | 1.810 · | 100% | 1.752 · | 100% |
LMM | 2.789 · | 100% | 2.863 · | 98.94% | 1.953 · | 100% |
STS | 3.934 · | 22.71% | 3.007 · | 65.58% | 2.666 · | 85.43% |
d = 15, | d = 15, | d = 15, | ||||
GPDF | 1.755 · | 100% | 1.721 · | 100% | 1.599 · | 100% |
LMM | 2.662 · | 100% | 2.659 · | 93.44% | 1.781 · | 95.90% |
STS | 3.728 · | 2.01% | 3.001 · | 6.25% | 2.789 · | 20.99% |
d = 20, | d = 20, | d = 20, | ||||
GPDF | 1.743 · | 100% | 1.657 · | 100% | 1.580 · | 100% |
LMM | 2.514 · | 93.87% | 2.501 · | 93.48% | 1.751 · | 93.60% |
STS | 3.899 · | 1.02% | 2.921 · | 2.03% | 2.700 · | 2.58% |
Estimator | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD |
---|---|---|---|---|---|---|---|---|
d = 5, | d = 5, | d = 5, | d = 5, | |||||
GPDF | 2.543 · | 100% | 2.521 · | 100% | 2.845 · | 100% | 2.981 · | 100% |
LMM | 2.701 · | 100% | 2.695 · | 99.52% | 3.103 · | 100% | 3.499 · | 99.40% |
STS | 2.919 · | 99.87% | 3.184 · | 99.00% | 4.396 · | 99.83% | 4.716 · | 98.51% |
d = 10, | d = 10, | d = 10, | d = 5, | |||||
GPDF | 1.762 · | 100% | 2.123 · | 100% | 2.458 · | 100% | 2.702 · | 100% |
LMM | 2.198 · | 99.76% | 2.707 · | 97.17% | 2.660 · | 97.89% | 3.543 · | 91.06% |
STS | 2.702 · | 99.26% | 3.005 · | 79.58% | 3.722 · | 90.36% | 4.601 · | 77.10% |
d = 15, | d = 15, | d = 15, | d = 5, | |||||
GPDF | 1.508 · | 100% | 1.702 · | 100% | 2.344 · | 100% | 2.523 · | 100% |
LMM | 1.891 · | 98.04% | 3.085 · | 87.25% | 2.622 · | 90.93% | 3.582 · | 81.48% |
STS | 2.671 · | 50.90% | 2.901 · | 47.12% | 3.600 · | 39.94% | 4.543 · | 40.23% |
d = 20, | d = 20, | d = 20, | d = 5, | |||||
GPDF | 1.305 · | 100% | 1.587 · | 100% | 2.317 · | 100% | 2.458 · | 100% |
LMM | 2.674 · | 96.15% | 2.991 · | 81.34% | 2.956 · | 85.17% | 3.478 · | 78.63% |
STS | 2.667 · | 8.21% | 2.901 · | 21.94% | 3.478 · | 3.77% | 4.293 · | 16.42% |
SVF1 | SVF2 | Rough H. | ||||
---|---|---|---|---|---|---|
Estimator | MISE | % SPSD | MISE | % SPSD | MISE | % SPSD |
d = 2 | ||||||
GPDF | 2.433 · | 100% | 2.441 · | 100% | 4.575 · | 100% |
LMM | 6.799 · | 100% | 4.663 · | 100% | 6.020 · | 100% |
STS | 9.345 · | 100% | 6.217 · | 100% | 6.995 · | 100% |
d = 5 | ||||||
GPDF | 1.805 · | 100% | 1.496 · | 100% | 2.421 · | 100% |
LMM | 4.022 · | 100% | 2.036 · | 100% | 3.640 · | 100% |
STS | 7.002 · | 100% | 3.391 · | 100% | 4.473 · | 100% |
d = 10 | ||||||
GPDF | 1.756 · | 100% | 6.802 · | 100% | 1.588 · | 100% |
LMM | 3.670 · | 100% | 1.215 · | 100% | 2.036 · | 99.98% |
STS | 7.287 · | 100% | 1.902 · | 100% | 3.654 · | 99.95% |
d = 15 | ||||||
GPDF | 1.699 · | 100% | 5.185 · | 100% | 1.403 · | 100% |
LMM | 3.476 · | 100% | 9.004 · | 100% | 1.890 · | 99.64% |
STS | 6.995 · | 100% | 1.634 · | 99.92% | 3.338 · | 99.74% |
d = 20 | ||||||
GPDF | 1.781 · | 100% | 4.561 · | 100% | 1.241 · | 100% |
LMM | 3.286 · | 100% | 8.639 · | 99.76% | 1.703 · | 99.55% |
STS | 6.994 · | 99.56% | 1.464 · | 96.85% | 3.263 · | 98.23% |
avg. comp. time | 1.0552 | 2.113 | 3.1014 | 1.0666 | 2.3161 | 3.6283 |
0.2674 | 0.1298 | 0 | 0.3966 | 0.3404 | 0.3124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akahori, J.; Kambara, R.; Liu, N.-L.; Mancino, M.E.; Mariotti, T.; Yasuda, Y. Symmetric Positive Semi-Definite Fourier Estimator of Spot Covariance Matrix with High Frequency Data. Risks 2025, 13, 197. https://doi.org/10.3390/risks13100197
Akahori J, Kambara R, Liu N-L, Mancino ME, Mariotti T, Yasuda Y. Symmetric Positive Semi-Definite Fourier Estimator of Spot Covariance Matrix with High Frequency Data. Risks. 2025; 13(10):197. https://doi.org/10.3390/risks13100197
Chicago/Turabian StyleAkahori, Jiro, Reika Kambara, Nien-Lin Liu, Maria Elvira Mancino, Tommaso Mariotti, and Yukie Yasuda. 2025. "Symmetric Positive Semi-Definite Fourier Estimator of Spot Covariance Matrix with High Frequency Data" Risks 13, no. 10: 197. https://doi.org/10.3390/risks13100197
APA StyleAkahori, J., Kambara, R., Liu, N.-L., Mancino, M. E., Mariotti, T., & Yasuda, Y. (2025). Symmetric Positive Semi-Definite Fourier Estimator of Spot Covariance Matrix with High Frequency Data. Risks, 13(10), 197. https://doi.org/10.3390/risks13100197