Changes of Neural Pathways after Vojta Approach in a Child with Developmental Delay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Presentation
2.2. Diffusion Tensor Imaging (DTI)
2.3. Gross Motor Function
2.4. Intervention
3. Results
3.1. Change of the Neural Pathway
3.2. Change of the Gross Motor Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.H.; Helsper, J.; Farid, M.S.; Grzegorzek, M. A computer vision-based system for monitoring Vojta therapy. Int. J. Med. Inform. 2018, 113, 85–95. [Google Scholar] [CrossRef]
- Epple, C.; Maurer-Burkhard, B.; Lichti, M.C.; Steiner, T. Vojta therapy improves postural control in very early stroke rehabilitation: A randomised controlled pilot trial. Neurol. Res. Pract. 2020, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.-H.; Ha, S.-Y. The Vojta approach changes thicknesses of abdominal muscles and gait in children with spastic cerebral palsy: A randomized controlled trial, pilot study. Technol. Health Care 2020, 28, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Giannantonio, C.; Papacci, P.; Ciarniello, R.; Tesfagabir, M.G.; Purcaro, V.; Cota, F.; Semeraro, C.M.; Romagnoli, C. Chest physiotherapy in preterm infants with lung diseases. Ital. J. Pediatr. 2010, 36, 65. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.W.; Landenberger, M.; Jung, T.; Lindenthal, T.; Philippi, H. Vojta therapy and neurodevelopmental treatment in children with infantile postural asymmetry: A randomised controlled trial. J. Phys. Ther. Sci. 2017, 29, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widjaja, E.; Nilsson, D.; Blaser, S.; Raybaud, C. White matter abnormalities in children with idiopathic developmental delay. Acta Radiol. 2008, 49, 589–595. [Google Scholar] [CrossRef]
- Hong, B.Y.; Jo, L.; Kim, J.S.; Lim, S.H.; Bae, J.M. Factors Influencing the Gross Motor Outcome of Intensive Therapy in Children with Cerebral Palsy and Developmental Delay. J. Korean Med. Sci. 2017, 32, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.S.; Jang, S.H.; Son, S.M. The different maturation of the corticospinal tract and corticoreticular pathway in normal brain development: Diffusion tensor imaging study. Front. Hum. Neurosci. 2014, 8, 573. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira-Souza, R. The human extrapyramidal system. Med. Hypotheses 2012, 79, 843–852. [Google Scholar] [CrossRef]
- Son, S.M.; Park, S.H.; Moon, H.K.; Lee, E.; Ahn, S.H.; Cho, Y.W.; Byun, W.M.; Jang, S.H. Diffusion tensor tractography can predict hemiparesis in infants with high risk factors. Neurosci. Lett. 2009, 451, 94–97. [Google Scholar] [CrossRef]
- Matsuyama, K.; Mori, F.; Nakajima, K.; Drew, T.; Aoki, M.; Mori, S. Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog. Brain Res. 2004, 143, 239–249. [Google Scholar]
- Pujol, J.; López-Sala, A.; Sebastián-Gallés, N.; Deus, J.; Cardoner, N.; Soriano-Mas, C.; Moreno, A.; Sans, A. Delayed myelination in children with developmental delay detected by volumetric MRI. Neuroimage 2004, 22, 897–903. [Google Scholar] [CrossRef]
- Filippi, C.G.; Lin, D.D.; Tsiouris, A.J.; Watts, R.; Packard, A.M.; Heier, L.A.; Uluğ, A.M. Diffusion-tensor MR imaging in children with developmental delay: Preliminary findings. Radiology 2003, 229, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Sagar, N.C.; Kumar, A.; Srivastava, A. Diagnostic value of diffusion tensor imaging derived metrics as biomarkers of cerebral changes in developmental delay. Indian J. Radiol. Imaging 2015, 25, 415–420. [Google Scholar] [CrossRef]
- Ment, L.R.; Hirtz, D.; Hüppi, P.S. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 2009, 8, 1042–1055. [Google Scholar] [CrossRef]
- Bleyenheuft, Y.; Dricot, L.; Gilis, N.; Kuo, H.C.; Grandin, C.; Bleyenheuft, C.; Gordon, A.M.; Friel, K.M. Capturing neuroplastic changes after bimanual intensive rehabilitation in children with unilateral spastic cerebral palsy: A combined DTI, TMS and fMRI pilot study. Res. Dev. Disabil. 2015, 43, 136–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, M.C.; Jang, S.H.; Yoe, S.S.; Lee, E.; Kim, S.; Lee, D.G.; Son, S.M. Diffusion tensor imaging demonstrated radiologic differences between diplegic and quadriplegic cerebral palsy. Neurosci. Lett. 2012, 512, 53–58. [Google Scholar] [CrossRef]
- Azizi, S.; Birgani, P.M.; Marzbani, H.; Nourian, R.; Kohanpour, M.; Mirbagheri, M.M. Assessment of neuroplasticity of corticospinal tract induced by antigravity treadmill (AlterG) in cerebral palsy children. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2495–2498. [Google Scholar] [CrossRef]
- Jones, D.K.; Knösche, T.R.; Turner, R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage 2013, 73, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Rha, D.W.; Shin, J.S.; Kim, S.; Jung, S. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy. Yonsei Med. J. 2014, 55, 1736–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palisano, R.J.; Hanna, S.E.; Rosenbaum, P.L.; Russell, D.J.; Walter, S.D.; Wood, E.P.; Raina, P.S.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Nordmark, E.; Hägglund, G.; Jarnlo, G.B. Reliability of the gross motor function measure in cerebral palsy. Scand. J. Rehabil. Med. 1997, 29, 25–28. [Google Scholar]
- Drobyshevsky, A.; Bregman, J.; Storey, P.; Meyer, J.; Prasad, P.V.; Derrick, M.; MacKendrick, W.; Tan, S. Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev. Neurosci. 2007, 29, 289–301. [Google Scholar] [CrossRef]
- Nagy, Z.; Westerberg, H.; Klingberg, T. Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 2004, 16, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, R.; Gupta, R.K.; Shah, V.; Tripathi, M.; Rathore, R.K.; Kumar, M.; Pandey, C.M.; Narayana, P.A. Treatment-induced plasticity in cerebral palsy: A diffusion tensor imaging study. Pediatr. Neurol. 2008, 39, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Froehle, A.W.; Nahhas, R.W.; Sherwood, R.J.; Duren, D.L. Age-related changes in spatiotemporal characteristics of gait accompany ongoing lower limb linear growth in late childhood and early adolescence. Gait Posture 2013, 38, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayson, T.A.; Harris, S.R.; Bachman, C.L. Gross motor development of Asian and European children on four motor assessments: A literature review. Pediatr. Phys. Ther. 2007, 19, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kwon, Y.M.; Son, S.M. Motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment: A diffusion tensor imaging study. Neural Regen. Res. 2015, 10, 624–630. [Google Scholar]
- Rha, D.W.; Chang, W.H.; Kim, J.; Sim, E.G.; Park, E.S. Comparing quantitative tractography metrics of motor and sensory pathways in children with periventricular leukomalacia and different levels of gross motor function. Neuroradiology 2012, 54, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.M.; Rose, J.; Kim, A.R.; Son, S.M. Corticoreticular tract lesion in children with developmental delay presenting with gait dysfunction and trunk instability. Neural Regen. Res. 2017, 12, 1465–1471. [Google Scholar]
- Son, S.M.; Shin, S.M. Disruption of the Corticoreticular Tract in Pediatric Patients with Trunk Instability: A Diffusion Tensor Tractography Study. Ann. Rehabil. Med. 2017, 41, 1093–1099. [Google Scholar] [CrossRef]
- Halsband, U.; Ito, N.; Tanji, J.; Freund, H.J. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 1993, 116, 243–266. [Google Scholar] [CrossRef]
- Jang, S.H.; Chang, C.H.; Lee, J.; Kim, C.S.; Seo, J.P.; Yeo, S.S. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke 2013, 44, 1099–1104. [Google Scholar] [CrossRef] [Green Version]
CST | CRP | ||||
---|---|---|---|---|---|
Initial | Follow-Up | Initial | Follow-Up | ||
FA | Right | 0.263 | 0.330 | 0.350 | 0.290 |
Left | 0.330 | 0.398 | 0.307 | - | |
MD | Right | 1.520 | 1.006 | 0.943 | 0.002 |
Left | 1.110 | 0.987 | 0.012 | - | |
TV | Right | 244.000 | 2508.000 | 152.000 | 183.000 |
Left | 507.000 | 354.000 | 3920.000 | - |
Initial | Follow-Up | |
---|---|---|
GMFM-88 | 17.17 | 57.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.-Y.; Sung, Y.-H. Changes of Neural Pathways after Vojta Approach in a Child with Developmental Delay. Children 2021, 8, 918. https://doi.org/10.3390/children8100918
Ha S-Y, Sung Y-H. Changes of Neural Pathways after Vojta Approach in a Child with Developmental Delay. Children. 2021; 8(10):918. https://doi.org/10.3390/children8100918
Chicago/Turabian StyleHa, Sun-Young, and Yun-Hee Sung. 2021. "Changes of Neural Pathways after Vojta Approach in a Child with Developmental Delay" Children 8, no. 10: 918. https://doi.org/10.3390/children8100918