Risk Mitigation in Agriculture in Support of COVID-19 Crisis Management
Abstract
:1. Introduction
2. Theory
2.1. Literature Review and Gap Analysis
2.2. Research Questions and Hypotheses
3. Materials and Methods
4. Results
4.1. Risk Analysis of Agriculture during the COVID-19 Crisis
4.2. Modelling the Contribution of Smart Technologies to Agricultural Risk Management during the COVID-19 Crisis
4.3. Development of a Framework for a “Smart” Vertical Farm, the Risks of Which Are Resistant to Crises through the Use of Datasets and Machine Learning
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Region | Federal District * | Type of Region ** | Yield of Grain and Legumes (Weight after Processing, in Farms of All Categories) (Centners per Hectare of Harvested Area) | Balanced Financial Result (Profit Minus Loss) of Agricultural Companies (Million RUB) | Costs of R&D in Agricultural Sciences (Million RUB) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2018 | 2019 | 2020 | 2021 | 2018 | 2019 | 2020 | 2021 | |||
Belgorod Region | CFD | P | 46.1 | 48.7 | 53.2 | 45.2 | 35,634 | 32,242 | 39,239 | 59,929 | 275 | 224.0 | 345.6 | 358.9 |
Bryansk Region | CFD | T | 46.5 | 44.9 | 50.4 | 49.9 | −8996 | 7353 | 4045 | 12,442 | 94 | 98.4 | 116.9 | 118.3 |
Vladimir Region | CFD | T | 21.2 | 22.5 | 30.2 | 22.4 | 714 | 1162 | 1201 | 1734 | 709.1 | 739.1 | 934.5 | 1084.9 |
Voronezh Region | CFD | P | 32.9 | 35.0 | 39.1 | 30.9 | 12,114 | 12,437 | 30,971 | 38,015 | 547.8 | 668.0 | 837.8 | 853.3 |
Ivanovo Region | CFD | T | 18.7 | 20.2 | 24.0 | 17.1 | 58 | 445 | 389 | 503 | 27.5 | 58.1 | 114.5 | 0 |
Kaluga Region | CFD | T | 25.1 | 29.2 | 29.1 | 23.0 | 952 | −3095 | −2098 | −8610 | 135.8 | 130.8 | 99.8 | 138.7 |
Kostroma Region | CFD | T | 13.2 | 16.2 | 16.8 | 13.7 | 289 | 265 | 306 | 649 | 38.1 | 27.6 | 38.1 | 45.2 |
Kursk Region | CFD | T | 46.8 | 51.5 | 56.2 | 45.0 | 19,765 | 12,888 | 11,604 | 43,296 | 139.7 | 152.3 | 147.7 | 148.2 |
Lipetsk Region | CFD | P | 39.7 | 42.8 | 51.3 | 36.9 | 17,160 | 14,889 | 27,521 | 42,752 | 192.9 | 191.9 | 273.1 | 177.9 |
Moscow Region | CFD | RO | 27.3 | 26.5 | 33.0 | 27.8 | 4335 | −762 | 3293 | −1181 | 3039.6 | 2902.5 | 2761.2 | 3635.1 |
Orel Region | CFD | T | 36.7 | 41.3 | 45.4 | 42.3 | 4700 | 9091 | 19,262 | 24,278 | 164.9 | 258.8 | 336.1 | 353.4 |
Ryazan Region | CFD | T | 28.6 | 32.8 | 41.3 | 32.0 | 2236 | 2830 | 5759 | 7535 | 264.8 | 243.2 | 251.5 | 296.8 |
Smolensk Region | CFD | T | 23.9 | 25.9 | 23.5 | 19.9 | 177 | 77 | −283 | 310 | 18.1 | 61.4 | 56.3 | 76.5 |
Tambov Region | CFD | T | 33.6 | 31.8 | 44.6 | 35.0 | 10,654 | 9848 | 21,722 | 38,651 | 365.1 | 276.7 | 400.3 | 425.4 |
Tver Region | CFD | T | 12.3 | 17.9 | 15.4 | 15.4 | 2536 | 1695 | −1412 | 1217 | 151.7 | 141.7 | 148.9 | 140.3 |
Tula Region | CFD | T | 32.1 | 34.6 | 40.6 | 35.8 | 557 | 3023 | 4467 | 7391 | 23.5 | 30.9 | 30.7 | 0 |
Yaroslavl Region | CFD | T | 17.7 | 21.2 | 19.6 | 13.6 | 1622 | 2081 | 3275 | 1886 | 36.6 | 40.7 | 88.9 | 91.6 |
Republic of Karelia | NWFD | T | 0.0 | 0.0 | 0.0 | 0.0 | 1636 | 3369 | 3203 | 3536 | 55.9 | 49.7 | 32.4 | 0 |
Komi Republic | NWFD | RA | 0.0 | 0.0 | 0.0 | 0.0 | 411 | 349 | 431 | −71 | 84.5 | 81.5 | 69.9 | 63.4 |
Arkhangelsk Region | NWFD | RA | 18.7 | 17.6 | 20.9 | 13.2 | 6196 | 6559 | 4259 | 19,038 | 86.3 | 83.3 | 82.9 | 110.2 |
Vologda Region | NWFD | RA | 15.9 | 23.5 | 17.0 | 0.0 | 2973 | 2917 | 2988 | 6324 | 60.1 | 70.9 | 90.4 | 100.2 |
Kaliningrad Region | NWFD | T | 38.8 | 51.8 | 52.6 | 48.4 | 4943 | 5338 | 8712 | 9424 | 17.6 | 17.6 | 18.9 | 19.7 |
Leningrad Region | NWFD | RO | 31.3 | 37.0 | 38.8 | 32.9 | 5393 | 6415 | 5788 | 11,147 | 71.3 | 79.2 | 73.8 | 0 |
Novgorod Region | NWFD | T | 20.1 | 29.4 | 29.5 | 27.3 | −134 | 853 | −191 | −732 | 15.3 | 15.9 | 15.4 | 0 |
Pskov Region | NWFD | T | 18.2 | 36.9 | 35.8 | 30.2 | 3359 | 5863 | 4596 | 6600 | 30.7 | 30.6 | 36.9 | 36 |
Republic of Adygeya | SFD | T | 38.4 | 43.5 | 51.2 | 46.4 | 552 | −40 | 573 | 447 | 63.5 | 81.9 | 77.6 | 81 |
Republic of Kalmykia | SFD | T | 22.9 | 23.3 | 22.1 | 22.6 | 222 | 225 | 98 | −178 | 23.7 | 24.0 | 23.8 | 24 |
Republic of Crimea | SFD | T | 15.0 | 26.6 | 16.4 | 25.1 | 456 | 1310 | 2087 | 1524 | 237.4 | 267.6 | 373.1 | 411.7 |
Krasnodar Territory | SFD | P | 52.9 | 56.5 | 48.1 | 57.5 | 27,464 | 26,022 | 40,387 | 59,670 | 1192.4 | 1355.8 | 1664.7 | 2019.6 |
Astrakhan Region | SFD | T | 27.1 | 30.9 | 31.2 | 37.2 | 141 | 26 | 384 | 553 | 105.3 | 144.6 | 125.4 | 144 |
Volgograd Region | SFD | T | 19.3 | 21.3 | 25.5 | 22.7 | 4047 | 4042 | 11,134 | 10,903 | 310.7 | 330.3 | 528.2 | 591 |
Rostov Region | SFD | T | 31.9 | 34.1 | 34.5 | 38.0 | −4315 | −98,458 | 52,064 | 31,994 | 547.2 | 639.3 | 1001.2 | 1010.0 |
Republic of Daghestan | NCFD | T | 25.3 | 26.0 | 27.3 | 27.5 | 264 | 154 | 253 | 631 | 115.8 | 134.1 | 172.6 | 188.3 |
Republic of Ingushetia | NCFD | T | 23.0 | 19.8 | 23.6 | 31.2 | 5 | −54 | 326 | −634 | 32.1 | 33.9 | 34 | 0 |
Kabardino-Balkarian Republic | NCFD | T | 54.1 | 54.8 | 56.7 | 57.6 | 240 | 169 | 147 | 205 | 104 | 115.3 | 124.3 | 148.7 |
Karachayevo-Chircassian Republic | NCFD | T | 46.4 | 50.5 | 37.8 | 45.4 | 451 | 102 | 347 | 762 | 2.2 | 0.6 | 0 | 0 |
Republic of North Ossetia—Alania | NCFD | T | 55.4 | 65.3 | 61.3 | 61.3 | −60 | 51 | 82 | −129 | 37.5 | 60.3 | 145.8 | 75.7 |
Chechen Republic | NCFD | T | 24.7 | 18.2 | 25.3 | 24.2 | −5 | −127 | −1233 | 89 | 75.1 | 142.8 | 90.1 | 57.2 |
Stavropol Territory | NCFD | T | 36.6 | 33.7 | 26.1 | 37.4 | 16,495 | 10,094 | 7013 | 29,480 | 385.1 | 414.0 | 450.1 | 595 |
Republic of Bashkortostan | VFD | T | 18.6 | 19.8 | 22.0 | 14.0 | −662 | −491 | 4678 | 7491 | 96.8 | 76.8 | 91.4 | 76.9 |
Republic of Mari El | VFD | T | 18.6 | 19.9 | 23.6 | 14.8 | 676 | 2 | −487 | 2618 | 19.4 | 19.1 | 17.8 | 18.9 |
Republic of Mordovia | VFD | T | 26.2 | 27.8 | 34.0 | 23.5 | 5434 | 4567 | 9257 | 16,118 | 21.3 | 20.4 | 24 | 0 |
Republic of Tatarstan | VFD | RO | 24.8 | 28.6 | 33.5 | 14.9 | 2090 | 5074 | 5566 | 5665 | 565.6 | 574.0 | 630.3 | 759 |
Udmurtian Republic | VFD | T | 18.2 | 21.3 | 20.2 | 15.8 | 2716 | 2815 | 3345 | 4061 | 39.3 | 39.9 | 44.7 | 48 |
Chuvash Republic | VFD | T | 23.7 | 27.0 | 32.2 | 19.1 | 745 | −221 | −622 | −3876 | 24.8 | 18.9 | 23.8 | 0 |
Perm Territory | VFD | T | 15.8 | 14.7 | 15.4 | 12.1 | 641 | 8 | 1825 | 834 | 81.1 | 131.2 | 122.6 | 107.7 |
Kirov Region | VFD | T | 19.1 | 21.7 | 21.3 | 16.9 | 3498 | 2719 | 3160 | 4464 | 164.3 | 181.1 | 213.7 | 237.3 |
Nizhny Novgorod Region | VFD | T | 21.2 | 22.3 | 28.0 | 20.7 | 969 | 1574 | 1981 | 3877 | 77.5 | 64.0 | 68.7 | 72.1 |
Orenburg Region | VFD | T | 8.8 | 8.9 | 13.5 | 8.0 | −493 | −54 | 539 | 896 | 233.8 | 230.0 | 180.2 | 255.6 |
Penza Region | VFD | T | 25.4 | 24.8 | 38.4 | 26.5 | −1587 | 2555 | 9462 | 13,348 | 51.3 | 50.9 | 58.8 | 66.1 |
Samara Region | VFD | T | 17.5 | 17.7 | 26.1 | 17.4 | 1775 | 997 | 4799 | 8254 | 151.1 | 172.3 | 180.2 | 165.4 |
Saratov Region | VFD | T | 15.1 | 14.7 | 23.8 | 17.3 | −363 | 1907 | 5846 | 6377 | 433.9 | 504.2 | 504 | 637.5 |
Ulyanovsk Region | VFD | T | 19.8 | 19.1 | 31.1 | 18.0 | −201 | −187 | 479 | 1490 | 127.8 | 100.2 | 173 | 186.7 |
Kurgan Region | UFD | T | 16.2 | 16.9 | 13.5 | 11.1 | 298 | 481 | 878 | 1001 | 85.1 | 80.7 | 80.9 | 82.6 |
Sverldlovsk Region | UFD | T | 19.4 | 22.3 | 20.9 | 16.7 | 3578 | 2831 | 3352 | 4590 | 277.5 | 308.8 | 329.3 | 380 |
Tyumen Region | UFD | RO | 20.0 | 22.4 | 19.9 | 16.3 | 2350 | 3205 | 3265 | 3526 | 115.1 | 136.6 | 140 | 169.1 |
Chelyabinsk Region | UFD | P | 13.4 | 13.0 | 8.6 | 9.2 | 3526 | 1343 | 2612 | −1739 | 101.7 | 71.7 | 86.6 | 104.1 |
Republic of Altay | SFD | T | 9.5 | 13.9 | 15.3 | 16.5 | −46 | −41 | −45 | −2 | 27.8 | 14.9 | 28 | 29.5 |
Republic of Tyva | SFD | T | 13.5 | 19.4 | 13.6 | 12.7 | 9 | −8 | 1 | 3 | 12.4 | 10.7 | 11.9 | 0 |
Republic of Khakassia | SFD | T | 12.3 | 19.4 | 21.0 | 19.0 | 92 | −66 | 303 | 338 | 27.8 | 23.2 | 23.8 | 0 |
Altay Territory | SFD | T | 15.6 | 14.6 | 12.6 | 17.3 | 5081 | 4450 | 11,684 | 17,823 | 131.6 | 258.7 | 283.3 | 265.6 |
Krasnoyarsk Territory | SFD | T | 20.5 | 23.9 | 28.8 | 28.4 | 1659 | 4442 | 7694 | 11,445 | 191 | 195.8 | 286.8 | 302.5 |
Irkutsk Region | SFD | RO | 19.9 | 18.7 | 20.7 | 22.4 | 2242 | 1999 | 2907 | 5216 | 91.7 | 78.0 | 89.6 | 100.4 |
Kemerovo Region | SFD | T | 18.7 | 20.1 | 22.4 | 25.8 | 434 | −338 | 1496 | 3208 | 149.3 | 156.0 | 84 | 0 |
Novosibirsk Region | SFD | T | 18.2 | 17.2 | 17.8 | 22.6 | 2865 | 3859 | 4823 | 9274 | 440.6 | 448.5 | 444.6 | 504.9 |
Omsk Region | SFD | T | 16.7 | 15.8 | 15.3 | 14.7 | 2102 | 2718 | 3098 | 3668 | 227.7 | 265.0 | 420.7 | 643.2 |
Tomsk Region | SFD | T | 21.6 | 21.2 | 25.2 | 24.4 | 3117 | 4739 | 3303 | 5668 | 52.3 | 51.0 | 54 | 58.7 |
Republic of Buryatia | SFD | T | 12.6 | 14.1 | 14.6 | 18.7 | 415 | 538 | 429 | 591 | 66.4 | 58.8 | 54.6 | 63.9 |
Republic of Sakha (Yakutia) | FFD | RO | 10.6 | 10.4 | 10.2 | 9.6 | −237 | 48 | 153 | 102 | 191.8 | 202.8 | 208.3 | 213.9 |
Trans-Baikal Territory | FFD | RO | 14.9 | 13.1 | 13.5 | 15.7 | −18 | −20 | −318 | −4 | 70.7 | 43.4 | 39.9 | 40.1 |
Kamchatka Territory | FFD | RA | 24.6 | 16.1 | 25.0 | 45.3 | 14,630 | 17,753 | 16,354 | 40,024 | 40.8 | 42.9 | 44.9 | 0 |
Primorye Territory | FFD | T | 39.1 | 39.4 | 35.2 | 45.4 | 3112 | 16,599 | 8139 | 35,103 | 170.3 | 168.6 | 208.3 | 221 |
Khabarovsk Territory | FFD | RA | 19.3 | 17.9 | 19.4 | 20.0 | −637 | 1101 | 3875 | 14,964 | 154.3 | 154.1 | 176.6 | 203.4 |
Amur Region | FFD | T | 18.7 | 18.1 | 21.0 | 23.6 | 1106 | 1816 | 3353 | 6375 | 206.7 | 218.3 | 268.4 | 288.2 |
Jewish Autonomous Region | FFD | T | 17.6 | 13.6 | 18.9 | 16.6 | 42 | 119 | −2 | −53 | 0 | 0.0 | 0 | 0 |
Appendix A.2
Ranking Position in 2020 (2019) | Company | Specialisation | Revenue in 2020 (Million RUB) | Change (%) | Net Profit in 2020 (Million RUB) | Average Number of Employees (Persons) | Registration Region | Trade Marks | Regions of Presence |
---|---|---|---|---|---|---|---|---|---|
1 (1) | Group of companies “Sodruzhestvo” | Processing of oil-bearing crops | 287,000 | 42.08 | No data | 2950 | Kaliningrad region | — | Kaliningrad, Omsk, Amur regions |
2 (2) | Group of companies “Rusagro” | Production of sugar, pork, oil, and fat products; cultivation of agricultural crops | 158,971 | 15.05 | 24,297 | 19,300 | Moscow | Russkiy Sakhar, Brownie, Chaikofsky, Mon Caf?, Tyopliye Traditsii, Moskovsky Provansal, Ya lublu gotovit, EZHK, Mechta Khosiaiki, Stolichnaya, Schedroye leto, Rossiyanka, Benefitto, Saratovskiy, Zhar-pechka, Milie, Syrnaya kultura, Buterbrodnoe utro, Slovo Myasnika | Presence in 80 regions of Russia |
3 (3) | Group of companies “Efko” | Production of refined vegetable oils and fats | 145,000 | 18.85 | 18,000 | 17,000 | Voronezh region | Sloboda, Altero | Voronezh, Belgorod, Moscow, Sverdlovsk, Krasnodar regions, CIS countries |
4 (5) | Agroholding “Miratorg” | Livestock and crop production and processing | 139,245 | 16.87 | 28,054 | 38,277 | Moscow | Miratorg, Gurmama | Voronezh, Belgorod, Bryansk, Kursk, Kaliningrad, and Moscow regions, Moscow, St. Petersburg. Export to 30 countries of the world |
5 (4) | Group “Cherkizovo” | Breeding of pigs and poultry, processing and production of meat products and animal feed | 128,803 | 7.24 | 15,145 | 31,100 | Moscow | Cherkizovo, Petelinka Kurinoe Tsartvo, PAVA-PAVA, Cherkizovo Premium, Domashnya Kurochka, Mosselprom Dajajti, Imperiya Vkusa, Myasnaya Gubernia, PIT product, Latifa, Fileya, Samson Family dinner, Grilmania, Samson, Altai Broiler | Bryansk, Lipetsk, Kaliningrad, Kursk, Moscow, Orel, Penza, Rostov, Samara, Tambov, Tula, Ulyanovsk regions, St. Petersburg, Moscow |
6 (10) | JSC “Aston Foods and Food Ingredients” | Production of foodstuffs, oils, grains, and food ingredients | 115,768 | 73.35 | 4484 | 1921 | Rostov region | Aston, Zateya, Volshebniy Krai, Svetlitsa | Rostov and Ryazan regions |
7 (6) | Group of companies “Danone” | Production of milk, milk drinks, juices, water, and other food products | 110,742 | 1.15 | 903 | 2800 | Moscow | Activia, Actimel, Actual’, Alpro, Bebelac, Bio Balance, Danissimo, Danone, Prostokvashino, Petmol, Rastishka, Tyoma, Frendiki, Nutrilon, Malyutka | Vladimir, Vologda, Kurgan, Lipetsk, Samara, Sverdlovsk, Tyumen regions, the Republics of Tatarstan and Mordovia, Krasnodar, Krasnoyarsk regions, Moscow, St. Petersburg |
8 (13) | Group of companies “Agropromkomplektatsiya”* | Crop production, animal husbandry, and feed production | 99,224 | 25.85 | No data | 10,000 | Tver region | Blizhnie Gorki, Dmitrogorsky produkt, Iskrenne Vash, Provence Bakery | Ryazan, Tver, Kursk, Moscow regions, Moscow |
9 (7) | JSC WBD (PepsiCo) | Beverage and food production | 98,982 | −1.31 | 3076 | 9455 | Moscow | Love Juice, Domik v Derevne, Agousha, Chudo, Imunele, J7, Mazhitel, Veselyi Molochnik, Kuban Burenka, Rodniki Rossii, 100% Gold, Frugurt, Chudo Yagoda | Moscow, Krasnodar, Volgograd, Voronezh, Irkutsk, Kirov, Samara, Saratov, Sverdlovsk Tyumen regions, the Republic of Tatarstan, and other regions |
10 (8) | Ltd “Cargill”, Ltd. “Provimi” | Production of starch and starch products; production of sugars and sugar syrups; animal feed | 97,493 | 19.99 | 1950 | 1625 | Tula region | — | Voronezh, Moscow, Rostov, Tula, Krasnodar regions, Moscow |
11 (11) | GAP “Resource” | Production of food products from poultry meat; cultivation of grain and oilseed crops | 81,765 | 33.53 | No data | 19,000 | Moscow | Blagoyar, Nasha Ptichka, URUSSA, An-Noor | Stavropol and Krasnodar, Rostov, Tambov, and Orenburg regions, the Republics of Adygea, Kabardino-Balkaria, and Karachay-Cherkessia |
12 (9) | Group of companies “Agro-Belogorye”* | Animal husbandry, meat processing, plant growing, and fodder production | 68,426 | −13 | No data | 10,000 | Belgorod region | Dalnie Dali, Grill Menu Myasnoe Zastolie | Belgorod region |
13 (12) | “Norebo Holding” | Fishing and seafood | 65,945 | 9 | No data | 3000 | Murmansk region | Borealis, Seroglazka | Leningrad, Moscow, Murmansk, Kamchatka regions, St. Petersburg |
14 (14) | “Velikoluksky agro-industrial holding”* | Breeding and rearing of stock of pigs; meat processing | 61,632 | 7 | No data | 14,500 | Pskov region | Velikoluksky Myasokombinat | Republic of Karelia, Astrakhan, Bryansk, Vologda, Volgograd, Kaliningrad, Leningrad, Moscow, Novgorod, Pskov, Rostov, Ryazan, Smolensk, Tver regions, St. Petersburg |
15 (26) | Group of companies “Yug Rusi” | Production of vegetable oils, mayonnaises and sauces, flour, and canned food | 60,588 | 17.99 | 197 | 14,600 | Rostov region | Zolotaya Semechka, Avedov, Zlato, Milora, YUG RUSI Ryzhikovoe, Sto Retseptov, Anninskoye, Razdolye, Provençal, Vkusnaya Pochta, Krasnodarskiy, Healthy nutrition | Rostov, Voronezh, Volgograd, Krasnodar regions |
16 (15) | Firm “Agrocomplex named after N. I. Tkachev”* | Crop production combined with animal husbandry (mixed agriculture) | 57,278 | 7.67 | 2673 | 21,235 | Krasnodar region | Agrocomplex, Nikolaevskie Syrovarni, Ptitsa Kubani, Mramornaya Govyadina | Krasnodar region |
17 (17) | Agroholding “KOMOS Group”* | Pig breeding, poultry farming, meat and milk processing, and feed production | 52,345 | 5.32 | 1427 | 13,600 | Udmurt Republic | Selo Zelenoye, Molochnaya Rechka, Kezskiy Syrzavod, Glazovptica, Kungur Myasokombinat, Toptyzhka, Vostoc, Platoshino, Dobromyasov, Angelato, Villa Romana, Fitness time, Minions, Immunolact, Varvara Krasa, Danar, Izhmoloko, Suharev-moloko, Dlya Vsei Semyi, To be, Izhevskoye, Sozvezdie, GOST, Favorit, Udmurtryiba, Rybatskie Baiki | Udmurt Republic, Perm region, Republic of Bashkortostan, Republic of Tatarstan |
18 (16) | Agro-industrial holding “BEZRK-Belgrankorm” | Animal husbandry combined with crop production; production of poultry, pork, beef, and sausages | 50,548 | 0.76 | 5122 | 5597 | Belgorod region | Yasnie Zori, Utka Yasnozorenskaya | Belgorod, Novgorod regions |
19 (18) | LTD “Prodimex” | Production of sugar, grain, and sunflower seeds | 48,579 | 7.67 | 285 | 17,000 | Moscow | — | Republic of Bashkortostan, Belgorod, Voronezh Kursk, Penza regions, |
20 (23) | JSK “Agrosila”* | Cultivation of grain, technical and fodder crops, production of feed and oils, livestock production, poultry farming, and purchase | 46,500 | 21 | 600 | 8700 | Republic of Tatarstan | Zainskiy Sahar, Chelny-broiler, Prosto moloko, Vkysnie traditsii, Sochnaya Gamma, Delicur, Chicken han | Republic of Tatarstan, Republic of Bashkortostan, Yekaterinburg |
21 (23) | IPC “Atyashevo”* | Production of sausage products and meat delicacies | 45,677 | 81 | No data | 4721 | Republic of Mordovia | Atyashevo, Dauriya | Republic of Mordovia, Ulyanovsk region |
22 (33) | Group of companies AST | Production, storage, and processing of cereals; horticulture | 44,676 | 97.9 | 859 | No data | Moscow | — | Kaluga, Lipetsk, Moscow, Volgograd, Saratov, Voronezh, Altai, and Krasnodar regions, Chechen Republic |
23 (22) | JSC NMGK | Production of margarine and foodstuffs | 44,620 | 26.38 | 839 | 3790 | Nizhny Novgorod region | Ryaba, Sdobri, Nezhny, Astoria, Khozyayushka, Slivochnik, Toplenaya, Stepanovna, Kremlevskoe, Postnoye, Slivochnik, Delicato, Retsepty chistoty, Moy malysh, Mylo Suvenirnoye, Vanda, Monpari Provence, Dushistoye oblako, Glitserinovoye, Svetloyar, Podsolnechnoye, Originalnoye, UNIPAV | Nizhny Novgorod, Samara, Orenburg, Uryupinsk, Sorochinsk, Volgograd, Orenburg, Samara, and Saratov regions, Republic of Bashkortostan |
24 (19) | OJSC “Ostankino Meat Processing Plant” | Pig breeding; production of meat processing products and semi-finished products | 44,345 | 6.19 | 1227 | 4103 | Moscow | Papa mozhet, Ostankino, Slivochnye, Sosiska ru | Moscow and Moscow region, Smolensk region |
25 (31) | “Econiva—AIC Holding”* | Animal husbandry combined with crop production | 39,840 | 34.79 | 205 | 12,049 | Voronezh region | Econiva | Voronezh, Kursk, Novosibirsk, Kaluga, Ryazan, Moscow, Tyumen, Orenburg, Leningrad, Samara, Altai regions, Republics of Tatarstan and Bashkortostan |
26 (21) | “PRODO” Group | Poultry farming, pig breeding and processing, and grain production | 38,000 | 0 | No data | 12,000 | Moscow | Troekurovo, Klinsky, Omsky bacon, Rokoko, Nasha Ryaba, Rosa na trave, Yasnaya gorka, Umka, Chukchum, Cherny Kaban, Khalif, UMKK, Yarkoe utro, Nazionalny standart, Permsky myasokombinat | Kaluga, Moscow, Novosibirsk, Omsk, Tyumen, Perm regions, Republic of Bashkortostan |
27 (20) | JSK “PRIOSKOLE” | Poultry farming | 35,952 | −7.21 | 559 | 16,000 | Belgorod region | Prioskole, Al Safa, Coco Pullet, Fly de lunch, Slavnaya marka, Odnazhdy v derevne, Kurinye delicatesy, Kolbasnye delicatesy | Belgorod region |
28 (30) | JSK “Sibagro” | Agriculture, pig breeding, and food production | 34,071 | 21.09 | 7769 | 9015 | Tomsk region | Sibagro, Myasnaya tema | Tomsk, Sverdlovsk, Kemerovo, Tyumen regions, |
29 (—) | Group of companies “Concern Pokrovsky” | Sugar production; meat processing | 34,000 | 31.2 | 5500 | 7900 | Rostov region | Kanevskoy, Solntsem Sogrety | Krasnodar, Stavropol, Astrakhan, Volgograd, Nizhny Novgorod, Rostov regions, Chechen Republic |
30 (29) | Agro-holding “Horoshee Delo” Sphere group* | Production and processing of agricultural products | 33,579 | 33.54 | 1268 | 6500 | Republic of Mordovia | Horoshee delo | Republic of Mordovia, Ulyanovsk region |
31 (25) | Agro-holding “Steppe” with PJSFC “Sistema” | Crop production, dairy farming, intensive horticulture, and trading of agricultural products | 32,800 | 15.2 | 3900 | 6150 | Rostov region | Steppe | Krasnodar, Stavropol, Rostov regions |
32 (38) | Group of companies “Renna”* | Production of canned milk, whole milk products, and ice cream from natural cream | 32,600 | 13 | 170 | 5000 | Moscow | Korovka iz Korenovki, Alekseevskoe, Oblaka iz moloka, Ruslada, Gustiyar, Korenovskoe, Risovashka, Milkimony, Chizby, Kubanskie tvorozhniki | Krasnodar region |
33 (32) | LLC “Blago” | Vegetable oil production | 30,100 | 28.2 | No data | No data | St. Petersburg | Almador, Freya, Blago PRO, Dary Kubani | Altai, Krasnodar, Voronezh, Omsk regions |
34 (35) | JSC “Molvest” | Dairy product production | 28,700 | 12.5 | 286 | 5000 | Voronezh region | Vkusnoteevo, Molvest, Fruate, Nezhny vozrast, Ivan Poddybny, Vilzhskie prostory, Kubanskiy hutorok, Felicita | Moscow, St. Petersburg, Volgograd, Kursk, Lipetsk, Rostov, Samara, Saratov, Ulyanovsk, Krasnodar regions, Republic of Crimea |
35 (27) | Group of companies “Damate” | Agricultural production (cultivation and processing of turkey; production and processing of milk) | 26,390 | 0.34 | No data | 9000 | Penza region | Indilite, Ozerka, Molkom | Penza, Tyumen, Rostov, Stavropol regions |
36 (24) | Agro-holding “Kopitaniya”* | Agro-industrial holding of a full cycle, from crop production to the production and sale of meat products | 25,700 | −18.24 | No data | 4000 | Moscow | Lavla, Ilovliskie tsyplyata, ZMK | Moscow, Tver, Saratov, and Volgograd regions |
37 (37) | Holding “Avangard-agro” | Agricultural production | 23,146 | 11.9 | 11874 | 4700 | Moscow | Avangard-agro | Voronezh, Orel, Kursk, Tula, Lipetsk, Belgorod regions, Moscow |
38 (36) | JSFEC “Exima” | Meat processing and preservation | 23,110 | 11.33 | 2450 | 6500 | Moscow | Mikoyan, Okhotny ryad, Pivchiki, Snexi, Russkiy fermer | Moscow, Moscow, Kaluga, Vladimir regions |
39 (28) | JSC “Russian Fish Company” | Catch and sale of fish and seafood | 23,000 | −7.94 | 812 | 2000 | Moscow | Russian Fish Company | St. Petersburg, Murmansk, Arkhangelsk regions, Primorsky krai |
40 (—) | Group of companies “Foodland” | Dairy production | 22,430 | 10 | No data | 2000 | Moscow | Radost vkusa, VardeVaal, Excelsior, Lvinoe serdtse, Korol’ severa, GoldenGot, Veselyy Rodzher, Dontaler, Lyubimyy khutorok, Monarkh, Produkty is Elani, HeidiHeidi, La Paulina, Lattesso, Mlekara, Shabats, Ricrem, Meggle, Bonfesto, CooKing, Rama, Pyshka, Mamontovskaya syrovarnya, Basni o syre, Novogrudskie dary, Syrnaya volost, Savushkin product | Volgograd, Saratov regions |
41 (44) | JSC “Makfa” | Production of flour from grain, vegetable crops, and ready-made flour mixtures and dough for baking | 20,802 | 16.47 | 2300 | 2000 | Moscow | Makfa, Smak, Grand di Pasta, Grand di Oliva, Mishkinskiy Product | Sverdlovsk, Chelyabinsk, Kurgan regions, Altai, Stavropol regions |
42 (—) | Group of companies “Agroeco” | Crop production, feed production, animal husbandry, and meat processing | 20,769 | 42.2 | 3913 | 3614 | Voronezh region | Agroeco | Voronezh, Tula regions |
43 (40) | LLC Poultry Farm “Akashevskaya” | Poultry breeding and processing | 20,724 | 2.22 | 1991 | 5822 | Mari El Republic | Akashevo, Tsarevoslobodskie kolbasy, Prostomyasovo, Znatny perekus, Akashevskaya | Mari El Republic |
44 (39) | Poultry farm “Severnaya” | Poultry farming | 20,104 | −2.71 | 2035 | 1400 | Leningrad region | Severnaya | Leningrad region |
45 (46) | Group of companies “Yanta” (main assets—Irkutsk oil and fat plant, Angarsk poultry farm)* | Production of high-quality food products, raw materials for the food and processing industry, and agricultural feed | 20,070 | 15.34 | No data | No data | Irkutsk region | Baikalskoe, Vilkin, Salatny provence, Favorite cup, Standart professionalnoy kucshni, Lugovoe, Angarskaya kurochka | Primorsky Krai, Irkutsk, Amur regions |
46 (42) | Agro-holding “Trio”* | Sugar production, dairy farming, and crop production | 19,459 | 5.3 | No data | No data | Lipetsk region | No data | Lipetsk region |
47 (41) | “Aladushkin Group”* | Production of flour from cereals, vegetable crops, and ready-made flour mixtures and dough for baking; cereals, granules, and other products from cereals; production of prepared feed | 18,099 | −3.33 | No data | 950 | St. Petersburg | Yasno solnyshko, Muka predportovaya, Kudesnitsa, Aladushkin, Hleburg, FarmerGood, Gornitsa | St. Petersburg, Leningrad, Samara, Tyumen regions |
48 (43) | “Okeanrybflot” | Fishing and seafood | 17,382 | −5.08 | 2741 | 2331 | Kamchatka krai | Okeanrybflot | Moscow, St. Petersburg, Astrakhan, Murmansk regions, Kamchatka, Primorsky krai |
49 (—) | Holding company “Ak Bars”* | Animal husbandry, crop production, poultry farming, and grain processing; production of milk, eggs, sugar, and bakery products | 16,859 | 22.48 | No data | 10,000 | Republic of Tatarstan | Tsyplenok pod solntsem, Gosudarev, Ambar, Pestrechinka, Kuriny gurman, Kyrinye istorii, Ak Bars | Republic of Tatarstan, Chuvashia |
50 (—) | Agro-holding “Zvenigov” | Animal husbandry and crop production; processing | 16,344 | 9.44 | 640 | 2675 | Mari El Republic | Zvenigov | Mari El Republic |
- | Total | - | 2,828,182 | 16.7 | 153,569 | 408,380 | - | - | - |
References
- Adhikari, Sudip, and Aditya Khanal. 2022. Business risk, financial risk and savings: Does perceived higher business risk induce savings among small agricultural operations in the USA? Agricultural Finance Review 83: 107–23. [Google Scholar] [CrossRef]
- Ahmed, Zobaer, Aaron M. Shew, Manoranjan K. Mondal, Sudhir Yadav, S. V. Krishna Jagadish, P. V. Vara Prasad, Marie-Charlotte Buisson, Mahanambrota Das, and Mustafa Bakuluzzaman. 2022. Climate risk perceptions and perceived yield loss increases agricultural technology adoption in the polder areas of Bangladesh. Journal of Rural Studies 94: 274–86. [Google Scholar] [CrossRef]
- Bai, Shizhen, and Xuelian Jia. 2022. Agricultural Supply Chain Financing Strategies under the Impact of Risk Attitudes. Sustainability 14: 8787. [Google Scholar] [CrossRef]
- Bai, Ssi-zhen, Yong-gan Wang, Sheng-hua Zheng, and Shao-juan Huang. 2022. Green investment mechanism of agricultural supply chain considering risk aversion and bargaining power. Kongzhi yu Juece/Control and Decision 37: 1862–72. [Google Scholar] [CrossRef]
- Bene, Szabolcs, Péter Polgár, Márton Szűcs, Judit Márton, Eszter Szabó, and Ferenc Szabó. 2021. Environmental effects, population genetic parameters, breeding value, phenotypic and genetic trend for age at first calving of limousin cows. Journal of Central European Agriculture 22: 240–49. [Google Scholar] [CrossRef]
- Capitanio, Fabian. 2022. Risk, uncertainty, crises management and public intervention in agriculture. Italian Review of Agricultural Economics 77: 3–14. [Google Scholar] [CrossRef]
- Crăciun, Andreea-Florentina, Alexandra-Mădălina Țăran, Gratiela Georgiana Noja, Marlien Gabriel Pirtea, and Raluca-Ioanna Răcătăian. 2023. Advanced Modelling of the Interplay between Public Governance and Digital Transformation: New Empirical Evidence from Structural Equation Modelling and Gaussian and Mixed-Markov Graphical Models. Mathematics 11: 1168. [Google Scholar] [CrossRef]
- Dorczak, Roman, Marzanna Farnicka, and Inetta Nowosad. 2021. Dilemmas in managing the COVID-19 crisis. Risks 9: 80. [Google Scholar] [CrossRef]
- Expert. 2022. Rating of the Largest Agricultural Companies in Russia. Available online: https://expert.ru/expert/2021/48/spetsdoklad/44/ (accessed on 1 April 2022).
- Franken, Jason, Michael Cook, and Joost Pennings. 2022. Producer risk aversion and participation in agricultural cooperatives. Journal of Co-operative Organization and Management 10: 100171. [Google Scholar] [CrossRef]
- Gascón, Jordi, and Kevin Mamani. 2022. Community-based tourism, peasant agriculture and resilience in the face of COVID-19 in Peru. Journal of Agrarian Change 22: 362–77. [Google Scholar] [CrossRef]
- Howland, Fanny, and Jean Francois Le Coq. 2022. Disaster risk management, or adaptation to climate change? The elaboration of climate policies related to agriculture in Colombia. Geoforum 131: 163–72. [Google Scholar] [CrossRef]
- Inshakova, Agnessa, Anastasia Sozinova, and Tatiana Litvinova. 2021. Corporate fight against the COVID-19 risks based on technologies of industry 4.0 as a new direction of social responsibility. Risks 9: 212. [Google Scholar] [CrossRef]
- Institute of Scientific Communications. 2022. Dataset “Interactive Statistics and Intellectual Analytics of the Balance of the Russian Regional Economy Based of Big Data and Blockchain—2022”. Available online: https://datasets-isc.ru/data2/data-set-po-regionalnoj-ekonomike-rossii (accessed on 13 December 2022).
- International Monetary Fund. 2022. World Economic Outlook Database, October 2021. Available online: https://www.imf.org/en/Publications/WEO/weo-database/2021/October (accessed on 1 April 2022).
- Jones, Erick, Jr., and Benjamin Leibowicz. 2022. Climate risk management in agriculture using alternative electricity and water resources: A stochastic programming framework. Environment Systems and Decisions 42: 117–35. [Google Scholar] [CrossRef]
- Kakraliya, S. K., H. S. Jat, Ishwar Singh, M. K. Gora, Manish Kakraliya, Deepak Bijarniya, P. C. Sharma, and M. L. Jat. 2022. Energy and economic efficiency of climate-smart agriculture practices in a rice–wheat cropping system of India. Scientific Reports 12: 8731. [Google Scholar] [CrossRef] [PubMed]
- Kuleh, Yohanes, Zainal Ilmi, and M. Amin Kadafi. 2022. The Intensity of Agriculture in the COVID-19 from Indonesia—A Systematic Literature Review. Journal of Agriculture and Crops 8: 94–104. [Google Scholar] [CrossRef]
- Litvinova, Tatiana. 2022. Risks of Entrepreneurship amid the COVID-19 Crisis. Risks 10: 163. [Google Scholar] [CrossRef]
- Liu, Xuan. 2022. Calibration of agricultural risk programming models using positive mathematical programming: A reply. Australian Journal of Agricultural and Resource Economics 66: 729–30. [Google Scholar] [CrossRef]
- Luu, The Anh, An Thinh Nguyen, Quoc Anh Trinh, Van Tuan Pham, Ba Bien Le, Duc Thanh Nguyen, Quoc Nam Hoang, Ha T. T. Pham, The Kien Nguyen, Van Nang Luu, and et al. 2019. Farmers’ intention to climate change adaptation in agriculture in the Red River Delta Biosphere Reserve (Vietnam): A combination of Structural Equation Modeling (SEM) and Protection Motivation Theory (PMT). Sustainability 11: 2993. [Google Scholar] [CrossRef]
- Manian, Muhammad ali, Korous Khoshbakht, Hossein Mahmoudi, and Houman Liaghati. 2022. Dynamic Conservation in Risk Society: A Case Study of COVID-19 Pandemic Risk in Kashan Qanat Irrigated Agriculture. Frontiers in Public Health 10: 882–943. [Google Scholar] [CrossRef]
- Marcoulides, Katerina M., and Ke-Hai Yuan. 2016. New Ways to Evaluate Goodness of Fit: A Note on Using Equivalence Testing to Assess Structural Equation Models. Structural Equation Modeling A Multidisciplinary Journal 24: 1–6. [Google Scholar] [CrossRef]
- Melekhova, Kseniya A., Xenia G. Yankovskaya, and Alevtina G. Demidova. 2022. Potential and Opportunities of Organic Agriculture in Russia. In Environmental Footprints and Eco-Design of Products and Processes. Singapore: Springer, pp. 75–82. [Google Scholar] [CrossRef]
- Menaga, A., and S. Vasantha. 2022. Smart Sustainable Agriculture Using Machine Learning and AI: A Review. Lecture Notes in Networks and Systems 356: 447–58. [Google Scholar] [CrossRef]
- National Research University “Higher School of Economics”. 2022. Digital Economy: A Brief Statistical Collection. Available online: https://issek.hse.ru/news/551331807.html (accessed on 1 April 2022).
- Nayal, Kirti, Rakesh Raut, Pragati Priyadarshinee, Balkrishna Eknath Narkhede, Yigit Kazancoglu, and Vaibhav Narwan. 2022. Exploring the role of artificial intelligence in managing agricultural supply chain risk to counter the impacts of the COVID-19 pandemic. International Journal of Logistics Management 33: 744–72. [Google Scholar] [CrossRef]
- Panagiotou, Dimitrios, and Alkistis Tseriki. 2022. Directional predictability between trading volume and price returns in the agricultural futures markets: Risk implications for traders. Journal of Risk Finance 23: 264–88. [Google Scholar] [CrossRef]
- Park, Sang-June, and Youjae Yi. 2023. Assessing moderation effects with a heterogeneous moderated regression analysis. Quality and Quantity 57: 701–19. [Google Scholar] [CrossRef]
- Pena, Alejandro, Juan C. Tejada, Juan David Gonzalez-Ruiz, and Mario Gongora. 2022. Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach. Sustainability 14: 6668. [Google Scholar] [CrossRef]
- Pimentel, João, Paulo J. Azevedo, and Luis Torgo. 2023. Subgroup mining for performance analysis of regression models. Expert Systems 40: e13118. [Google Scholar] [CrossRef]
- Polukhin, Andrey A., and Veronika I. Panarina. 2022. Financial Risk Management for Sustainable Agricultural Development Based on Corporate Social Responsibility in the Interests of Food Security. Risks 10: 17. [Google Scholar] [CrossRef]
- Popkova, Elena Gennadievna. 2022. Vertical Farms as a Promising Direction for the Development of Sustainable Agriculture. In Environmental Footprints and Eco-Design of Products and Processes. Singapore: Springer, pp. 273–78. [Google Scholar] [CrossRef]
- Popkova, Elena Gennadievna, Anastasia A. Sozinova, and Elena V. Sofiina. 2022. Model of Agriculture 4.0 Based on Deep Learning: Empirical Experience, Current Problems and Applied Solutions. Smart Innovation, Systems and Technologies 264: 333–46. [Google Scholar] [CrossRef]
- Prasad, M. V., T. Madhuridevi, K. Rajesh, S. S. N. M. Mahesh, K. Srikanth, M. Siva, and R. K. Mathur. 2022. Perception of farmers on the impact of lockdown due to COVID-19 on agriculture and oil palm cultivation in the state of Andhra Pradesh, India. Journal of Plantation Crops 50: 20–25. [Google Scholar] [CrossRef]
- Qureshi, Mohamed Rafik Noor Mohamed, Ali Saeed Almuflih, Janpriy Sharma, Mohit Tyagi, Shubhendu Singh, and Naif Almakayeel. 2022. Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption. Sustainability 14: 8410. [Google Scholar] [CrossRef]
- Rani, S. V. Jansi, P. Senthil Kumar, R. Priyadharsini, S. Jahnavi Srividya, and S. Harshana. 2022. Automated weed detection system in smart farming for developing sustainable agriculture. International Journal of Environmental Science and Technology 19: 9083–94. [Google Scholar] [CrossRef]
- Ricome, Aymeric, and Arnaud Reynaud. 2022. Marketing contract choices in agriculture: The role of price expectation and price risk management. Agricultural Economics 53: 170–86. [Google Scholar] [CrossRef]
- Rosstat (Federal State Statistics Service). 2023. Regions of Russia. Socio-Economic Indicators—Statistical Collections for 2020, 2021 and 2022. Available online: https://rosstat.gov.ru/folder/210/document/13204 (accessed on 1 March 2023).
- Sánchez, Marco V., Martin Cicowiez, and Araceli Ortega. 2022. Prioritizing public investment in agriculture for post-COVID-19 recovery: A sectoral ranking for Mexico. Food Policy 109: 102251. [Google Scholar] [CrossRef]
- Singh, Paramjit Singh Jamir, Ayodeji Emmanuel Oke, Ahmed Farouk Kineber, Oludolapo Ibrahim Olanrewaju, Olayinka Omole, Mohamad Shaharudin Samsurijan, and Rosfaraliza Azura Ramli. 2023. A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work—A Structural Equation Modeling Approach. Mathematics 11: 1003. [Google Scholar] [CrossRef]
- Sohail, Muhammad Tayyab, and Shaoming Chen. 2022. A systematic PLS-SEM approach on assessment of indigenous knowledge in adapting to floods; A way forward to sustainable agriculture. Frontiers in Plant Science 13: 990785. [Google Scholar] [CrossRef]
- Sohail, Muhammad Tayyab, Sohaib Mustafa, Mazurina Mohd Ali, and Sidra Riaz. 2022. Agricultural Communities’ Risk Assessment and the Effects of Climate Change: A Pathway Toward Green Productivity and Sustainable Development. Frontiers in Environmental Science 10: 948016. [Google Scholar] [CrossRef]
- Štreimikienė, Dalia, Tomas Baležentis, Artiom Volkov, Erika Ribašauskienė, Mangirdas Morkūnas, and Agnė Žičkienė. 2022. Negative effects of COVID-19 pandemic on agriculture: Systematic literature review in the frameworks of vulnerability, resilience and risks involved. Economic Research-Ekonomska Istrazivanja 35: 529–45. [Google Scholar] [CrossRef]
- Sun, Qingru, Meiyi Hou, Shuaiwei Shi, Liwei Cui, and Zenglei Xi. 2022. The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method. Agriculture 12: 361. [Google Scholar] [CrossRef]
- Sureiman, Onchiri, and Callen Moraa Mangera. 2020. F-test of overall significance in regression analysis simplified. Journal of the Practice of Cardiovascular Sciences 6: 116–22. [Google Scholar] [CrossRef]
- Syafriana, Tamara Rezti, Ni Wayan Surya Solimun Wardhani, Atiek Iriany, and Adji Achmad Rinaldo Fernandes. 2023. Development of Nonparametric Structural Equation Modeling on Simulation Data Using Exponential Functions. Mathematics and Statistics 11: 1–12. [Google Scholar] [CrossRef]
- Tong, Qingmeng, Brent Swallow, Lu Zhang, and Junbiao Zhang. 2019. The roles of risk aversion and climate-smart agriculture in climate risk management: Evidence from rice production in the Jianghan Plain, China. Climate Risk Management 26: 100199. [Google Scholar] [CrossRef]
- Tseytlin, Evgeniy Michailovich, and Angelina Alekseevna Grebneva. 2022. On the advantages and disadvantages of the extrapolation method and of correlation and regression analysis for predicting the volume of waste generation of enterprises of the mineral resource complex. Mining Informational and Analytical Bulletin 11: 80–94. [Google Scholar] [CrossRef]
- Van Lenthe, Frank J., Tessa Jansen, and Carlin B. M. Kamphuis. 2015. Understanding socio-economic inequalities in food choice behaviour: Can Maslow’s pyramid help? British Journal of Nutrition 113: 1139–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, Youzhi, Xinwei Guo, Fan Zhang, Huijuan Yin, Ping Guo, Wenge Zhang, and Qiangkun Li. 2022. The spatially-distributed ANN-optimization approach for water-agriculture-ecology nexus management under uncertainties and risks. Agricultural Water Management 271: 107–780. [Google Scholar] [CrossRef]
- Wegren, Stephen K. 2021. Prospects for Sustainable Agriculture in Russia. European Countryside 13: 193–207. [Google Scholar] [CrossRef]
- Welsh, Jonathon Michael, Andrea S. Taschetto, and James P. Quinn. 2022. Climate and agricultural risk: Assessing the impacts of major climate drivers on Australian cotton production. European Journal of Agronomy 140: 126–604. [Google Scholar] [CrossRef]
- World Bank. 2022. World Development Indicators: Structure of Output. Available online: http://wdi.worldbank.org/table/4.2 (accessed on 1 April 2022).
- Yang, Jiachen, Guipeng Lan, Yang Li, Yicheng Gong, Zhuo Zhang, and Sezai Ercisli. 2022b. Data quality assessment and analysis for pest identification in smart agriculture. Computers and Electrical Engineering 103: 108322. [Google Scholar] [CrossRef]
- Yang, Jiachen, Xiaolan Guo, Yang Li, Francesco Marinello, Sezai Ercisli, and Zhuo Zhang. 2022a. A survey of few-shot learning in smart agriculture: Developments, applications, and challenges. Plant Methods 18: 28. [Google Scholar] [CrossRef]
- Yankovskaya, Veronika V., Timur A. Mustafin, Dmitry A. Endovitsky, and Artem V. Krivosheev. 2022. Corporate Social Responsibility as an Alternative Approach to Financial Risk Management: Advantages for Sustainable Development. Risks 10: 106. [Google Scholar] [CrossRef]
- Yelikbayev, Kuanysh, and Inna Andronova. 2022. The Interaction of the EEU Member States and Risks of Their Mutual Trade during the COVID-19 Pandemic: Implications for the Management of Corporate Social Responsibility. Risks 10: 27. [Google Scholar] [CrossRef]
- Yu, Xi, Florian Schuberth, and Jörg Henseler. 2023. Specifying composites in structural equation modeling: A refinement of the Henseler–Ogasawara specification. Statistical Analysis and Data Mining 1: 1–10. [Google Scholar] [CrossRef]
- Yuan, Ke-Hai, Yong Wen, and Jiashan Tang. 2023. Sensitivity Analysis of the Weights of the Composites Under Partial Least-Squares Approach to Structural Equation Modeling. Structural Equation Modeling 30: 53–69. [Google Scholar] [CrossRef]
- Zhang, Junlong, Yongping Li, Li You, Guohe Huang, Xiaomei Xu, and Xiaoya Wang. 2022a. Optimizing effluent trading and risk management schemes considering dual risk aversion for an agricultural watershed. Agricultural Water Management 269: 107716. [Google Scholar] [CrossRef]
- Zhang, Weijia, Jie Huang, Tianyuan Zhang, and Qian Tan. 2022b. A risk-based stochastic model for supporting resources allocation of agricultural water-energy-food system under uncertainty. Journal of Hydrology 610: 127864. [Google Scholar] [CrossRef]
Research Question | Research Objective | Research Method | Essence of the Research |
---|---|---|---|
RQ1: How have the risks of agriculture changed during the COVID-19 crisis? | Risk analysis of agriculture during the COVID-19 crisis | Horizontal analysis method | Analysis of changes in the volume of production and the net financial results of agricultural companies in the regions of Russia in 2020 compared to 2019 |
RQ2: Do innovations facilitate better management of agricultural risks, to increase resilience to the risks of a crisis? | Modelling the contribution of smart technologies to agricultural risk management during the COVID-19 crisis | Structural equation modelling (SEM) method | Modelling systemic links between the costs of agricultural R&D in 2019 and the production and balanced financial results of agricultural companies in Russian regions in 2020 |
Development of a framework for a “smart” vertical farm, the risks of which are resistant to crises through the use of datasets and machine learning | Case-study method | Description of the case experience of organising the work of a “smart” vertical farm of ISC * and CSDTL * based on datasets and machine learning, reflecting its advantages in the form of increased risk resistance of this farm to crises—in particular, the COVID-19 crisis |
Regression statistics | ||||||
Multiple R | 0.7804 | |||||
R-squared | 0.6091 | |||||
Adjusted R-squared | 0.5925 | |||||
Standard error | 6382.1391 | |||||
Observations | 75 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 3 | 4,505,592,433 | 1,501,864,144 | 36.8721 | 1.77 × 10−14 | |
Residual | 71 | 2,891,950,680 | 40,731,699.7130 | |||
Total | 74 | 7,397,543,113 | ||||
Coefficients | Standard Error | t-Stat | p-Value | Lower 95% | Upper 95% | |
Y-intercept | −2671.2945 | 1720.8633 | −1.5523 | 0.1250 | −6102.5985 | 760.0095 |
R&D19 | −79.6784 | 10.8327 | −7.3553 | 2.6 × 10−10 | −101.2782 | −58.0785 |
R&D20 | 84.2098 | 10.3861 | 8.1080 | 1.1 × 10−11 | 63.5006 | 104.9190 |
Production20 | 180.6058 | 58.0357 | 3.1120 | 0.00268 | 64.8859 | 296.3257 |
Regression Statistics | ||||||
Multiple R | 0.2514 | |||||
R-squared | 0.0632 | |||||
Adjusted R-squared | 0.0372 | |||||
Standard error | 13.0653 | |||||
Observations | 75 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 829.2160 | 414.6080 | 2.4288 | 0.0953 | |
Residual | 72 | 12,290.6259 | 170.7031 | |||
Total | 74 | 13,119.8419 | ||||
Coefficients | Standard Error | t-Stat | p-Value | Lower 95% | Upper 95% | |
Y-intercept | 25.6342 | 1.7941 | 14.2881 | 0.0000 | 22.0578 | 29.2107 |
R&D20 | 0.0067 | 0.0038 | 1.7575 | 0.0831 | −0.0009 | 0.0143 |
Balance19 | 0.0002 | 0.0001 | 1.4782 | 0.1437 | −0.0001 | 0.0004 |
Categories of Regions by the Level and Rate of Socioeconomic Development | Correlation of R&D in 2019 with Production in 2020 | Correlation of R&D in 2019 with Balance in 2020 |
---|---|---|
Rockets: leading and quickly developing regions | −0.1041 | 0.1384 |
Racers: regions with large potential for development | 0.4428 | −0.5048 |
Parachutists: progressive regions with slow development | 0.9915 | 0.5895 |
Turtles: lagging regions | 0.6161 | 0.5090 |
Categories of Regions by the Level and Rate of Socioeconomic Development | Correlation between R&D in 2019 and Production in 2020 | Correlation between R&D in 2019 and Balance in 2020 |
---|---|---|
CFD—Central Federal District; | −0.0815 | −0.0185 |
NWFD—Northwestern Federal District; | −0.4581 | −0.1482 |
SFD—Southern Federal District; | 0.8206 | 0.8062 |
NCFD—North Caucasus Federal District; | 0.7575 | 0.8557 |
VFD—Volga Federal District; | 0.2037 | 0.1955 |
UFD—Ural Federal District; | −0.7837 | 0.6037 |
SFD—Siberian Federal District; | 0.7428 | 0.6107 |
FFD—Far Eastern Federal District. | −0.0255 | −0.1014 |
Area of Comparison | Existing Literature | New Scientific Results Obtained in the Article | ||
---|---|---|---|---|
Postulates | Sources | |||
Determinants of agricultural risks | Production risks | Natural and climatic factors | Ahmed et al. (2022), Sohail et al. (2022), Zhang et al. (2022b) | Technological factors |
Financial risks | Market factors (including crisis) | Adhikari and Khanal (2022), Bai and Jia (2022), Bai et al. (2022) | ||
The contribution of “smart” technologies to reduce the risks of agriculture | Production risks | AI-based horizontal farm resource improvement | Nayal et al. (2022) | System automation of production and distribution processes of a “smart” vertical farm based on datasets and machine learning |
Financial risks | Intelligent sales decision support based on AI | Pena et al. (2022) | ||
Changing risks in agriculture during the COVID-19 crisis | Production risks | Increased due to the growth of the cost of raw, materials, equipment for agriculture | Prasad et al. (2022) | Increased only in those economic systems and only in those agricultural companies that are to a small extent automated, while “smart” technologies make it possible to achieve crisis resilience |
Financial risks | Increased due to the disruption of value chains, a decrease in effective demand, and government regulation of food prices | Gascón and Mamani (2022), Kuleh et al. (2022) | ||
Agricultural risk management | Production risks | Increasing the climate resilience of agriculture | Howland and Francois Le Coq (2022), Jones and Leibowicz (2022) | Systemic risk management in agriculture based on “smart” technologies |
Financial risks | Strengthening the market positions of agricultural companies | Ricome and Reynaud (2022), Wang et al. (2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leybert, B.M.; Shmaliy, O.V.; Gornostaeva, Z.V.; Mironova, D.D. Risk Mitigation in Agriculture in Support of COVID-19 Crisis Management. Risks 2023, 11, 92. https://doi.org/10.3390/risks11050092
Leybert BM, Shmaliy OV, Gornostaeva ZV, Mironova DD. Risk Mitigation in Agriculture in Support of COVID-19 Crisis Management. Risks. 2023; 11(5):92. https://doi.org/10.3390/risks11050092
Chicago/Turabian StyleLeybert, Boris M., Oksana V. Shmaliy, Zhanna V. Gornostaeva, and Daria D. Mironova. 2023. "Risk Mitigation in Agriculture in Support of COVID-19 Crisis Management" Risks 11, no. 5: 92. https://doi.org/10.3390/risks11050092