Intermittent Hypoxia Interferes with Autocrine Effects of GABA on Insulin Secretion in Postnatal Rodents—Implications for Pediatric Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intermittent Hypoxia Exposure to Islets
2.2. Intermittent Hypoxia Exposure to Animals
2.3. Ethical Approval
2.4. Isolation of Islets and Subcellular Protein Fractionation
2.5. Ratiometric Calcium Imaging
2.6. ELISA
2.7. Western Blot Assays
2.8. Colorimetric Assay for Chloride Quantification
2.9. RNA Extraction and Quantitative Real-Time RT-PCR
2.10. Statistics
3. Results
3.1. Intracellular Calcium Levels in Pancreatic β Cells Are Elevated by Exogenous GABA Challenge
3.2. Responses of Primary Islets to IH Exposure to Different Glucose Levels
3.3. IH Exposure for 1 h at Postnatal Day 1 (P0) Decreases Serum Insulin and Reduces GABAA Receptor Levels in Pancreatic Islets
3.4. Comparisons of Insulin Secretion Levels by Primary Islets Responding to Exogenous Addition of GABA and Bicuculine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramirez-Silva, I.; Rivera, J.A.; Trejo-Valdivia, B.; Stein, A.D.; Martorell, R.; Romieu, I.; Barraza-Villarreal, A.; Avila-Jiménez, L.; Ramakrishnan, U. Relative weight gain through age 4 years is associated with increased adiposity, and higher blood pressure and insulinemia at 4-5 years of age in Mexican children. J. Nutr. 2018, 148, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Matlock, K.A.; Guo, Y.; Khoury, J.C.; Gurbani, N.; Crimmins, N.A. Obstructive Sleep apnea in pediatric type 2 diabetes—prevalence, demographics, and screening practices. Diabetes 2018, 67, 1359-P. [Google Scholar] [CrossRef]
- Braun, M.; Ramracheya, R.; Bengtsson, M.; Clark, A.; Walker, J.N.; Johnson, P.R.; Rorsman, P. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 2010, 59, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Vakilian, M.; Tahamtani, Y.; Ghaedi, K. A review on insulin trafficking and exocytosis. Gene 2019, 706, 52–61. [Google Scholar] [CrossRef]
- Best, L. Glucose-induced electrical activity in rat pancreatic beta-cells: Dependence on intracellular chloride concentration. J. Physiol. 2005, 568, 137–144. [Google Scholar] [CrossRef]
- Kursan, S.; McMillen, T.S.; Beesetty, P.; Dias-Junior, E.; Almutairi, M.M.; Sajib, A.A.; Kozak, J.A.; Aguilar-Bryan, L.; Fulvio, M.D. The neuronal K+Cl− co-transporter 2 (Slc12a5) modulates insulin secretion. Sci. Rep. 2017, 7, 1732. [Google Scholar] [CrossRef]
- Di Fulvio, M.; Aguilar-Bryan, L. Chloride transporters and channels in β-cell physiology: Revisiting a 40-year-old model. Biochem. Soc. Trans. 2019, 47, 1843–1855. [Google Scholar] [CrossRef]
- Korol, S.V.; Jin, Z.; Jin, Y.; Bhandage, A.K.; Tengholm, A.; Gandasi, N.R.; Barg, S.; Espes, D.; Carlsson, P.-O.; Laver, D.; et al. Functional characterization of native, high-affinity GABA(A) receptors in human pancreatic beta cells. eBioMedicine 2018, 30, 273–282. [Google Scholar] [CrossRef]
- Menegaz, D.; Hagan, D.W.; Almaça, J.; Cianciaruso, C.; Rodriguez-Diaz, R.; Molina, J.; Dolan, R.M.; Becker, M.W.; Schwalie, P.C.; Nano, R.; et al. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat. Metab. 2019, 1, 1110–1126. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Liu, X.; Wang, Y.; Mao, F.; Mao, J.; Lu, X.; Jiang, D.; Wan, Y.; Lv, J.-Y.; et al. Study of GABA in healthy volunteers: Pharmacokinetics and pharmacodynamics. Front. Pharmacol. 2015, 6, 260. [Google Scholar] [CrossRef][Green Version]
- Hosseini Dastgerdi, A.; Sharifi, M.; Soltani, N. GABA administration improves liver function and insulin resistance in offspring of type 2 diabetic rats. Sci. Rep. 2021, 11, 23155. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.C.; Hagan, D.W.; Santini-González, J.; Phelps, E.A. Effects of sustained GABA releasing implants on pancreatic islets in mice. Drug Deliv. Transl. Res. 2021, 11, 2198–2208. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Wu, J.; Tang, X.; Tan, X.; Benedict, C. Oral antidiabetics and sleep among type 2 diabetes patients: Data from the UK. Biobank. Front. Endocrinol. 2021, 12, 763138. [Google Scholar] [CrossRef] [PubMed]
- Pae, E.K.; Harper, R.M. Potential mechanisms underlying hypoxia-induced diabetes in a rodent model: Implications for COVID-19. Children 2021, 8, 1178. [Google Scholar] [CrossRef] [PubMed]
- Kilb, W. When are depolarizing GABAergic responses excitatory? Front. Mol. Neurosci. 2021, 14, 747835. [Google Scholar] [CrossRef]
- Lombardi, A.; Jedlicka, P.; Luhmann, H.J.; Kilb, W. Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl− influx in mature and suppress Cl− efflux in immature neurons. PLoS Comput. Biol. 2021, 17, e1008573. [Google Scholar] [CrossRef]
- Pae, E.K.; Kim, G. Insulin production hampered by intermittent hypoxia via impaired zinc homeostasis. PLoS ONE 2014, 9, e90192. [Google Scholar] [CrossRef]
- Temple, K.A.; Leproult, R.; Morselli, L.; Ehrmann, D.A.; Van Cauter, E.; Mokhlesi, B. Sex differences in the impact of obstructive sleep apnea on glucose metabolism. Front. Endocrinol. 2018, 9, 376. [Google Scholar] [CrossRef]
- Kim, G.; Chung, M.-K.; Pae, E.K. Insulin secretion by β-cell-like cells derived from pulp stem cells depends on augmented cytosolic zinc levels than GABA levels. Appl. Sci. 2020, 10, 7476. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Peng, Y.J.; Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Investig. 2020, 130, 5042. [Google Scholar] [CrossRef]
- Song, S.O.; He, K.; Narla, R.R.; Kang, H.G.; Ryu, H.U.; Boyko, E.J. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab. J. 2019, 43, 144. [Google Scholar] [CrossRef] [PubMed]
- Ebert, M.H.; Schmidt, D.E.; Thompson, T.; Butler, M.G. Elevated plasma gamma-aminobutyric acid (GABA) levels in individuals with either Prader-Wili syndrome or Angelman syndrome. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Petty, F.; Kramer, G.L.; Davis, L.L.; Fulton, M.; Adinoff, B. Plasma gamma-aminobutyric acid (GABA) predicts outcome in patients with alcohol dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry 1997, 21, 809. [Google Scholar] [CrossRef]
- Kheirandish-Gozal, L.; McManus, C.J.T.; Kellermann, G.H.; Samiei, A.; Gozal, D. Urinary neurotransmitters are selectively altered in children with obstructive sleep apnea and predict cognitive morbidity. Chest 2013, 143, 1576. [Google Scholar] [CrossRef] [PubMed]
- Macey, P.M.; Sarma, M.K.; Nagarajan, R.; Aysola, R.; Siegel, J.M.; Harper, R.M.; Thomas, M.A. Obstructive sleep apnea is associated with low GABA and high glutamate in the insular cortex. J. Sleep Res. 2016, 25, 390. [Google Scholar] [CrossRef]
- Dong, H.; Kumar, M.; Zhang, Y.; Gyulkhandanyan, A.; Xiang, Y.Y.; Ye, B.; Perella, J.; Hyder, A.; Zhang, N.; Wheeler, M.; et al. Gamma-aminobutyric acid up- and downregulates insulin secretion from beta cells in concert with changes in glucose concentration. Diabetologia 2006, 49, 697. [Google Scholar] [CrossRef]
- Bansal, P.; Wang, S.; Liu, S.; Xiang, Y.Y.; Lu, W.Y.; Wang, Q. GABA coordinates with insulin in regulating secretory function in pancreatic INS-1 β-cells. PLoS ONE 2011, 6, e26225. [Google Scholar] [CrossRef]
- Soltani, N.; Qiu, H.; Aleksic, M.; Glinka, Y.; Zhao, F.; Liu, R.; Li, Y.; Zhang, N.; Chakrabarti, R.; Ng, T.; et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Natl. Acad. Sci. USA 2011, 108, 11692–11697. [Google Scholar] [CrossRef]
- Wollheim, C.B.; Sharp, G.W. Regulation of insulin release by calcium. Physiol. Rev. 1981, 61, 914. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Q.; Prud’homme, G.J. GABAergic system in the endocrine pancreas: A new target for diabetes treatment. Diabetes Metab. Syndr. Obes. 2015, 8, 79. [Google Scholar] [CrossRef][Green Version]
- Field, M.; Dorovykh, V.; Thomas, P.; Smart, T.G. Physiological role for GABAA receptor desensitization in the induction of long-term potentiation at inhibitory synapses. Nat. Commun. 2021, 12, 2112. [Google Scholar] [CrossRef] [PubMed]
- Mears, D.; Rojas, E. Properties of voltage-gated Ca2+ currents measured from mouse pancreatic beta-cells in situ. Biol. Res. 2006, 39, 505. [Google Scholar] [CrossRef] [PubMed]
- Kansra, A.R.; Lakkunarajah, S.; Jay, M.S. Childhood and adolescent obesity: A review. Front. Pediatr. 2021, 8, 581461. [Google Scholar] [CrossRef] [PubMed]
- Muraki, I.; Wada, H.; Tanigawa, T. Sleep apnea and type 2 diabetes. J. Diabetes Investig. 2018, 9, 991–997. [Google Scholar] [CrossRef]
- Aurora, R.N.; Punjabi, N.M. Postprandial hyperglycemia in type 2 diabetes and obstructive sleep apnea. Sleep Med. 2021, 84, 173–178. [Google Scholar] [CrossRef]
- Pae, E.K.; Ahuja, B.; Kim, M.; Kim, G. Impaired glucose homeostasis after a transient intermittent hypoxic exposure in neonatal rats. Biochem. Biophys. Res. Commun. 2013, 441, 637–642. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Sharifi, M.R.; Sharifi, M.; Soltani, N. Gamma-aminobutyric acid attenuates insulin resistance in type 2 diabetic patients and reduces the risk of insulin resistance in their offspring. Biomed. Pharmacother. 2021, 138, 111440. [Google Scholar] [CrossRef]
Gene | Sequence (5′ → 3′) |
---|---|
GABAARα1 | F: CTCCTACAGCAACCAGCTATAC |
NM_183326 | R: GCTTGACTTCTTTCGGTTCTATG |
GABAARα2 | F: GACTCCTGACACCTTCTTTCAC |
NM_001135779 | R: CAGCAATGTTCCGTCATCCT |
GABAARα3 | F: GTCTCTCCAAGTTGCTGTCTAA |
NM_017069 | R: CCAGTGGTTCCAGGTAGAATAC |
β-actin | F: ACAGGATGCAGAAGGAGATTAC |
NM_031144 | R: ACAGTGAGGCCAGGATAGA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pae, E.-K.; Chung, M.-K.; Harper, R.M. Intermittent Hypoxia Interferes with Autocrine Effects of GABA on Insulin Secretion in Postnatal Rodents—Implications for Pediatric Obstructive Sleep Apnea. Children 2022, 9, 1305. https://doi.org/10.3390/children9091305
Pae E-K, Chung M-K, Harper RM. Intermittent Hypoxia Interferes with Autocrine Effects of GABA on Insulin Secretion in Postnatal Rodents—Implications for Pediatric Obstructive Sleep Apnea. Children. 2022; 9(9):1305. https://doi.org/10.3390/children9091305
Chicago/Turabian StylePae, Eung-Kwon, Man-Kyo Chung, and Ronald M. Harper. 2022. "Intermittent Hypoxia Interferes with Autocrine Effects of GABA on Insulin Secretion in Postnatal Rodents—Implications for Pediatric Obstructive Sleep Apnea" Children 9, no. 9: 1305. https://doi.org/10.3390/children9091305