A Three-Dimensional Finite Element Analysis of Displacement and Stress Distributions of Unilateral and Bilateral Cleft Lips by Using Developed Pre-Surgical Treatment Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Child’s Skull Representation
2.2. Mechanical Part
2.3. Electronic Part
3. Results
3.1. Analysis of X-Displacement (Horizontal Direction)
3.2. Analysis of Y-Displacement (Up-Down Directions)
3.3. Analysis of Z-Displacement (Posterior-Anterior Directions)
3.4. The Effect of Amount of Tensile and Compressive Forces on Unilateral and Bilateral Cleft Models
3.5. Von Mises Stress Effects of Unilateral and Bilateral Cleft Models
4. Discussion
Limitations
5. Conclusions
6. Recommendations for Future Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoll, C.; Dott, B.; Alembik, Y.; Roth, M.P. Evaluation of prenatal diagnosis of cleft lip/palate by foetal ultrasonographic examination. Ann. Genet. 2000, 43, 11–14. [Google Scholar] [CrossRef]
- Suresh, S.; Vijayalakshmi, R.; Indrani, S.; Devaki, G.; Bhavani, K. The Premaxillary Triangle. J. Ultrasound Med. 2006, 25, 237–242. [Google Scholar] [CrossRef]
- Vyas, T.; Gupta, P.; Kumar, S.; Gupta, R.; Gupta, T.; Singh, H.P. Cleft of lip and palate: A review. J. Fam. Med. Prim. Care 2020, 9, 2621. [Google Scholar] [CrossRef]
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef]
- Huang, J.; Tian, B.; Chu, F.; Yang, C.; Zhao, J.; Jiang, X.; Qian, Y. Rapid maxillary expansion in alveolar cleft repaired with a tissue-engineered bone in a canine model. J. Mech. Behav. Biomed. Mater. 2015, 48, 86–99. [Google Scholar] [CrossRef]
- Jutinico, A.L.; Prieto, F. Visual lip segmentation in patients with cleft lip and/or cleft palate. In Proceedings of the 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA 2011, Washington, DC, USA, 15–18 November 2011; pp. 114–119. [Google Scholar]
- Vlahovic, A.M.; Haxhija, E.Q. Pediatric and Adolescent Plastic Surgery for the Clinician; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–218. [Google Scholar] [CrossRef]
- Bernheim, N.; Georges, M.; Malevez, C.; De Mey, A.; Mansbach, A. Embryology and epidemiology of cleft lip and palate. B ENT 2006, 2, 11–19. [Google Scholar] [PubMed]
- Sorouri, K.; Podolsky, D.J.; Wang, A.M.Q.; Fisher, D.M.; Wong, K.W.; Looi, T.; Drake, J.M.; Forrest, C.R. Utilization of a robotic mount to determine the force required to cut palatal tissue. J. Mech. Behav. Biomed. Mater. 2018, 86, 433–439. [Google Scholar] [CrossRef]
- Tse, R. Unilateral Cleft Lip: Principles and Practice of Surgical Management. Semin. Plast. Surg. 2012, 26, 145–155. [Google Scholar]
- Kosowski, T.R.; Weathers, W.M.; Wolfswinkel, E.M.; Ridgway, E.B. Cleft palate. Semin. Plast. Surg. 2012, 26, 164–169. [Google Scholar]
- Botticelli, S.; Küseler, A.; Mølsted, K.; Andersen, H.S.; Boers, M.; Shoeps, A.; Emborg, B.K.; Kisling-Møller, M.; Pedersen, T.K.; Andersen, M.; et al. Influence of Infant Cleft Dimensions on Velopharyngeal Function in 5-Year-Old Danish Children Born With Unilateral Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2020, 57, 420–429. [Google Scholar] [CrossRef]
- Rai, K. Primary unilateral and bilateral cleft lip and nose in an older population. Plast. Surg. 2005, 13, 71–74. [Google Scholar] [CrossRef]
- Yuzuriha, S.; Oh, A.K.; Mulliken, J.B. Asymmetrical bilateral cleft lip: Complete or incomplete and contralateral lesser defect (minor-form, microform, or mini-microform). Plast. Reconstr. Surg. 2008, 122, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Maxillofacial Surgery and Craniofacial Deformity: Practices and Updates-Google Books. Available online: https://books.google.com.tr/books?hl=en&lr=&id=X3L8DwAAQBAJ&oi=fnd&pg=PA9&dq=all+oral+fissures+can+be+classified+for+lip+and+palate+clefts+2020&ots=l_DG1q-yd7&sig=aiOjxXuJDbSvzs5-9gvp9d-zbQA&redir_esc=y#v=onepage&q=all oral fissures can be classified for lip and palate clefts 2020&f=false (accessed on 14 November 2021).
- Honein, M.A.; Rasmussen, S.A.; Reefhuis, J.; Romitti, P.A.; Lammer, E.J.; Sun, L.; Correa, A. Maternal smoking and environmental tobacco smoke exposure and the risk of orofacial clefts. Epidemiology 2007, 18, 226–233. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Petik, D.; Puho, E. Smoking and alcohol drinking during pregnancy. The reliability of retrospective maternal self-reported information. Cent. Eur. J. Public Health 2004, 12, 179–183. [Google Scholar] [CrossRef]
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. Part A-Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar] [CrossRef]
- Shaye, D.; Liu, C.C.; Tollefson, T.T. Cleft Lip and Palate. An Evidence-Based Review. Facial Plast. Surg. Clin. N. Am. 2015, 23, 357–372. [Google Scholar] [CrossRef]
- Chandan, S. Management of cleft lip and palate in pediatric dentistry: A review. Indian J. Forensic Med. Toxicol. 2020, 14, 9115–9119. [Google Scholar] [CrossRef]
- Yang, A.S.; Richard, B.M.; Wills, A.K.; Mahmoud, O.; Sandy, J.R.; Ness, A.R. Closer to the Truth on National Fistula Prevalence After Unilateral Complete Cleft Lip and Palate Repair? The Cleft Care UK Study. Cleft Palate-Craniofacial J. 2020, 57, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzain, I.; Batwa, W.; Cash, A.; Murshid, Z.A. Presurgical cleft lip and palate orthopedics: An overview. Clin. Cosmet. Investig. Dent. 2017, 9, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmannova, E.; Moslerová, V.; Dupej, J.; Borský, J.; Bejdová; Velemínská, J. Three-dimensional development of the upper dental arch in unilateral cleft lip and palate patients after early neonatal cheiloplasty. Int. J. Pediatr. Otorhinolaryngol. 2018, 109, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Grayson, B.H.; Shetye, P.R. Presurgical nasoalveolar moulding treatment in cleft lip and palate patients. Indian J. Plast. Surg. 2009, 42, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, C.F.; Chavarria, C.; Teichgraeber, J.F.; Chen, J.W.; Stratmann, R.G.; Gateno, J.; Xia, J.J. Presurgical nasoalveolar molding therapy for the treatment of unilateral cleft lip and palate: A preliminary study. Cleft Palate-Craniofacial J. 2007, 44, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Mulliken, J.B. CME Primary Repair of Bilateral Cleft Lip and Nasal Deformity. Plast. Reconstr. Surg. 2001, 108, 181–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciocca, L.; Fantini, M.; De Crescenzio, F.; Persiani, F.; Scotti, R. Computer-aided design and manufacturing construction of a surgical template for craniofacial implant positioning to support a definitive nasal prosthesis. Clin. Oral Implants Res. 2011, 22, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Dalband, M.; Kashani, J.; Hashemzehi, H. Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion with tooth-and bone-borne devices. J. Dent. 2015, 12, 298. [Google Scholar]
- Priyadarshini, J.; Mahesh, C.M.; Chandrashekar, B.S.; Sundara, A.; Arun, A.V.; Reddy, V.P. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion—a finite element method study. Prog. Orthod. 2017, 18, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, A.; Nagachandran, K.S.; Vijayalakshmi, D. Stress and displacement pattern evaluation using two different palatal expanders in unilateral cleft lip and palate: A three-dimensional finite element analysis. Prog. Orthod. 2016, 17, 38. [Google Scholar] [CrossRef] [Green Version]
- Eom, J.; Bayome, M.; Park, J.H.; Lim, H.J.; Kook, Y.A.; Han, S.H. Displacement and stress distribution of the maxillofacial complex during maxillary protraction using palatal plates: A three-dimensional finite element analysis. Korean J. Orthod. 2018, 48, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, X.; Zhang, X. Three-dimensional finite element analysis of maxillary protraction with labiolingual arches and implants. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 466–478. [Google Scholar] [CrossRef]
- Cai, D.; Zheng, J.; Kuang, W.; Li, Z.; Yuan, S.; Xiong, H.; Yuan, W. A Three-Dimensional Study of the Nasolabial Soft Tissue Symmetry in Children With Unilateral Complete Cleft Lip and Palate Using Traditional and Split-Type Nasoalveolar Molding. J. Craniofac. Surg. 2020, 31, 1785–1789. [Google Scholar] [CrossRef]
- Orthodontics for Oral and Maxillofacial Surgery Patient, Part II-Google Books. Available online: https://books.google.com.tr/books?hl=en&lr=&id=t2XnDwAAQBAJ&oi=fnd&pg=PA197&dq=traditional+method+of+pre-surgical+treatment++of+unilateral+and+bilateral+cleft+lip+and+palate+2020&ots=z8Y47CdyZm&sig=12W15TCELq1X5PaLHH8bYIQcDvs&redir_esc=y#v=onepage&q=traditional method of pre-surgical treatment of unilateral and bilateral cleft lip and palate 2020&f=false (accessed on 14 November 2021).
- Bölükbaşı, E.; Yılmaz, B.; Ramoğlu, S.İ. Stress distribution and displacement of craniofacial structures following rapid maxillary expansion in different types of cleft palate: A three-dimensional FEM study. Turkish J. Orthod. 2021, 34, 77–85. [Google Scholar] [CrossRef]
- Parveen, S.; Husain, A.; Shenoy, S.; Mascarenhas, R.; Gosla Reddy, S.; Reddy, M. Three dimensional assessment of protraction in craniofacial structures of cleft lip and palate model using Facemask and Maxgym. J. Comput. Methods Sci. Eng. 2019, 19, 553–561. [Google Scholar] [CrossRef]
- Werner, B.; Bodin, L. Head circumference from birth to age 48 months for infants in Sweden. Acta Paediatr. Int. J. Paediatr. 2006, 95, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Kook, Y.; Lee, D.; Kim, S.; Chung, K.R. Design improvements in the modified C-palatal plate for molar distalization. J. Clin. Orthod. JCO 2013, 47, 241–248. [Google Scholar]
- Download STL File Baby Cleft-Anatomical Study-Real Scan 3D Printable Template Cults. Available online: https://cults3d.com/en/3d-model/art/baby-cleft-anatomical-study-real-scan (accessed on 13 September 2021).
- Dimic, A.; Miskovic, Z.; Jelovac, D.; Mitrovic, R.; Ristivojevic, M.; Majstorovic, M. Application of rapid prototyping in maxillofacial surgery. Mach. Des. 2017, 2, 87–92. [Google Scholar]
- Rahimi, A.; Mashak, A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plast. Rubber Compos. 2013, 42, 223–230. [Google Scholar] [CrossRef]
- Oosthuizen, G.A.; Hagedorn-Hansen, D.; Gerhold, T. Evaluation of rapid product development technologies for production of prosthesis in developing communities. Proc. SAIIE 2013, 25, 590. [Google Scholar]
- Nalabothu, P.; Verna, C.; Benitez, B.K.; Dalstra, M.; Mueller, A.A. Load transfer during magnetic mucoperiosteal distraction in newborns with complete unilateral and bilateral orofacial clefts: A three-dimensional finite element analysis. Appl. Sci. 2020, 10, 7728. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, X.; Zhao, N.; Chen, Z.; Shen, G. Asymmetric maxillary protraction for unilateral cleft lip and palate patients using finite element analysis. J. Craniofac. Surg. 2015, 26, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zheng, L.; Wang, Q.; Lu, L.; Ma, J. Displacements prediction from 3D finite element model of maxillary protraction with and without rapid maxillary expansion in a patient with unilateral cleft palate and alveolus. Biomed. Eng. Online 2015, 14, 80. [Google Scholar] [CrossRef] [Green Version]
- Parveen, S.; Husain, A.; Gosla Reddy, S.; Mascarenhas, R.; Shenoy, S. Three-dimensional finite element analysis of initial displacement and stress on the craniofacial structures of unilateral cleft lip and palate model during protraction therapy with variable forces and directions. Comput. Methods Biomech. Biomed. Engin. 2020, 23, 1360–1376. [Google Scholar] [CrossRef]
- Subramanian, C.S.; Koteswara Prasad, N.K.K.; Chitharanjan, A.B.; Liou, E.J.W. A modified presurgical orthopedic (nasoalveolar molding) device in the treatment of unilateral cleft lip and palate. Eur. J. Dent. 2016, 10, 435–438. [Google Scholar] [CrossRef]
Age | Normal Range of Head Circumference (cm) | Ideal Head Circumference (cm) |
---|---|---|
At birth | 33–37 | 35 |
First month | 35–38 | 37 |
Second month | 37–40 | 39 |
Third month | 39–41 | 40 |
Material | Elastic Modulus (MPa) | Poisson Ratio | Density (kg/m3) |
---|---|---|---|
Cortical bone | 13,700 | 0.3 | 1600 |
Cancellous bone | 1370 | 0.3 | 160 |
Soft Tissue | 0.05 | 0.49 | 925 |
Materials | Thickness (mm) | Tensile Strength (MPa) | Elongation at Break % | Young’s Modulus (MPa) |
---|---|---|---|---|
Leather | 1.71 ± 0.25 | 21.9 ± 1.7 | 37 ± 3 | 68.8 |
Plastic | 0.5–3 | 22 ± 1.5 | 6 | 1360 |
Coordinates | Pressures (Kpa) | Regions | |||||||
---|---|---|---|---|---|---|---|---|---|
Cleft Bone | Cleft Bone Edges | Nasal Septum | Superior Alveolar Part of the Maxillary Jaw | ||||||
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ||
Rightward X-axis (mm) | 80 | 0.0045 | 0.0050 | −0.0063 | −0.0073 | −0.0005 | 0.0024 | 0.0017 | 0.0022 |
90 | 0.0050 | 0.0056 | −0.0071 | −0.0082 | −0.0006 | 0.0027 | 0.0019 | 0.0025 | |
100 | 0.0056 | 0.0063 | −0.0078 | −0.0091 | −0.0007 | 0.0030 | 0.0021 | 0.0028 | |
110 | 0.0061 | 0.0069 | −0.0086 | −0.0100 | −0.0007 | 0.0033 | 0.0023 | 0.0031 | |
120 | 0.0067 | 0.0075 | −0.0094 | −0.0109 | −0.0008 | 0.0036 | 0.0025 | 0.0034 | |
Leftward X-axis (mm) | 80 | 0.0045 | 0.0050 | −0.0063 | −0.0073 | −0.0005 | 0.0024 | −0.0038 | −0.0042 |
90 | 0.0050 | 0.0056 | −0.0071 | −0.0082 | −0.0006 | 0.0027 | −0.0042 | −0.0048 | |
100 | 0.0056 | 0.0063 | −0.0078 | −0.0091 | −0.0007 | 0.0030 | −0.0047 | −0.0053 | |
110 | 0.0061 | 0.0069 | −0.0086 | −0.0100 | −0.0007 | 0.0033 | −0.0052 | −0.0058 | |
120 | 0.0067 | 0.0075 | −0.0094 | −0.0109 | −0.0008 | 0.0036 | −0.0056 | −0.0063 | |
Upward Y-axis (mm) | 80 | 0.0105 | 0.0106 | 0.0080 | 0.0083 | 0.0096 | 0.0097 | 0.0062 | 0.0065 |
90 | 0.0118 | 0.0119 | 0.0090 | 0.0093 | 0.0108 | 0.0109 | 0.0070 | 0.0073 | |
100 | 0.0131 | 0.0132 | 0.0100 | 0.0103 | 0.0120 | 0.0121 | 0.0078 | 0.0082 | |
110 | 0.0144 | 0.0146 | 0.0110 | 0.0114 | 0.0132 | 0.0133 | 0.0086 | 0.0090 | |
120 | 0.0157 | 0.0159 | 0.0120 | 0.0124 | 0.0144 | 0.0145 | 0.0094 | 0.0098 | |
Inward Z-axis (mm) | 80 | −0.0058 | −0.0061 | −0.0031 | −0.0032 | −0.0040 | −0.0049 | −0.0015 | −0.0023 |
90 | −0.0066 | −0.0068 | −0.0034 | −0.0035 | −0.0044 | −0.0055 | −0.0016 | −0.0026 | |
100 | −0.0073 | −0.0076 | −0.0038 | −0.0039 | −0.0049 | −0.0061 | −0.0018 | −0.0029 | |
110 | −0.0080 | −0.0083 | −0.0042 | −0.0043 | −0.0054 | −0.0068 | −0.0020 | −0.0032 | |
120 | −0.0087 | −0.0091 | −0.0046 | −0.0047 | −0.0059 | −0.0074 | −0.0022 | −0.0035 |
Coordinates | Pressures (Kpa) | Regions | |||||||
---|---|---|---|---|---|---|---|---|---|
Cleft Bone | Cleft Bone Edges | Nasal Septum | Superior Alveolar Part of the Maxillary Jaw | ||||||
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ||
Rightward X-axis (mm) | 80 | −0.0087 | −0.0115 | 0.0015 | 0.0020 | −0.0008 | −0.0064 | 0.0004 | 0.0005 |
90 | −0.0098 | −0.0130 | 0.0017 | 0.0021 | −0.0009 | −0.0071 | 0.0004 | 0.0006 | |
100 | −0.0109 | −0.0142 | 0.0019 | 0.0024 | −0.0010 | −0.0079 | 0.0005 | 0.0007 | |
110 | −0.0120 | −0.0157 | 0.0021 | 0.0027 | −0.0011 | −0.0087 | 0.0005 | 0.0008 | |
120 | −0.0131 | −0.0169 | 0.0023 | 0.0029 | −0.0012 | −0.0095 | 0.0006 | 0.0008 | |
Leftward X-axis (mm) | 80 | −0.0081 | −0.0115 | −0.0038 | −0.0044 | −0.0008 | −0.0064 | −0.0020 | −0.0020 |
90 | −0.0091 | −0.0130 | −0.0043 | −0.0049 | −0.0009 | −0.0071 | −0.0022 | −0.0023 | |
100 | −0.0101 | −0.0142 | −0.0047 | −0.0054 | −0.0010 | −0.0079 | −0.0025 | −0.0025 | |
110 | −0.0111 | −0.0157 | −0.0052 | −0.0060 | −0.0011 | −0.0087 | −0.0027 | −0.0028 | |
120 | −0.0121 | −0.0169 | −0.0057 | −0.0066 | −0.0012 | −0.0095 | −0.0030 | −0.0030 | |
Upward Y-axis (mm) | 80 | −0.0028 | 0.0014 | 0.0003 | 0.0009 | 0.0001 | 0.0009 | 0.0002 | 0.0006 |
90 | −0.0031 | 0.0017 | 0.0004 | 0.0010 | 0.0002 | 0.0011 | 0.0002 | 0.0007 | |
100 | −0.0035 | 0.0018 | 0.0004 | 0.0018 | 0.0002 | 0.0012 | 0.0002 | 0.0008 | |
110 | −0.0040 | 0.0019 | 0.0005 | 0.0012 | 0.0002 | 0.0013 | 0.0003 | 0.0009 | |
120 | −0.0040 | 0.0026 | 0.0005 | 0.0013 | 0.0002 | 0.0014 | 0.0003 | 0.0010 | |
Inward Z-axis (mm) | 80 | −0.0028 | −0.0076 | −0.0011 | −0.0016 | −0.0002 | −0.0029 | −0.0003 | 0.0002 |
90 | −0.0031 | −0.0086 | −0.0013 | −0.0018 | −0.0002 | −0.0032 | −0.0003 | 0.0003 | |
100 | −0.0035 | −0.0093 | −0.0014 | −0.0020 | −0.0003 | −0.0036 | −0.0004 | 0.0003 | |
110 | −0.0038 | −0.0102 | −0.0016 | −0.0022 | −0.0003 | −0.0040 | −0.0004 | 0.0003 | |
120 | −0.0041 | −0.0114 | −0.0017 | −0.0024 | −0.0003 | −0.0043 | −0.0005 | 0.0004 |
Cleft Models | Stress Type | Pressure (Kpa) | Regions | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cleft Bone | Cleft Bone Edges | Nasal Septum | Superior Alveolar Part of the Maxillary Jaw | |||||||
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |||
Unilateral cleft model | Principle max (tensile) (MPa) | 80 | 0.03 | 0.08 | 0.06 | 0.09 | 0.02 | 0.53 | 0.12 | 0.58 |
90 | 0.03 | 0.09 | 0.07 | 0.10 | 0.02 | 0.59 | 0.13 | 0.65 | ||
100 | 0.03 | 0.10 | 0.07 | 0.11 | 0.03 | 0.66 | 0.14 | 0.72 | ||
110 | 0.04 | 0.11 | 0.08 | 0.12 | 0.03 | 0.73 | 0.16 | 0.79 | ||
120 | 0.04 | 0.12 | 0.09 | 0.14 | 0.03 | 0.79 | 0.17 | 0.86 | ||
Principle min (compressive) (MPa) | 80 | −0.02 | −0.14 | −0.14 | −0.21 | −0.01 | −0.47 | −0.15 | 0.01 | |
90 | −0.02 | −0.16 | −0.16 | −0.24 | −0.02 | −0.53 | −0.17 | 0.01 | ||
100 | −0.02 | −0.18 | −0.18 | −0.26 | −0.02 | −0.59 | −0.19 | 0.01 | ||
110 | −0.02 | −0.19 | −0.20 | −0.29 | −0.02 | −0.65 | −0.21 | 0.02 | ||
120 | −0.03 | −0.21 | −0.21 | −0.31 | −0.02 | −0.71 | −0.23 | 0.02 | ||
Bilateral cleft model | Principle max (tensile) (MPa) | 80 | 0.07 | 0.10 | 0.03 | 0.07 | 0.35 | 1.18 | 0.19 | 0.72 |
90 | 0.08 | 0.11 | 0.04 | 0.08 | 0.40 | 1.32 | 0.22 | 0.81 | ||
100 | 0.09 | 0.15 | 0.04 | 0.09 | 0.44 | 1.47 | 0.24 | 0.90 | ||
110 | 0.13 | 0.20 | 0.04 | 0.09 | 0.49 | 1.62 | 0.26 | 0.99 | ||
120 | 0.12 | 0.15 | 0.05 | 0.10 | 0.53 | 1.76 | 0.29 | 1.08 | ||
Principle min (compressive) (MPa) | 80 | −0.05 | −0.20 | −0.01 | −0.15 | −0.01 | −0.30 | −0.09 | 0.01 | |
90 | −0.06 | −0.24 | −0.01 | −0.18 | −0.01 | −0.34 | −0.10 | 0.01 | ||
100 | −0.06 | −0.24 | −0.02 | −0.21 | −0.01 | −0.38 | −0.12 | 0.01 | ||
110 | −0.07 | −0.28 | −0.02 | −0.20 | −0.01 | −0.41 | −0.13 | 0.01 | ||
120 | −0.07 | −0.36 | −0.02 | −0.21 | −0.03 | −0.45 | −0.14 | 0.01 |
Cleft Models | Stress Type | Pressure (Kpa) | Regions | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cleft Bone | Cleft Bone Edges | Nasal Septum | Superior Alveolar Part of the Maxillary Jaw | |||||||
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |||
Von Misses (MPa) | Unilateral cleft model | 80 | 0.04 | 0.19 | 0.19 | 0.27 | 0.12 | 0.87 | 0.23 | 0.54 |
90 | 0.04 | 0.22 | 0.21 | 0.30 | 0.14 | 0.98 | 0.26 | 0.60 | ||
100 | 0.05 | 0.24 | 0.23 | 0.33 | 0.15 | 1.08 | 0.29 | 0.67 | ||
110 | 0.05 | 0.27 | 0.26 | 0.37 | 0.17 | 1.19 | 0.32 | 0.74 | ||
120 | 0.06 | 0.29 | 0.28 | 0.40 | 0.18 | 1.30 | 0.35 | 0.81 | ||
Bilateral cleft model | 80 | 0.13 | 0.026 | 0.04 | 0.18 | 0.57 | 1.17 | 0.25 | 0.68 | |
90 | 0.14 | 0.29 | 0.04 | 0.21 | 0.64 | 1.31 | 0.28 | 0.76 | ||
100 | 0.16 | 0.33 | 0.05 | 0.26 | 0.71 | 1.46 | 0.32 | 0.85 | ||
110 | 0.18 | 0.42 | 0.05 | 0.25 | 0.78 | 1.60 | 0.35 | 0.93 | ||
120 | 0.19 | 0.45 | 0.06 | 0.26 | 0.85 | 1.75 | 0.38 | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karah bash, A.A.H.; Ercelebi, E. A Three-Dimensional Finite Element Analysis of Displacement and Stress Distributions of Unilateral and Bilateral Cleft Lips by Using Developed Pre-Surgical Treatment Architecture. Children 2021, 8, 1121. https://doi.org/10.3390/children8121121
Karah bash AAH, Ercelebi E. A Three-Dimensional Finite Element Analysis of Displacement and Stress Distributions of Unilateral and Bilateral Cleft Lips by Using Developed Pre-Surgical Treatment Architecture. Children. 2021; 8(12):1121. https://doi.org/10.3390/children8121121
Chicago/Turabian StyleKarah bash, Ali A. H., and Ergun Ercelebi. 2021. "A Three-Dimensional Finite Element Analysis of Displacement and Stress Distributions of Unilateral and Bilateral Cleft Lips by Using Developed Pre-Surgical Treatment Architecture" Children 8, no. 12: 1121. https://doi.org/10.3390/children8121121
APA StyleKarah bash, A. A. H., & Ercelebi, E. (2021). A Three-Dimensional Finite Element Analysis of Displacement and Stress Distributions of Unilateral and Bilateral Cleft Lips by Using Developed Pre-Surgical Treatment Architecture. Children, 8(12), 1121. https://doi.org/10.3390/children8121121