Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements and Statistical Analysis
- Homeostasis model analysis—insulin resistance (HOMA-IR) index, defined as ([fasting plasma insulin (mU/L) × fasting plasma glucose (mg/dL)]/405) [21]; the cutoff point for pathological IR was set at the 97.5th percentile of the HOMA-IR distribution in a representative group of Italian healthy children and adolescents grouped by sex and pubertal stage [22].
- Average glucose;
- Glucose standard deviation (SD);
- Time below range (TBR), i.e., the percentage of glucose readings under 70 mg/dL, which can be further divided into time slightly below range in the 54–69 mg/dL range, and time severely below range under 54 mg/dL;
- Time in range (TIR), i.e., the percentage of glucose readings in the 70–180 mg/dL range, which can be further divided into time in the 70–140 mg/dL target range (TIT), and time in the 141–180 mg/dL range;
- Time above range (TAR), i.e., the percentage of glucose readings over 180 mg/dL, which can be further divided into Time slightly above range in the 181–250 mg/dL range, and time severely above range over 250 mg/dL.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shrestha, E.; Charkviani, M.; Musurakis, C.; Kansakar, A.R.; Devkota, A.; Banjade, R.; Pudasainee, P.; Chitrakar, S.; Sharma, A.; Sous, M.; et al. Type 2 Diabetes Is Associated with Increased Risk of Critical Respiratory Illness in Patients COVID-19 in a Community Hospital. Obes. Med. 2020, 100316. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Adeyinka, A.; Bailey, K.; Pierre, L.; Kondamudi, N. COVID 19 Infection: Pediatric Perspectives. J. Am. Coll. Emerg. Physicians Open 2021, 2. [Google Scholar] [CrossRef]
- Syangtan, G.; Bista, S.; Dawadi, P.; Rayamajhee, B.; Shrestha, L.B.; Tuladhar, R.; Joshi, D.R. Asymptomatic SARS-CoV-2 Carriers: A Systematic Review and Meta-Analysis. Front. Public Health 2021, 8. [Google Scholar] [CrossRef]
- Bernardino, F.B.S.; Alencastro, L.C.D.S.; da Silva, R.A.; Ribeiro, A.D.D.N.; Castilho, G.R.D.C.; Gaíva, M.A.M. Epidemiological Profile of Children and Adolescents with COVID-19: A Scoping Review. Rev. Bras. Enferm. 2021, 74. [Google Scholar] [CrossRef] [PubMed]
- Shahin, W.; Rabie, W.; Alyossof, O.; Alasiri, M.; Alfaki, M.; Mahmoud, E.; Hijazi, M.; Faraidi, H.E.; Alahmari, H. COVID-19 in Children Ranging from Asymptomatic to a Multi-System Inflammatory Disease: A Single-Center Study. Saudi Med. J. 2021, 42, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.P.; Top, K.A.; Karatzios, C.; Hilmers, D.C.; Tapia, L.I.; Moceri, P.; Giovannini-Chami, L.; Wood, N.; Chandler, R.E.; Klein, N.P.; et al. Multisystem Inflammatory Syndrome in Children and Adults (MIS-C/A): Case Definition & Guidelines for Data Collection, Analysis, and Presentation of Immunization Safety Data. Vaccine 2021. [Google Scholar] [CrossRef]
- Hoste, L.; Van Paemel, R.; Haerynck, F. Multisystem Inflammatory Syndrome in Children Related to COVID-19: A Systematic Review. Eur. J. Pediatr. 2021. [Google Scholar] [CrossRef]
- Cattalini, M.; Taddio, A.; Bracaglia, C.; Cimaz, R.; Paolera, S.D.; Filocamo, G.; La Torre, F.; Lattanzi, B.; Marchesi, A.; Simonini, G.; et al. Childhood Multisystem Inflammatory Syndrome Associated with COVID-19 (MIS-C): A Diagnostic and Treatment Guidance from the Rheumatology Study Group of the Italian Society of Pediatrics. Ital. J. Pediatr. 2021, 47, 24. [Google Scholar] [CrossRef]
- CDC Multisystem Inflammatory Syndrome in Children (MIS-C). Available online: https://www.cdc.gov/mis-c/hcp/ (accessed on 1 March 2021).
- Montori, V.M.; Bistrian, B.R.; McMahon, M.M. Hyperglycemia in Acutely Ill Patients. JAMA 2002, 288, 2167–2169. [Google Scholar] [CrossRef]
- Annane, D.; Melchior, J.C. Hormone Replacement Therapy for the Critically Ill. Crit. Care Med. 2003, 31, 634–635. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, T.; Fang, F.; Zhang, Y.; Faramand, A. Tight Glycemic Control in Critically Ill Pediatric Patients: A Systematic Review and Meta-Analysis. Crit. Care 2018, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkon, B.; Cambrin, J.R.; Hirshberg, E.; Bratton, S.L. Hyperglycemia: An Independent Risk Factor for Poor Outcome in Children With Traumatic Brain Injury*. Pediatr. Crit. Care Med. 2014, 15, 623–631. [Google Scholar] [CrossRef]
- Naranje, K.M.; Poddar, B.; Bhriguvanshi, A.; Lal, R.; Azim, A.; Singh, R.K.; Gurjar, M.; Baronia, A.K. Blood Glucose Variability and Outcomes in Critically Ill Children. Indian J. Crit. Care Med. 2017, 21, 122–126. [Google Scholar] [CrossRef] [PubMed]
- FreeStyle Libre 14-day System|Glucose Sensor & Reader|FreeStyleLibre.us. Available online: https://www.freestylelibre.us/ (accessed on 29 September 2020).
- Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child 1970, 45, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Montalbano, C.; de Silvestri, A.; Pelizzo, G.; Regalbuto, C.; Paganelli, V.; Albertini, R.; Cave, F.D.; Larizza, D.; Cena, H. Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in a Caucasian Pediatric Population. J. Clin. Res. Pediatr. Endocrinol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- d’Annunzio, G.; Vanelli, M.; Pistorio, A.; Minuto, N.; Bergamino, L.; Iafusco, D.; Lorini, R. Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes Insulin Resistance and Secretion Indexes in Healthy Italian Children and Adolescents: A Multicentre Study. Acta Biomed. 2009, 80, 21–28. [Google Scholar] [PubMed]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, D.; Sánchez-Íñigo, L.; Pastrana-Delgado, J.; Fernández-Montero, A.; Martinez, J.A. Triglyceride–Glucose Index (TyG Index) in Comparison with Fasting Plasma Glucose Improved Diabetes Prediction in Patients with Normal Fasting Glucose: The Vascular-Metabolic CUN Cohort. Prev. Med. 2016, 86, 99–105. [Google Scholar] [CrossRef]
- Vieira-Ribeiro, S.A.; Fonseca, P.C.A.; Andreoli, C.S.; Ribeiro, A.Q.; Hermsdorff, H.H.M.; Pereira, P.F.; Priore, S.E.; Franceschini, S.C.C.; Vieira-Ribeiro, S.A.; Fonseca, P.C.A.; et al. The TyG Index Cutoff Point and Its Association with Body Adiposity and Lifestyle in Children. J. Pediatr. 2019, 95, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Croux, C.; Dehon, C. Influence Functions of the Spearman and Kendall Correlation Measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019. [Google Scholar] [CrossRef] [Green Version]
- Limonta, A.; Gastaldi, G.; Heidegger, C.P.; Pichard, C. Insulin therapy and parenteral nutrition in intensive care: Practical aspects. Rev. Med. Suisse 2015, 11, 728–730, 732. [Google Scholar]
- Shrestha, G.S.; Khanal, S.; Sharma, S.; Nepal, G. COVID-19: Current Understanding of Pathophysiology. J. Nepal Health Res. Counc. 2020, 18, 351–359. [Google Scholar] [CrossRef]
- Mishra, D.; Dey, C.S. Type-2 Diabetes, a Co-Morbidity in Covid-19: Does Insulin Signaling Matter? Biochem. Soc. Trans. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Gesualdo, P.; Rasmussen, C.G.; Alkanani, A.A.; He, L.; Dong, F.; Rewers, M.J.; Michels, A.W.; Yu, L. Prevalence of SARS-CoV-2 Antibodies in Children and Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2021. [Google Scholar] [CrossRef]
- Bello, B.; Useh, U. COVID-19: Are Non-Communicable Diseases Risk Factors for Its Severity? Am. J. Health Promot. 2021, 0890117121990518. [Google Scholar] [CrossRef]
- Vargas-Vázquez, A.; Bello-Chavolla, O.Y.; Ortiz-Brizuela, E.; Campos-Muñoz, A.; Mehta, R.; Villanueva-Reza, M.; Bahena-López, J.P.; Antonio-Villa, N.E.; González-Lara, M.F.; Ponce de León, A.; et al. Impact of Undiagnosed Type 2 Diabetes and Pre-Diabetes on Severity and Mortality for SARS-CoV-2 Infection. BMJ Open Diabetes Res. Care 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Pritchard, A.L.; Treweeke, A.T.; Rossi, A.G.; Brace, N.; Cahill, P.; MacRury, S.M.; Wei, J.; Megson, I.L. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Front. Cardiovasc. Med. 2021, 7. [Google Scholar] [CrossRef]
- Nielsen-Saines, K.; Li, E.; Olivera, A.M.; Martin-Blais, R.; Bulut, Y. Case Report: Insulin-Dependent Diabetes Mellitus and Diabetic Keto-Acidosis in a Child With COVID-19. Front. Pediatr. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Beliard, K.; Ebekozien, O.; Demeterco-Berggren, C.; Alonso, G.T.; Gallagher, M.P.; Clements, M.; Rapaport, R. Increased DKA at Presentation among Newly Diagnosed Type 1 Diabetes Patients with or without COVID-19: Data from a Multi-Site Surveillance Registry. J. Diabetes 2021, 13, 270–272. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Azman, A.S.; Deng, X.; Sun, R.; Zhao, Z.; Zheng, N.; Chen, X.; Lu, W.; Zhuang, T.; et al. Serological Evidence of Human Infection with SARS-CoV-2: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2021, 9, e598–e609. [Google Scholar] [CrossRef]
- Yang, H.; Lyu, Y.; Hou, F. SARS-CoV-2 Infection and the Antiviral Innate Immune Response. J. Mol. Cell Biol. 2020. [Google Scholar] [CrossRef]
- Mazori, A.Y.; Bass, I.R.; Chan, L.; Mathews, K.S.; Altman, D.R.; Saha, A.; Soh, H.; Wen, H.H.; Bose, S.; Leven, E.; et al. Hyperglycemia Is Associated With Increased Mortality in Critically Ill Patients With COVID-19. Endocr. Pract. 2021, 27, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Krinsley, J.S.; Rule, P.; Pappy, L.; Ahmed, A.; Huley-Rodrigues, C.; Prevedello, D.; Preiser, J.-C. The Interaction of Acute and Chronic Glycemia on the Relationship of Hyperglycemia, Hypoglycemia, and Glucose Variability to Mortality in the Critically Ill. Crit. Care Med. 2020, 48, 1744–1751. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Z. Effect of Hyperglycemia on All-Cause Mortality from Pediatric Brain Injury: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e23307. [Google Scholar] [CrossRef]
Variable | Summary Statistics |
---|---|
Sex | Female: 7 (23.33%) Male: 23 (76.67%) |
Age (years) | 10.68 ± 7.25 |
BMI (Kg/m2) | 17.70 ± 3.99 |
BMI z-score | 0.03 ± 1.49 |
HbA1c (%) | 5.20 ± 0.20 |
HbA1c (mmol/mol) | 33.00 ± 2.25 |
FPG (mg/dL) | 111.00 ± 31.00 |
FPI (µU/mL) | 21.95 ± 11.50 |
TG (mg/dL) | 190.00 ± 177.25 |
HOMA-IR index | 5.15 ± 5.69 |
TyG index | 9.20 ± 0.73 |
Total cholesterol (mg/dL) | 118.00 ± 72.00 |
HDL cholesterol (mg/dL) | 17.00 ± 21.00 |
TSH (mIU/L) | 2.16 ± 1.81 |
GGT (IU/L) | 26.50 ± 38.75 |
ALT (IU/L) | 31.00 ± 45.50 |
Creatine kinase (IU/L) | 68.00 ± 102.00 |
Albumin (g/L) | 25.50 ± 7.50 |
Sodium (mEq/L) | 132.00 ± 5.00 |
Potassium (mEq/L) | 3.50 ± 0.90 |
Ferritin (µg/L) | 745.00 ± 1259.25 |
IL-6 (ng/L) | 83.00 ± 208.50 |
C-reactive protein (mg/dL) | 236.50 ± 176.00 |
Procalcitonin (µg/L) | 6.2 ± 11.20 |
NT-proBNP (ng/L) | 7554.00 ± 11,143.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, V.; Bosoni, P.; Dilillo, D.; Mannarino, S.; Fiori, L.; Fabiano, V.; Carlucci, P.; Di Profio, E.; Verduci, E.; Mameli, C.; et al. Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children. Children 2021, 8, 384. https://doi.org/10.3390/children8050384
Calcaterra V, Bosoni P, Dilillo D, Mannarino S, Fiori L, Fabiano V, Carlucci P, Di Profio E, Verduci E, Mameli C, et al. Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children. Children. 2021; 8(5):384. https://doi.org/10.3390/children8050384
Chicago/Turabian StyleCalcaterra, Valeria, Pietro Bosoni, Dario Dilillo, Savina Mannarino, Laura Fiori, Valentina Fabiano, Patrizia Carlucci, Elisabetta Di Profio, Elvira Verduci, Chiara Mameli, and et al. 2021. "Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children" Children 8, no. 5: 384. https://doi.org/10.3390/children8050384
APA StyleCalcaterra, V., Bosoni, P., Dilillo, D., Mannarino, S., Fiori, L., Fabiano, V., Carlucci, P., Di Profio, E., Verduci, E., Mameli, C., Pelizzo, G., Zoia, E., Sacchi, L., Larizza, C., & Zuccotti, G. (2021). Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children. Children, 8(5), 384. https://doi.org/10.3390/children8050384