Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach
Abstract
:1. Introduction
2. Non-Ruin Probabilities
2.1. Results
2.1.1. Special Cases
2.2. Proofs
2.2.1. Step 1: First-Meeting in a Lower Boundary.
2.2.2. Step 2: Back to the Ruin Problem
3. Reserves at and Prior to Ruin
3.1. Results
3.2. Proofs
4. Ruin Time
4.1. Results
4.2. Proofs
Acknowledgments
Conflicts of Interest
References
- H.L. Seal. Survival Probabilities, the Goal of Risk Theory. Chichester, UK: Wiley, 1978. [Google Scholar]
- D.C.M. Dickson. Insurance Risk and Ruin. Cambridge, UK: Cambridge University Press, 2005. [Google Scholar]
- S. Asmussen, and H. Albrecher. Ruin Probabilities. Singapore: World Scientific, 2010. [Google Scholar]
- L. Takács. Combinatorial Methods in the Theory of Stochastic Processes. New York, NY, USA: Wiley, 1967. [Google Scholar]
- A.E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Berlin, Germany: Springer, 2006. [Google Scholar]
- J. Garrido, and M. Morales. “On the expected discounted penalty function for Lévy risk processes.” N. Am. Actuar. J. 10 (2006): 196–217. [Google Scholar] [CrossRef]
- R.A. Doney, and A.E. Kyprianou. “Overshoots and undershoots of Lévy processes.” Ann. Appl. Probab. 16 (2006): 91–106. [Google Scholar] [CrossRef]
- M. Morales. “On the expected discounted penalty function for a perturbed risk process driven by a subordinator.” Insur. Math. Econ. 40 (2007): 293–301. [Google Scholar] [CrossRef]
- R.L. Loeffen, and P. Patie. “Absolute Ruin in the Ornstein–Uhlenbeck Type Risk Model.” arXiv.org e-Print archive, 2010. Available online at http://arxiv.org/abs/1006.2712 (accessed on 11 June 2010).
- A. Kuznetsov, and M. Morales. “Computing the finite-time expected discounted penalty function for a family of Lévy risk processes.” Scand. Actuar. J., 2011. [Google Scholar] [CrossRef]
- Z. Michna. “Formula for the Supremum Distribution of a Spectrally Positive Lévy Process.” arXiv.org e-Print archive, 2012. Available online at http://arxiv.org/abs/1104.1976 (accessed on 29 May 2012).
- A.E. Kyprianou, and C. Ott. “Spectrally negative Lévy processes perturbed by functionals of their running supremum.” J. Appl. Probab. 49 (2012): 1005–1014. [Google Scholar] [CrossRef]
- Z. Zhang, H. Yang, and H. Yang. “On a Sparre Andersen risk model perturbed by a spectrally negative Lévy process.” Scand. Actuar. J. 3 (2013): 213–239. [Google Scholar] [CrossRef]
- F. Dufresne, and H.U. Gerber. “Three methods to caculate the probability of ruin.” ASTIN Bull. 19 (1989): 71–90. [Google Scholar] [CrossRef]
- D.C.M. Dickson, and A. Egídios dos Reis. “Ruin problems and dual events.” Insur. Math. Econ. 14 (1994): 51–60. [Google Scholar] [CrossRef]
- H.U. Gerber, and E.S.W. Shiu. “On the time value of ruin.” N. Am. Actuar. J. 2 (1998): 48–78. [Google Scholar] [CrossRef]
- W. Feller. An Introduction to Probability Theory and its Applications, 2nd ed. New York, NY, USA: Wiley, 1971, Volume 2. [Google Scholar]
- S. Asmussen. Applied Probability and Queues. New York, NY, USA: Springer, 2003. [Google Scholar]
- J. Bertoin. Lévy Processes. Cambridge, UK: Cambridge University Press, 1996. [Google Scholar]
- H.U. Gerber, and E.S.W. Shiu. “The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin.” Insur. Math. Econ. 21 (1997): 129–137. [Google Scholar] [CrossRef]
- H.U. Gerber, and E.S.W. Shiu. “Discussion on the paper by Garrido, J. and Morales, M.” N. Am. Actuar. J. 10 (2006): 216–218. [Google Scholar] [CrossRef]
- D. Perry, W. Stadje, and S. Zacks. “Contributions to the theory of first-exit times of some compound processes in queueing theory.” Queueing Syst. 33 (1999): 369–379. [Google Scholar] [CrossRef]
- P. Picard, and C. Lefèvre. “The probability of ruin in finite time with discrete claim size distribution.” Scand. Actuar. J. 1 (1997): 58–69. [Google Scholar] [CrossRef]
- F.E. De Vylder. “Numerical finite-time ruin probabilities by the Picard–Lefèvre formula.” Scand. Actuar. J. 2 (1999): 97–105. [Google Scholar] [CrossRef]
- F.E. De Vylder, and M.J. Goovaerts. “Explicit finite-time and infinite time ruin probabilities in the continuous case.” Insur. Math. Econ. 24 (1999): 155–172. [Google Scholar] [CrossRef]
- D. Rullière, and S. Loisel. “Another look at the Picard–Lefèvre formula for finite-time ruin probabilities.” Insur. Math. Econ. 35 (2004): 187–203. [Google Scholar] [CrossRef]
- K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge, UK: Cambridge University Press, 1999. [Google Scholar]
- D. Appelbaum. Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge, UK: Cambridge University Press, 2009. [Google Scholar]
- D.G. Kendall. “Some problems in the theory of dams.” J. R. Stat. Soc. B 19 (1957): 207–212. [Google Scholar]
- L. Takács. “On the distribution of the supremum for stochastic processes with interchangeable increments.” Trans. Am. Math. Soc. 119 (1965): 367–379. [Google Scholar] [CrossRef]
- K. Borovkov, and Z. Burq. “Kendall’s identity for the first-crossing time revisited.” Electr. Commun. Probab. 6 (2001): 91–94. [Google Scholar] [CrossRef]
- M. Huzak, M. Perman, H. S̆ikić, and Z. Vondrac̆ek. “Ruin probabilities and decompositions for general perturbed risk processes.” Ann. Appl. Probab. 14 (2004): 1378–1397. [Google Scholar]
- H.U. Gerber. “Mathematical fun with ruin theory.” Insur. Math. Econ. 7 (1988): 15–23. [Google Scholar] [CrossRef]
- F. Dufresne, H.U. Gerber, and E.S.W. Shiu. “Risk theory with the gamma process.” ASTIN Bull. 21 (1991): 177–192. [Google Scholar] [CrossRef]
- D.C.M. Dickson, and H.R. Waters. “Gamma processes and finite time survival probabilities.” ASTIN Bull. 23 (1993): 259–272. [Google Scholar] [CrossRef]
- Z. Michna. “Ruin probability on a finite time horizon.” Math. Econ. 6 (2010): 65–74. [Google Scholar]
- M. Morales. “Risk theory with the generalized inverse Gaussian Lévy process.” ASTIN Bull. 34 (2004): 361–377. [Google Scholar] [CrossRef]
- F. Dufresne, and H.U. Gerber. “The surpluses immediately before and at ruin, and the amount of claim causing ruin.” Insur. Math. Econ. 7 (1988): 193–199. [Google Scholar] [CrossRef]
- D.C.M. Dickson. “On the distribution of the surplus prior to ruin.” Insur. Math. Econ. 11 (1992): 191–207. [Google Scholar] [CrossRef]
- G.E. Willmot, and X.S. Lin. “Exact and approximate properties of the distribution of surplus before and after ruin.” Insur. Math. Econ. 23 (1998): 91–110. [Google Scholar] [CrossRef]
Appendix
A. Special Cases
A.1. Compound Poisson Process
A.2. Gamma Process
A.3. α-Stable Subordinator
A.4. Inverse Gaussian Process
B. Useful Properties
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lefèvre, C.; Picard, P. Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach. Risks 2013, 1, 192-212. https://doi.org/10.3390/risks1030192
Lefèvre C, Picard P. Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach. Risks. 2013; 1(3):192-212. https://doi.org/10.3390/risks1030192
Chicago/Turabian StyleLefèvre, Claude, and Philippe Picard. 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach" Risks 1, no. 3: 192-212. https://doi.org/10.3390/risks1030192
APA StyleLefèvre, C., & Picard, P. (2013). Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach. Risks, 1(3), 192-212. https://doi.org/10.3390/risks1030192