A Review of Non-Pharmacological Treatments for Pain Management in Newborn Infants
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Environmental Control
3.1.1. Skin-to-Skin Care
3.1.2. Swaddling
3.1.3. Facilitated Tucking
3.1.4. Therapeutic Touch/Massage
3.1.5. Musical Therapy
3.2. Feeding Methods
3.2.1. Breastfeeding
3.2.2. Non-Nutritive Sucking
3.3. Other Interventions
3.3.1. Acupuncture
3.3.2. Sucrose/Glucose Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Search of PubMed—last performed 4 June 2018 | |
#1 | infant (n = 1,119,189) |
#2 | infants (n = 1,159,867) |
#3 | preterm (n = 62,246) |
#4 | premature (n = 170,785) |
#5 | pain (n = 733,273) |
#6 | relief (n = 84,761) |
#6 | acupuncture (n = 28,139) |
#7 | skin-to-skin care (n = 47,999) |
#8 | non-nutritive sucking (n = 367) |
#9 | sucrose (n = 74,579) |
#10 | massage (n = 13,982) |
#11 | music (n = 22,562) |
#12 | breastfeeding (n = 49,518) |
#13 | non-pharmacological (n = 6513) |
Search of Google Scholar—last performed 4 June 2018 | |
#1 | infant (n = 3,220,000) |
#2 | infants (n = 2,080,000) |
#3 | preterm (n = 1,010,000) |
#4 | premature (n = 2,840,000) |
#5 | pain (n = 3,770,000) |
#6 | relief (n = 2,390,000) |
#6 | acupuncture (n = 592,000) |
#7 | skin-to-skin care (n = 3,820,000) |
#8 | non-nutritive sucking (n = 21,900) |
#9 | sucrose (n = 2,640,000) |
#10 | massage (n = 773,000) |
#11 | music (n = 3,770,000) |
#12 | breastfeeding (n = 649,000) |
#13 | non-pharmacological (n = 2,540,000) |
References
- Cignacco, E.; Hamers, J.P.; Stoffel, L.; Lingen, R.A.; Gessler, P.; McDougall, J.; Nelle, M. The efficacy of non-pharmacological interventions in the management of procedural pain in preterm and term neonates. Eur. J. Pain 2007, 11, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Saad, H.H.; Bours, G.J.J.W.; Stevens, B.; Hamers, J.P.H. Assessment of pain in the neonate. Semin. Perinatol. 1998, 22, 402–416. [Google Scholar] [CrossRef]
- Barker, D.P.; Rutter, N. Exposure to invasive procedures in neonatal intensive care unit admissions. Arch. Dis. Child.-Fetal Neonatal Ed. 1995, 72, 47–48. [Google Scholar] [CrossRef]
- Meaney, M.J.; Aitken, D.H. The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: Temporal parameters. Brain Res. 1985, 354, 301–304. [Google Scholar] [CrossRef]
- Taddio, A.; Katz, J.; Ilersich, A.L.; Koren, G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 1997, 349, 599–603. [Google Scholar] [CrossRef] [Green Version]
- American and Canadian Academy of Pediatrics. Prevention and management of pain and stress in the neonate. Pediatrics 2000, 15, 454–461. [Google Scholar]
- Taddio, A. Opioid analgesia for infants in the neonatal intensive care unit. Clin. Perinatol. 2002, 29, 493–509. [Google Scholar] [CrossRef]
- Melzack, R.; Wall, P.D. Pain mechanism: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Shabani, F.; Nayeri, N.D.; Karimi, R.; Zarei, K.; Chehrazi, M. Effects of music therapy on pain responses induced by blood sampling in premature infants: A randomized cross-over trial. Iran. J. Nurs. Midwifery Res. 2016, 21, 391–396. [Google Scholar] [PubMed]
- Seo, Y.S.; Lee, J.; Ahn, H.Y. Effects of Kangaroo Care on Neonatal Pain in South Korea. J. Trop. Pediatr. 2016, 62, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Freire, N.B.; Garcia, J.B.; Lamy, Z.C. Evaluation of analgesic effect of skin-to-skin contact compared to oral glucose in preterm neonates. Pain 2008, 139, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Olsson, E.; Ahlsén, G.; Eriksson, M. Skin-to-skin contact reduces near-infrared spectroscopy pain responses in premature infants during blood sampling. Acta Paediatr. 2016, 105, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Efendi, D.; Rustina, Y.; Gayatri, D. Pacifier and swaddling effective in impeding premature infant’s pain score and heart rate. Enferm. Clin. 2018, 1, 46–50. [Google Scholar] [CrossRef]
- Erkut, Z.; Yildiz, S. The Effect of Swaddling on Pain, Vital Signs, and Crying Duration during Heel Lance in Newborns. Pain Manag. Nurs. 2017, 18, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.P.; Ho, S.S.; Leung, D.Y.; So, W.K.; Chan, C.W. A feasibility and efficacy randomized controlled trial of swaddling for controlling procedural pain in preterm infants. J. Clin. Nurs. 2016, 25, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Axelin, A.; Salanteräa, S.; Lehtonenb, L. Facilitated tucking by parents’ in pain management of preterm infants—A randomized crossover trial. Early Hum. Dev. 2006, 8, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Arikan, D.; Alp, H.; Gözüm, S.; Orbak, Z.; Cifçi, E.K. Effectiveness of massage, sucrose solution, herbal tea or hydrolysed formula in the treatment of infantile colic. J. Clin. Nurs. 2008, 17, 1754–1761. [Google Scholar] [PubMed]
- Chik, Y.M.; Ip, W.Y.; Choi, K.C. The Effect of Upper Limb Massage on Infants’ Venipuncture Pain. Pain Manag. Nurs. 2017, 18, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Kumar, P.; McMillan, D.D. Prior leg massage decreases pain responses to heel stick in preterm babies. J. Paediatr. Child Health 2006, 42, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hong-Gu, H.; Zhou, X.; Wei, H.; Gao, Y.; Ye, B.; Liu, Z.; Chan, S.W. Pain relief effect of breast feeding and music therapy during heel lance for healthy-term neonates in China: A randomized controlled trial. Midwifery 2015, 31, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.R.; Kadage, S.; Sinn, J. Trial of Music, Sucrose, and Combination Therapy for Pain Relief during Heel Prick Procedures in Neonates. J. Pediatr. 2017, 190, 153–158.e2. [Google Scholar] [CrossRef] [PubMed]
- Zurita-Cruz, J.N.; Rivas-Ruiz, R.; Gordillo-Álvarez, V.; Villasis-Keever, M.Á. Breastfeeding for acute pain control on infants: A randomized controlled trial. Nutr. Hosp. 2017, 34, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Erkul, M.; Efe, E. Efficacy of Breastfeeding on Babies’ Pain During Vaccinations. Breastfeed. Med. 2017, 12, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Simonse, E.; Mulder, P.G.; van Beek, R.H. Analgesic effect of breast milk versus sucrose for analgesia during heel lance in late preterm infants. Pediatrics 2012, 129, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Baudesson de Chanville, A.; Brevaut-Malaty, V.; Garbi, A.; Tosello, B.; Baumstarck, K.; Gire, C. Analgesic Effect of Maternal Human Milk Odor on Premature Neonates: A Randomized Controlled Trial. J. Hum. Lact. 2017, 33, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z. Neural mechanism underlying acupuncture analgesia. Prog. Neurobiol. 2008, 85, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Lindrea, K.B.; Quah-Smith, I.; Schmölzer, G.M.; Daly, M.; Schindler, T.; Oei, J.L. Magnetic noninvasive acupuncture for infant comfort (MAGNIFIC)—A single-blinded randomised controlled pilot trial. Acta Paediatr. 2017, 106, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Abbasoğlu, A.; Cabıoğlu, M.T.; Tuğcu, A.U.; İnce, D.A.; Tekindal, M.A.; Ecevit, A.; Tarcan, A. Acupressure at BL60 and K3 Points Before Heel Lancing in Preterm Infants. EXPLORE J. Sci. Heal. 2015, 11, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Santos, V.; Nunes, M.; Barreto, J.; Ribeiro, C.; Carvalho, J.; Ribeiro, M. Glucose solution is more effective in relieving pain in neonates than non-nutritive sucking: A randomized clinical trial. Eur. J. Pain 2017, 21, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Gouin, S.; Gaucher, N.; Lebel, D.; Desjardins, M.P. A Randomized Double-Blind Trial Comparing the Effect on Pain of an Oral Sucrose Solution vs. Placebo in Children 1 to 3 Months Old Undergoing Simple Venipuncture. J. Emerg. Med. 2018, 54, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Collados-Gómez, L.; Ferrera-Camacho, P.; Fernandez-Serran, E.; Camacho-Vicente, V.; Flores-Herrero, C.; García-Pozo, A.; Jiménez-García, R. Randomised crossover trial showed that using breast milk or sucrose provided the same analgesic effect in preterm infants of at least 28 weeks. Acta Paediatr. 2018, 107, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Hebb, A.L.; Poulin, J.F.; Roach, S.P.; Zacharko, R.M.; Drolet, G. Cholecystokinin and endogenous opioid peptides: Interactive influence on pain, cognition, and emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.M.; Tung, W.S.; Kuo, L.L.; Chang, Y.J. Comparison of pain responses of premature infants to the heelstick between containment and swaddling. J. Nurs. Res. 2004, 12, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.S.; Sheykhi, S.; Abdeyazdan, Z.; Jodakee, M.; Boroumandfar, K. A comparative study on vaccination pain in the methods of massage therapy and mothers’ breastfeeding during injection of infants referring to Navabsafavi Health Care Center in Isfahan. Iran. J. Nurs. Midwifery Res. 2013, 18, 494–498. [Google Scholar] [PubMed]
- Bellieni, C.V.; Buonocore, G.; Nenci, A.; Franci, N.; Cordelli, D.M.; Bagnoli, F. Sensorial saturation: An effective analgesic tool for heel-prick in preterm infants. Neonatology 2001, 80, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Yurkovich, J.; Burns, D.S.; Harrison, T. The Effect of Music Therapy Entrainment on Physiologic Measures of Infants in the Cardiac Intensive Care Unit: Single Case Withdrawal Pilot Study. J. Music Ther. 2018, 55, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Olischar, M.; Shoemark, H.; Holton, T.; Weninger, M.; Hunt, R.W. The influence of music on aEEG activity in neurologically healthy newborns ≥32 weeks’ gestational age. Acta Paediatr. 2011, 100, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.H.; Winberg, J. Unique salience of maternal breast odors for newborn infants. Neurosci. Biobehav. Rev. 1999, 23, 439–449. [Google Scholar] [CrossRef]
- Lima, A.H.; Hermont, A.P.; Friche, A.A.L. Analgesia in newborns: A case-control study of the efficacy of nutritive and non-nutritive sucking stimuli. CoDAS 2013, 25, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Napadow, V.; Ahn, A.; Longhurst, J.; Lao, L.; Stener-Victorin, E.; Harris, R.; Langevin, H.M. The status and future of acupuncture mechanism research. J. Altern. Complement. Med. 2008, 14, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Quah-Smith, I.; Sachdev, P.S.; Wen, W.; Chen, X.; Williams, M.A. The Brain Effects of Laser Acupuncture in Healthy Individuals: An fMRI Investigation. PLoS ONE 2010, 5, e12619. [Google Scholar] [CrossRef] [PubMed]
- Cho, Z.H.; Oleson, T.D.; Alimi, D.; Niemtzow, R.C. Acupuncture: The search for biologic evidence with functional magnetic resonance imaging and positron emission tomography techniques. J. Altern. Complement. Med. 2002, 8, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Hall, R.W.; Golianu, B.; Yates, C.; Williams, D.K.; Chang, J.; Anand, K.J. Does noninvasive electrical stimulation of acupuncture points reduce heelstick pain in neonates? Acta Paediatr. 2016, 105, 1434–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holsti, L.; Grunau, R.E. Considerations for using sucrose to reduce procedural pain in preterm infants. Pediatrics 2010, 125, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Blass, E.M.; Ciaramitaro, V. A new look at some old mechanisms in newborns: Taste and tactile determinants of state, affect and action. Monogr. Soc. Child Dev. 1994, 59, 1–81. [Google Scholar] [CrossRef]
- Marceau, J.R.; Murray, H.; Nanan, R.K. Efficacy of oral sucrose in infants of methadone-maintained mothers. Neonatology 2010, 97, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Asmerom, Y.; Slater, L.; Boskovic, D.S.; Bahjri, K.; Holden, M.S.; Phillips, R.; Deming, D.; Ashwal, S.; Fayard, E.; Angeles, D.M. Oral sucrose for heel lance increases adenosine triphosphate use and oxidative stress in preterm neonates. J. Pediatr. 2013, 163, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Nuseir, K.Q.; Alzoubi, K.H.; Alabwaini, J.; Khabour, O.F.; Kassab, M.I. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation. Physiol. Behav. 2015, 145, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Siuciak, J.A.; Wong, V.; Perasall, D.; Weigand, S.J.; Lindsay, R.M. BDNF produces analgesia in the formalin test and modifies neuropeptide levels in rat brain and spinal cord areas associated with nociception. Eur. J. Neurosci. 1995, 7, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Torregrossa, M.M.; Jutkiewica, E.M. Endogenous opioids upregulate brain-derived neurotrophic factor mRNA through delta- and micro-opioid receptors independent of antidepressant-like effects. Eur. J. Neurosci. 2006, 23, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Feldman-Winter, L.; Goldsmith, J.P. Safe Sleep and Skin-to-Skin Care in the Neonatal Period for Healthy Term Newborns. Pediatrics 2016, 138, e20161889. [Google Scholar] [CrossRef] [PubMed]
- Yates, C.C.; Mitchell, A.J.; Lowe, L.M.; Lee, A.; Hall, R.W. Safety of Noninvasive Electrical Stimulation of Acupuncture Points During a Routine Neonatal Heel Stick. Med. Acupunct. 2013, 25, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Environmental Control |
Skin-to-skin care Swaddling Facilitated tucking Therapeutic touch/massage Musical therapy |
Feeding Methods |
Non-nutritive sucking Breastfeeding |
Other Interventions |
Acupuncture Sucrose/glucose solutions |
First Author, Year | Population | Intervention | Other Intervention | Primary Outcome | p-Value | |
---|---|---|---|---|---|---|
Intervention | Control | |||||
Shabani, 2016 [9] | Preterm (n = 20) | MT | N/A | Facial pain expressions M (SD): MT: 0.4 (0.1) | Control: 2.1 (0.4) | 0.001 |
Seo, 2016 [10] | Term (n = 56) | SSC | N/A | PIPP M ± SD: SSC: 4.1 ± 2.3 | Control: 6.3 ± 3.5 | 0.01 |
Freire, 2008 [11] | Preterm (n = 95) | SSC | Glucose | HR M ± SD: SSC: 5.1 ± 3.9 bpm Glucose: 9.9 ± 6.1 bpm | Control: 10.8 ± 6.5 bpm | SSC vs. glucose: 0.0001 SSC vs. control: 0.0001 |
Olsson, 2016 [12] | Preterm (n = 10) | SSC | N/A | PIPP M: 5.7 | Control: 5.0 | >0.05 (NS) |
Efendi, 2018 [13] | Preterm (n = 30) | Pacifier and swaddling | N/A | Increase in pain score: Swaddle: 5.9 ± 2.2 to 6.1 ± 2.0 | Control: 5.4 ± 1.8 to 7.7 ± 2.7 | Swaddling: NS Control: 0.003 |
Erkut, 2017 [14] | Term (n = 74) | Swaddle | N/A | NIPS M ± SD: Swaddle: 1.6 ± 0.8 | Control: 3.3 ± 1.5 | 0.01 |
Ho, 2016 [15] | Preterm (n = 54) | Swaddle | N/A | PIPP M ± SD: Swaddle: 7.0 ± 2.7 | Control: 14.7 ± 2.9 | <0.001 |
Axelin, 2006 [16] | Preterm (n = 20) | FT | N/A | NIPS Median (IQR): FT: 3 (2–6) | Control: 5 (2–7) | <0.001 |
Arikan, 2008 [17] | Preterm/term (n = 175) | Massage | Sucrose herbal tea, hydrolyzed formula | Crying time after procedure M ± SD: Massage: 4.4 ± 1.8 s Sucrose: 3.9 ± 1.5 s Tea: 3.2 ± 1.2 s Formula: 2.7 ± 1.1 s | Control: 5.3 ± 1.76 s | Comparing before and after procedure: p < 0.001 for all but control (p > 0.05) |
Chik, 2017 [18] | Preterm/term (n = 80) | Massage | N/A | PIPP M (SD): Massage: 6 (3.3) | Control: 12 (4.3) | <0.001 |
Jain, 2006 [19] | Preterm (n = 23) | Massage | N/A | NIPS M (SD): Massage: 1.5 (0.9) | Control: 3.5 (1.6) | <0.001 |
Zhu, 2015 [20] | Term (n = 250) | MT | BF | NIPS M (SD): MT: not significant MT + BF: not significant BF: 3.1 (1.9) | Control: 6.4 (0.2) | BF vs. control: <0.001 |
Shah, 2017 [21] | Preterm/term (n = 35) | MT | Sucrose | PIPP median (IQR): MT: 6 (3–11) MT + sucrose: 3 (0–4) | Sucrose: 5 (3–10) | MT vs. sucrose: >0.05 MT + sucrose vs. sucrose: <0.001 MT + sucrose vs. MT: <0.001 |
Zurita-Cruz, 2017 [22] | Term (n = 144) | BF | MS | Crying time Median (IQR): BF: 19 (0–136) MS: 41.5 (0–184) | Control: 41 (0–161) | BF vs. control: 0.007 Control vs. MS: >0.05 |
Erkul, 2017 [23] | Term (n = 100) | BF | N/A | NIPS M ± SD: BF: 1.9 ± 2.2 | Control: 6.8 ± 0.7 | <0.05 |
Simonse, 2012 [24] | BF | Bottle fed, sucrose | PIPP M (95%CI): BF: 7.0 (5.3–8.7) Bottle fed: 5.4 (3.7–7.1) | Sucrose: 5.3 (3.6–6.9) | BF vs. bottle fed: >0.05 BF vs. sucrose: >0.05 | |
Baudesson, 2017 [25] | Preterm (n = 33) | MO | N/A | PIPP M (SD): MO: 7.3 (3.0) | Control: 10 (3.5) | 0.03 |
Mitchell, 2016 [26] | Term (n = 162) | NESAP | Sucrose | PIPP M ± SD: NESAP: 5.0 ± 4.0 Sucrose: 4.0 ± 1.8 NESAP + sucrose: 3.6 ± 1.2 | Control: 4.9 ± 4.0 | <0.01 |
Chen, 2017 [27] | Preterm/term (n = 30) | MA | N/A | PIPP M ± SD: MA: 5.9 ± 3.7 | Control: 8.3 ± 4.7 | 0.04 |
Abbasoglu, 2015 [28] | Preterm (n = 32) | Acupressure | N/A | PIPP M ± SD: Acupressure: 9.1 ± 2.0 | Control: 9.6 ± 1.7 | 0.5 |
Lima, 2017 [29] | Term (n = 78) | NNS | Glucose | NIPS M ± SD: NNS: 33.9 ± 17.6 | Glucose: 10.9 ± 11.3 | <0.001 |
Gouin, 2018 [30] | Term (n = 245) | Sucrose | N/A | NIPS M ± SD: Sucrose: 2.3 ± 0.5 | Control: 1.6 ± 0.5 | 0.6 |
Collados-Gómez, 2018 [31] | Preterm (n = 66) | Sucrose | EBM | PIPP Median (IQR): Sucrose: 6 (4–8) | EBM: 7 (4–9) | 0.28 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangat, A.K.; Oei, J.-L.; Chen, K.; Quah-Smith, I.; Schmölzer, G.M. A Review of Non-Pharmacological Treatments for Pain Management in Newborn Infants. Children 2018, 5, 130. https://doi.org/10.3390/children5100130
Mangat AK, Oei J-L, Chen K, Quah-Smith I, Schmölzer GM. A Review of Non-Pharmacological Treatments for Pain Management in Newborn Infants. Children. 2018; 5(10):130. https://doi.org/10.3390/children5100130
Chicago/Turabian StyleMangat, Avneet K., Ju-Lee Oei, Kerry Chen, Im Quah-Smith, and Georg M. Schmölzer. 2018. "A Review of Non-Pharmacological Treatments for Pain Management in Newborn Infants" Children 5, no. 10: 130. https://doi.org/10.3390/children5100130