Hyperuricemia and Associated Factors in Children with Chronic Kidney Disease: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Study Measures and Laboratory Methods
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Correlations between SUA and Associated Factors in Children with CKD
3.3. Relationship between Elevated SUA and Associated Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Zhang, S.; Li, W.; Wang, L.; Liu, H.; Li, W.; Zhang, T.; Liu, G.; Du, Y.; Leng, J. Prevalence of hyperuricemia and its related risk factors among preschool children from China. Sci Rep. 2017, 7, 9448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Torii, T.; Nakajima, A.; Iijima, T.; Murano, H.; Horiuchi, H.; Yamanaka, H.; Honda, M. Prevalence of gout and asymptomatic hyperuricemia in the pediatric population: A cross-sectional study of a Japanese health insurance database. BMC Pediatr. 2020, 20, 481. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhu, J.; Wetzstein, S.A. Plasma and water fluoride levels and hyperuricemia among adolescents: A cross-sectional study of a nationally representative sample of the United States for 2013–2016. Ecotoxicol Environ Saf. 2021, 208, 111670. [Google Scholar] [CrossRef]
- Feig, D.I. Serum uric acid and the risk of hypertension and chronic kidney disease. Curr. Opin. Rheumatol. 2014, 26, 176–185. [Google Scholar] [CrossRef]
- Dawson, J.; Jeemon, P.; Hetherington, L.; Judd, C.; Hastie, C.; Schulz, C.; Sloan, W.; Muir, S.; Jardine, A.; McInnes, G.; et al. Serum uric acid level, longitudinal blood pressure, renal function, and long-term mortality in treated hypertensive patients. Hypertension 2013, 62, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, E.; Akhras, K.S.; Sharma, H.; Marynchenko, M.; Wu, E.; Tawk, R.H.; Liu, J.; Shi, L. Serum urate and incidence of kidney disease among veterans with gout. J. Rheumatol. 2013, 40, 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Kuwabara, M.; Kuwabara, R.; Hisatome, I.; Niwa, K.; Roncal-Jimenez, C.A.; Bjornstad, P.; Andres-Hernando, A.; Sato, Y.; Jensen, T.; Garcia, G.; et al. “Metabolically Healthy” Obesity and Hyperuricemia Increase Risk for Hypertension and Diabetes: 5-year Japanese Cohort Study. Obesity (Silver Spring) 2017, 25, 1997–2008. [Google Scholar] [CrossRef] [PubMed]
- Rodenbach, K.E.; Schneider, M.F.; Furth, S.L.; Moxey-Mims, M.M.; Mitsnefes, M.M.; Weaver, D.J.; Warady, B.A.; Schwartz, G.J. Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am. J. Kidney Dis. 2015, 66, 984–992. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 71, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Margalit, R.; Golan, E.; Twig, G.; Leiba, A.; Tzur, D.; Afek, A.; Skorecki, K.; Vivante, A. History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease. N. Engl. J. Med. 2018, 378, 428–438. [Google Scholar] [CrossRef]
- Lipkowitz, M.S. Regulation of uric acid excretion by the kidney. Curr. Rheumatol. Rep. 2012, 14, 179–188. [Google Scholar] [CrossRef]
- Li, P.; Zhang, L.; Zhang, M.; Zhou, C.; Lin, N. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction. Int. J. Mol. Med. 2016, 37, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Kanbay, M.; Yilmaz, M.I.; Sonmez, A.; Turgut, F.; Saglam, M.; Cakir, E.; Yenicesu, M.; Covic, A.; Jalal, D.; Johnson, R.J. Serum uric acid level and endothelial dysfunction in patients with nondiabetic chronic kidney disease. Am. J. Nephrol. 2011, 33, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Valle, M.; Martos, R.; Canete, M.D.; Valle, R.; van Donkelaar, E.L.; Bermudo, F.; Canete, R. Association of serum uric acid levels to inflammation biomarkers and endothelial dysfunction in obese prepubertal children. Pediatr. Diabetes 2015, 16, 441–447. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Brion, L.P.; Spitzer, A. The Use of Plasma Creatinine Concentration for Estimating Glomerular Filtration Rate in Infants, Children, and Adolescents. Pediatric Clin. N. Am. 1987, 34, 571–590. [Google Scholar] [CrossRef]
- Grummer-Strawn, L.M.; Reinold, C.; Krebs, N.F. Use of World Health Organization and CDC growth charts for children aged 0–59 months in the United States. MMWR Recomm. Rep. 2010, 59, 1–15. [Google Scholar] [PubMed]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, A.; Stevens, P.; Bilous, R.W.; Coresh, J.; Francisco, A.; Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Tomson, C.R.V.; Cheung, A.K.; Mann, J.F.E.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; et al. Management of Blood Pressure in Patients with Chronic Kidney Disease Not Receiving Dialysis: Synopsis of the 2021 KDIGO Clinical Practice Guideline. Ann. Intern. Med. 2021, 174, 1270–1281. [Google Scholar] [CrossRef]
- Warady, B.A.; Chadha, V. Chronic kidney disease in children: The global perspective. Pediatr. Nephrol. 2007, 22, 1999–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, L.E. Idiopathic short stature: A clinical review. JAMA 2014, 311, 1787–1796. [Google Scholar] [CrossRef]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. S5), S213–S256. [Google Scholar]
- Odden, M.C.; Amadu, A.R.; Smit, E.; Lo, L.; Peralta, C.A. Uric acid levels, kidney function, and cardiovascular mortality in US adults: National Health and Nutrition Examination Survey (NHANES) 1988–1994 and 1999–2002. Am. J. Kidney Dis. 2014, 64, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef]
- Uchida, S.; Chang, W.X.; Ota, T.; Tamura, Y.; Shiraishi, T.; Kumagai, T.; Shibata, S.; Fujigaki, Y.; Hosoyamada, M.; Kaneko, K.; et al. Targeting Uric Acid and the Inhibition of Progression to End-Stage Renal Disease—A Propensity Score Analysis. PLoS ONE 2015, 10, e0145506. [Google Scholar] [CrossRef]
- Domrongkitchaiporn, S.; Sritara, P.; Kitiyakara, C.; Stitchantrakul, W.; Krittaphol, V.; Lolekha, P.; Cheepudomwit, S.; Yipintsoi, T. Risk factors for development of decreased kidney function in a southeast Asian population: A 12-year cohort study. J. Am. Soc. Nephrol. 2005, 16, 791–799. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef]
- Stiburkova, B.; Bleyer, A.J. Changes in serum urate and urate excretion with age. Adv. Chronic Kidney Dis. 2012, 19, 372–376. [Google Scholar] [CrossRef]
- Madero, M.; Sarnak, M.J.; Wang, X.; Greene, T.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; Levey, A.S.; Menon, V. Uric acid and long-term outcomes in CKD. Am. J. Kidney Dis. 2009, 53, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M. Hyperuricemia in Pediatric Field. Gout Nucleic ACID Metab. 2009, 33, 37–43. [Google Scholar] [CrossRef]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar]
- St Peter, W.L.; Guo, H.; Kabadi, S.; Gilbertson, D.T.; Peng, Y.; Pendergraft, T.; Li, S. Prevalence, treatment patterns, and healthcare resource utilization in Medicare and commercially insured non-dialysis-dependent chronic kidney disease patients with and without anemia in the United States. BMC Nephrol. 2018, 19, 67. [Google Scholar] [CrossRef] [Green Version]
- Lebensburger, J.D.; Cutter, G.R.; Howard, T.H.; Muntner, P.; Feig, D.I. Evaluating risk factors for chronic kidney disease in pediatric patients with sickle cell anemia. Pediatr. Nephrol. 2017, 32, 1565–1573. [Google Scholar] [CrossRef]
- Kaspar, C.D.W.; Beach, I.; Newlin, J.; Sisler, I.; Feig, D.; Smith, W. Hyperuricemia is associated with a lower glomerular filtration rate in pediatric sickle cell disease patients. Pediatr. Nephrol. 2020, 35, 883–889. [Google Scholar] [CrossRef]
- Lebensburger, J.D.; Aban, I.; Hilliard, L.M.; Feig, D.I. Hyperuricemia and abnormal nocturnal dipping impact glomerular filtration rate in patients with sickle cell anemia. Am. J. Hematol. 2021, 96, E143–E146. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, D.M.; Srivaths, P.R.; Mattison, P.; Upadhyay, K.; Midgley, L.; Moudgil, A.; Goldstein, S.L.; Feig, D.I. Serum uric acid is associated with high blood pressure in pediatric hemodialysis patients. Pediatr. Nephrol. 2011, 26, 1123–1128. [Google Scholar] [CrossRef]
- Sidoti, A.; Nigrelli, S.; Rosati, A.; Bigazzi, R.; Caprioli, R.; Fanelli, R.; Acconcia, P.; Borracelli, D.; Biagioli, M.; Angelini, D.; et al. Body mass index, fat free mass, uric acid, and renal function as blood pressure levels determinants in young adults. Nephrology (Carlton) 2017, 22, 279–285. [Google Scholar] [CrossRef]
- Sánchez-Lozada, L.G.; Tapia, E.; López-Molina, R.; Nepomuceno, T.; Soto, V.; Avila-Casado, C.; Nakagawa, T.; Johnson, R.J.; Herrera-Acosta, J.; Franco, M. Effects of acute and chronic L-arginine treatment in experimental hyperuricemia. Am. J. Physiol. Renal. Physiol. 2007, 292, F1238–F1244. [Google Scholar] [CrossRef] [Green Version]
- Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, J.A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.R.; Choi, H.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Sung, S.A.; Kim, Y.S.; Oh, K.H.; Ahn, C.; Kim, S.W. Hyperuricemia has increased the risk of progression of chronic kidney disease: Propensity score matching analysis from the KNOW-CKD study. Sci Rep. 2019, 9, 6681. [Google Scholar] [CrossRef] [PubMed]
- Chonchol, M.; Shlipak, M.G.; Katz, R.; Sarnak, M.J.; Newman, A.B.; Siscovick, D.S.; Kestenbaum, B.; Carney, J.K.; Fried, L.F. Relationship of uric acid with progression of kidney disease. Am. J. Kidney Dis. 2007, 50, 239–247. [Google Scholar] [CrossRef]
- Tan, V.S.; Garg, A.X.; McArthur, E.; Lam, N.N.; Sood, M.M.; Naylor, K.L. The 3-Year Incidence of Gout in Elderly Patients with CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, M.; Garcia de Vinuesa, S.; Verdalles, U.; Verde, E.; Macias, N.; Santos, A.; Perez de Jose, A.; Cedeno, S.; Linares, T.; Luno, J. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am. J. Kidney Dis. 2015, 65, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.V.; Pascoe, E.M.; Tiku, A.; Boudville, N.; Brown, F.G.; Cass, A.; Clarke, P.; Dalbeth, N.; Day, R.O.; de Zoysa, J.R.; et al. Effects of Allopurinol on the Progression of Chronic Kidney Disease. N. Engl. J. Med. 2020, 382, 2504–2513. [Google Scholar] [CrossRef] [PubMed]
- Ghane Sharbaf, F.; Assadi, F. Effect of allopurinol on the glomerular filtration rate of children with chronic kidney disease. Pediatr. Nephrol. 2018, 33, 1405–1409. [Google Scholar] [CrossRef]
Characteristic | Total (n = 170) | <390 µmol/L (n = 52) | 390–540 µmol/L (n = 62) | >540 µmol/L (n = 56) | p * |
---|---|---|---|---|---|
(<6.5 mg/dL) | (6.5–9 mg/dL) | (>9.0 mg/dL) | |||
Age (years) | 9.79 ± 4.10 | 9.44 ± 4.44 | 9.66 ± 4.12 | 10.24 ± 3.75 | 0.696 |
Boys (%) | 99 (58.23) | 25 (48.08) | 38 (61.29) | 36 (64.29) | 0.193 |
BMI (kg/m2) | 17.34 ± 4.49 | 16.04 ( 14.69, 18.66) | 15.88 (14.47, 19.19) | 16.58 (14.57, 19.58) | 0.589 |
SBP (mmHg) | 117.81 ± 19.96 | 115.83 ± 21.48 | 116.39 ± 18.20 | 121.21 ± 20.29 | 0.287 |
DBP (mmHg) | 74.69 ± 17.88 | 74.35 ± 19.45 | 72.98 ± 15.83 | 76.91 ± 18.58 | 0.501 |
Hb (g/L) | 105.31 ± 26.23 | 114.62 ± 23.09 | 104.77 ± 25.29 | 97.27 ± 27.60 | 0.002 |
Alb (g/L) | 37.97 ± 8.31 | 42.35 (36.53, 45.95) | 38.10 (31.78, 42.48) | 38.75 (34.18, 42.68) | 0.047 |
TC (mmol/L) | 5.32 ± 2.56 | 4.35 (3.40, 5.42) | 4.72 (3.99, 6.15) | 4.95 (4.11, 6.23) | 0.127 |
TG (mmol/L) | 2.37 ± 1.89 | 1.50 (0.87, 2.67) | 2.07 (1.14, 3.83) | 2.00 (1.40, 2.92) | 0.053 |
BUN (mmol/L) | 12.53 (7.69, 26.13) | 8.20 (5.50, 10.92) | 12.92 (7.87, 24.32) | 25.45 (13.24, 38.65) | <0.001 |
Cys C (mg/L) | 3.09 ± 1.84 | 1.46 (1.16, 2.71) | 2.61 (1.49, 4.24) | 4.11 (2.36, 5.43) | <0.001 |
Scr (µmol/L) | 162.50 (95.75, 471.50) | 88.00 (73.50, 170.00) | 165.00 (102.50, 415.75) | 411.00 (142.75, 717.00) | <0.001 |
eGFR (mL/min/1.73 m2) | 38.26 (12.68, 66.91) | 64.87 (29.91, 90.62) | 38.63 (13.24, 66.75) | 16.57 (9.22, 38.83) | <0.001 |
Fib (g/L) | 2.97 ± 1.13 | 2.47 (1.98, 3.26) | 2.88 (2.32, 3.57) | 2.84 (2.34, 3.67) | 0.156 |
DD (mg/L) | 0.96 ± 1.54 | 0.41 (0.22, 0.90) | 0.41 (0.20, 0.94) | 0.76 (0.38, 1.51) | 0.024 |
24HUPr (mg/m2/d) | 690.04 (178.94, 1710.18) | 547.41 (77.56, 1395.79) | 738.69 (248.49, 2058.53) | 673.16 (194.90,1663.15) | 0.302 |
CAKUT n (%) | 68 (40.00) | 19 (36.54) | 22 (35.48) | 27 (48.21) | 0.307 |
Obesity n (%) | 14 (8.24) | 5 (9.62) | 6 (9.68) | 3 (5.36) | 0.633 |
Hypertension n (%) | 95 (55.89) | 25 (48.08) | 33 (53.22) | 37 (66.07) | 0.148 |
Anemia n (%) | 103 (60.59) | 27 (51.92) | 36 (58.06) | 39 (69.64) | 0.215 |
Short stature n (%) | 41 (24.12) | 13 (25.00) | 15 (24.19) | 13 (23.21) | 0.977 |
Renal osteopathy n ( %) | 36 (21.18) | 7 (13.46) | 14 (22.58) | 15 (26.79) | 0.225 |
Characteristics | SUA (n = 170) | |
---|---|---|
r | p | |
Age (years) | −0.056 | 0.464 |
BMI (kg/m2) | −0.067 | 0.384 |
SBP (mmHg) | 0.128 | 0.096 |
DBP (mmHg) | 0.05 | 0.515 |
Hb (g/L) | −0.281 | <0.001 |
Alb (g/L) | −0.148 | 0.053 |
TC (mmol/L) | 0.161 | 0.036 |
TG (mmol/L) | 0.208 | 0.007 |
Scr (µmol/L) | 0.515 | <0.001 |
BUN (mmol/L) | 0.558 | <0.001 |
Cys C (mg/L) | 0.488 | <0.001 |
Fib (g/L) | 0.051 | 0.506 |
DD (mg/L) | 0.214 | 0.005 |
eGFR (mL/min/1.73 m2) | −0.442 | <0.001 |
24HUPr (mg/m2/d) | 0.089 | 0.247 |
Characteristics | Elevated SUA (OR, 95% CI) | p |
---|---|---|
Sex (boys vs. girls) | 2.122 (0.917, 4.914) | 0.079 |
Age (years) | 1.060 (0.959, 1.172) | 0.251 |
BMI > 95th percentile (vs. ≤95th) | 0.947 (0.235, 3.907) | 0.938 |
CAKUT | 1.540 (0.660, 3.594) | 0.318 |
Hypertension | 0.978 (0.441, 2.169) | 0.957 |
Anemia | 3.619 (1.322, 9.905) | 0.012 |
Elevated TC | 1.814 (0.719, 4.578) | 0.207 |
Elevated TG | 0.697 (0.272, 1.790) | 0.453 |
BUN | 1.113 (1.032, 1.200) | 0.006 |
Cys C | 0.918 (0.579, 1.456) | 0.716 |
eGFR (mL/min/1.73 m2) | ||
<60 (reference) | 1 | |
60–89 | 0.386 (0.125, 1.195) | 0.099 |
≥90 | 0.116 (0.025, 0.532) | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Tong, L.; Mao, J. Hyperuricemia and Associated Factors in Children with Chronic Kidney Disease: A Cross-Sectional Study. Children 2022, 9, 6. https://doi.org/10.3390/children9010006
Xu J, Tong L, Mao J. Hyperuricemia and Associated Factors in Children with Chronic Kidney Disease: A Cross-Sectional Study. Children. 2022; 9(1):6. https://doi.org/10.3390/children9010006
Chicago/Turabian StyleXu, Jie, Lingxiao Tong, and Jianhua Mao. 2022. "Hyperuricemia and Associated Factors in Children with Chronic Kidney Disease: A Cross-Sectional Study" Children 9, no. 1: 6. https://doi.org/10.3390/children9010006
APA StyleXu, J., Tong, L., & Mao, J. (2022). Hyperuricemia and Associated Factors in Children with Chronic Kidney Disease: A Cross-Sectional Study. Children, 9(1), 6. https://doi.org/10.3390/children9010006