On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Special Functions
3. Results
3.1. Gamma Volatility
3.2. Inverse Gamma Volatility
3.3. Discussion
4. Numerical Examples
4.1. Black-Scholes Price
4.2. Gamma Volatility Price
4.3. Inverse-Gamma Volatility Price
4.4. Comparison of the Prices
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aas, Kjersti, and Ingrid H. Haff. 2006. The generalized hyperbolic skew Student’s t-distribution. Journal of Financial Econometrics 4: 275–309. [Google Scholar] [CrossRef] [Green Version]
- Alghalith, Moawia, Christos Floros, and Konstantonos Gkillas. 2020. Estimating stochastic volatility under the assumption of stochastic volatility of volatility. Risks 8: 35. [Google Scholar] [CrossRef] [Green Version]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2001. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96: 42–55. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, and Dobrislav Dobrev. 2007. No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distribution implications. Journal of Econometrics 138: 125–80. [Google Scholar] [CrossRef] [Green Version]
- Ano, Katsunori, and Roman V. Ivanov. 2016. On exact pricing of FX options in multivariate time-changed Lévy models. Review Derivatives Research 19: 201–16. [Google Scholar]
- Bateman, Harry, and Arthur Erdélyi. 1953. Higher Transcendental Functions. New York: McGraw-Hill, pp. 222–44. [Google Scholar]
- Bates, David S. 1996. Jumps and stochastic volatility: Exchange rate processes implicity in Deutsche mark options. The Review of Financial Studies 9: 69–107. [Google Scholar] [CrossRef]
- Bibby, Bo Martin, and Michael Sørensen. 2003. Hyperbolic processes in finance. In Handbook of Heavy Tailed Distributions in Finance. Edited by Svetlozar Todorov Rachev. Amsterdam: Elsevier, pp. 211–48. [Google Scholar]
- Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–54. [Google Scholar] [CrossRef] [Green Version]
- Brigo, Damiano, and Fabio Mercurio. 2002. Lognormal-mixture dynamics and calibration to market volatility smiles. International Journal of Theoretical and Applied Finance 5: 427–46. [Google Scholar] [CrossRef] [Green Version]
- Brigo, Damiano, Fabio Mercurio, and Giulio Sartorelli. 2003. Alternative asset-price dynamics and volatility smile. Quantitative Finance 3: 173–83. [Google Scholar] [CrossRef] [Green Version]
- Cao, Jiling, Guanghua Lian, and Teh R. N. Roslan. 2016. Pricing variance swaps under stochastic volatility and stochastic interest rate. Applied Mathematics and Computation 277: 72–81. [Google Scholar] [CrossRef]
- Chib, Siddhartha, Federico Nardari, and Neil Shephard. 2002. Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics 108: 281–316. [Google Scholar] [CrossRef]
- Cuchiero, Christa, Wahid Khosrawi, and Josef Teichmann. 2020. A generative adversarial network approach to calibration of local stochastic volatility models. Risks 8: 101. [Google Scholar] [CrossRef]
- Daal, Elton A., and Dilip B. Madan. 2005. An empirical examination of the variance-gamma model for foreign currency options. Journal of Business 78: 2121–52. [Google Scholar] [CrossRef]
- Derman, Emanuel, and Iraj Kani. 1994. Riding on a smile. Risk Magazine 2: 32–39. [Google Scholar]
- Dupire, Bruno. 1994. Pricing with a smile. Risk Magazine 1: 18–20. [Google Scholar]
- Eberlein, Ernst, Antonis Papapantoleon, and Albert N. Shiryaev. 2008. On the duality principle in option pricing: Semimartingale setting. Finance and Stochastics 12: 265–92. [Google Scholar] [CrossRef]
- Eberlein, Ernst, Antonis Papapantoleon, and Albert N. Shiryaev. 2009. Esscher transform and the duality principle for multidimensional semimartingales. Annals of Applied Probability 19: 1944–71. [Google Scholar] [CrossRef]
- Eraker, Bjorn, Michael Johannes, and Nicholas Polson. 2003. The impact of jumps in returns and volatility. Journal of Finance 53: 1269–300. [Google Scholar] [CrossRef]
- Erdélyi, Arthur, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. 1954. Tables of Integral Transforms. New York: McGraw-Hill, pp. 129–223. [Google Scholar]
- Finlay, Richard, and Eugene Seneta. 2006. Stationary-increment student and variance-gamma processes. Journal of Applied Probability 43: 441–53. [Google Scholar] [CrossRef]
- Finlay, Richard, and Eugene Seneta. 2008. Stationary-increment variance-gamma and t Models: Simulation and parameter estimation. International Statistical Review 76: 167–86. [Google Scholar] [CrossRef]
- Fung, Thomas, and Eugene Seneta. 2010. Modelling and estimation for bivariate financial returns. International Statistical Review 78: 117–33. [Google Scholar] [CrossRef]
- Göncü, Ahmet, Mehmet O. Karahan, and Tolga U. Kuzubas. 2016. A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns. North American Journal of Economics and Finance 36: 69–83. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, Israil S., and Iosif M. Ryzhik. 2007. Table of Integrals, Series and Products, 7th ed. London: Academic Press, pp. 346–71. [Google Scholar]
- Grzelak, Lech A., and Cornelius W. Oosterlee. 2011. On the Heston model with stochastic interest rates. SIAM Journal on Financial Mathematics 2: 255–86. [Google Scholar] [CrossRef] [Green Version]
- Herdegen, Martin, and Martin Schweizer. 2018. Semi-efficient valuations and put-call parity. Mathematical Finance 28: 1061–106. [Google Scholar] [CrossRef] [Green Version]
- Hong, Seok Y., Ingmar Nolte, Stephen J. Taylor, and Xiaolu Zhao. 2023. Volatility estimation and forecasts based on price durations. Journal of Financial Econometrics 21: 106–44. [Google Scholar] [CrossRef]
- Ivanov, Roman V. 2018. A credit-risk valuation under the variance-gamma asset return. Risks 6: 58. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Roman V. 2022. The risk measurement under the variance-gamma process with drift switching. Journal of Risk and Financial Management 15: 22. [Google Scholar] [CrossRef]
- Jacod, Jean, and Albert N. Shiryaev. 1987. Limit Theorems for Stochastic Processes. Berlin: Springer, pp. 249–69. [Google Scholar]
- Kallsen, Jasper, and Albert N. Shiryaev. 2002. The cumulant process and Esscher’s change of measure. Finance and Stochastics 6: 397–428. [Google Scholar] [CrossRef] [Green Version]
- Kim, Sangjoon, Neil Shephard, and Siddhartha Chib. 1998. Stochastic volatility: Likelihood inference and comparison with ARCH Models. Review of Economic Studies 65: 361–93. [Google Scholar] [CrossRef]
- Levendis, Alexis, and Eben Maré. 2022. Efficient pricing of spread options with stochastic rates and stochastic volatility. Journal of Risk and Financial Management 15: 504. [Google Scholar] [CrossRef]
- Linders, Daniel, and Ben Stassen. 2016. The multivariate variance gamma model: Basket option pricing and calibration. Quantitative Finance 16: 555–72. [Google Scholar] [CrossRef]
- Liu, Jia. 2021. A Bayesian semiparametric realized stochastic volatility model. Journal of Risk and Financial Management 14: 617. [Google Scholar] [CrossRef]
- Liu, Shuaiqiang, Cornelius W. Oosterlee, and Sander M. Bohte. 2019. Pricing options and computing implied volatilities using neural networks. Risks 7: 16. [Google Scholar] [CrossRef] [Green Version]
- Liu, Tao, Malik Z. Ullah, Stanford Shateyi, Chao Liu, and Yanxiong Yang. 2023. An efficient localized RBF-FD method to simulate the Heston-Hull-White PDE in finance. Mathematics 11: 833. [Google Scholar] [CrossRef]
- Luciano, Elisa, and Wim Schoutens. 2016. A multivariate jump-driven financial asset model. Quantitative Finance 6: 385–402. [Google Scholar] [CrossRef] [Green Version]
- Madan, Dilip B., Peter Carr, and Eric C. Chang. 1998. The variance gamma process and option pricing. Review of Finance 2: 79–105. [Google Scholar] [CrossRef] [Green Version]
- Mahieu, Ronald J., and Peter C. Schotman. 1998. An empirical application of stochastic volatility models. Journal of Applied Econometrics 13: 333–60. [Google Scholar] [CrossRef]
- Mao, Chen, Guanqi Liu, and Yuwen Wang. 2022. A closed-form pricing formula for log-return variance swaps under stochastic volatility and stochastic interest Rate. Mathematics 10: 5. [Google Scholar] [CrossRef]
- McNeil, Alexander J., Rüdiger Frey, and Paul Embrechts. 2005. Quantitative Risk Management. Princeton: Princeton University Press, p. 75. [Google Scholar]
- Men, Zhongxian, Tony S. Wirjanto, and Adam W. Kolkiewicz. 2021. Multiscale stochastic volatility model with heavy tails and leverage effects. Journal of Risk and Financial Management 14: 225. [Google Scholar] [CrossRef]
- Merton, Robert C. 1973. Theory of rational option pricing. Bell Journal of Economics and Management Science 4: 141–83. [Google Scholar] [CrossRef] [Green Version]
- Moosbrucker, Thomas. 2006. Explaining the correlation smile using variance gamma distributions. Journal of Fixed Income 16: 71–87. [Google Scholar] [CrossRef]
- Mozumder, Sharif, Ghulam Sorwar, and Kevin Dowd. 2015. Revisiting variance gamma pricing: An application to s&p500 index options. International Journal of Financial Engineering 2: 1550022. [Google Scholar]
- Musiela, Marek, and Marek Rutkowski. 2005. Martingale Methods in Financial Modelling, 2nd ed. Berlin: Springer, pp. 195–96, 234–36. [Google Scholar]
- Nakajima, Jouchi. 2020. Skew selection for factor stochastic volatility models. Journal of Applied Statisitics 47: 582–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, Jouchi, and Yasuhiro Omori. 2012. Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution. Computational Statistics and Data Analysis 56: 3690–704. [Google Scholar] [CrossRef]
- Nakakita, Makoto, and Teruo Nakatsuma. 2021. Bayesian analysis of intraday stochastic volatility models of high-frequency stock returns with skew heavy-tailed Errors. Journal of Risk and Financial Management 14: 145. [Google Scholar] [CrossRef]
- Nzokem, Aubain H. 2023. Pricing European options under stochastic volatility models: Case of five-parameter variance-gamma process. Journal of Risk and Financial Management 16: 55. [Google Scholar] [CrossRef]
- Oksendal, Bernt. 2003. Stochastic Differential Equations, 5th ed. New York: Springer, pp. 249–87. [Google Scholar]
- Rathgeber, Andreas, Johannes Stadler, and Stefan Stöckl. 2016. Modeling share returns—An empirical study on the variance gamma model. Journal of Economics and Finance 40: 653–82. [Google Scholar] [CrossRef]
- Schoutens, Wim. 2003. Lévy Processes in Finance. Chichester: John Wiley & Sons, pp. 52–53. [Google Scholar]
- Schweizer, Martin. 2002. On Bermudan options. In Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann. Edited by Klaus Sandmann and Philip J. Schönbucher. Berlin: Springer, pp. 257–69. [Google Scholar]
- Seneta, Euegene. 2004. Fitting the variance-gamma model to financial data. In Stochastic Methods and Their Applications. Edited by Joe Gani and Euegene Seneta. Sheffield: Applied Probability Trust, vol. 41, pp. 177–87. [Google Scholar]
- Shackleton, Mark B., Stephen J. Taylor, and Peng Yu. 2010. A multi-horizon comparison of density forecasts for the S& P 500 using index returns and option prices. Journal of Banking and Finance 34: 2678–93. [Google Scholar]
- Shiryaev, Albert N. 1999. Essentials of Stochastic Finance. Singapore: World Scientific, pp. 739–48. [Google Scholar]
- Srivastava, Hari M., and Per W. Karlsson. 1985. Multiple Gaussian Hypergeometric Series. New York: Wiley, pp. 15–33. [Google Scholar]
- Takahashi, Makoto, Toshiaki Watanabe, and Yasuhori Omori. 2021. Forecasting daily volatility of stock price index using daily returns and realized volatility. Econometrics and Statistics, in press. [Google Scholar] [CrossRef]
- Taylor, Stephen J., Joseph Tzeng, and Martin Widdicks. 2018. Information about price and volatility jumps inferred from options prices. Journal of Futures Markets 38: 1206–26. [Google Scholar] [CrossRef]
- Wallmeier, Martin, and Martin Diethelm. 2012. Multivariate downside risk: Normal versus variance gamma. Journal of Futures Markets 32: 431–58. [Google Scholar] [CrossRef] [Green Version]
- Witkovský, Viktor. 2001. Computing the distribution of a linear combination of inverted gamma variables. Kybernetika 37: 79–90. [Google Scholar]
1 | 2 | 10 | |||||||
0.033 | |||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, R.V. On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model. Risks 2023, 11, 111. https://doi.org/10.3390/risks11060111
Ivanov RV. On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model. Risks. 2023; 11(6):111. https://doi.org/10.3390/risks11060111
Chicago/Turabian StyleIvanov, Roman V. 2023. "On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model" Risks 11, no. 6: 111. https://doi.org/10.3390/risks11060111
APA StyleIvanov, R. V. (2023). On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model. Risks, 11(6), 111. https://doi.org/10.3390/risks11060111