Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake
Abstract
:1. Introduction
2. Discussion
2.1. Peak Oxygen Uptake (Peak) in Children and Adolescents
2.2. Peak and Health Outcomes in Children
2.2.1. Cystic Fibrosis as Paradigm
2.2.2. Congenital Heart Disease
2.2.3. Pulmonary Hypertension
2.2.4. Sickle Cell Disease
2.3. Need for Reference Values
Importance of Data Harmonization
3. Future Direction
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blair, S.N.; Kohl, H.W., 3rd; Paffenbarger, R.S., Jr.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989, 262, 2395–2401. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or OaR, T.W. Pediatric Exercise Medicine; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Chia MaA, N. Pediatric Exercise Physiology; Advances in Sports and Exercise Science; CHURCHILL LIVINGSONE Elsevier: Toronto, ON, Canada, 2007. [Google Scholar]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.R.; Williams, C.A.; Jones, A.M.; Armstrong, N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br. J. Sports Med. 2011, 45, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Astrand, P.O. RK Textbook of Work Physiology, 3rd ed.; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Rowland, T.W.; Cunningham, L.N. Oxygen uptake plateau during maximal treadmill exercise in children. Chest 1992, 101, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, H.; Staschen, B.; Hebestreit, A. Ventilatory threshold: A useful method to determine aerobic fitness in children? Med. Sci. Sports Exerc. 2000, 32, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.P.; Gardner, R.M.; Adams, T.D.; Yanowitz, F.G.; Crapo, R.O. “Anaerobic threshold”: Problems of determination and validation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1178–1186. [Google Scholar] [PubMed]
- Robertson, C.V.; Marino, F.E. 2016 Last Word on Viewpoint: A role for the prefrontal cortex in exercise tolerance and termination. J. Appl. Physiol. 2016, 120, 470. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.V.; Marino, F.E. A role for the prefrontal cortex in exercise tolerance and termination. J. Appl. Physiol. 2016, 120, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Boushel, R.; Piantadosi, C.A. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol. Scand. 2000, 168, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.M.; Leu, S.Y.; Galassetti, P.; Radom-Aizik, S. Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med. Sci. Sports Exerc. 2014, 46, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Diller, G.P.; Dimopoulos, K.; Okonko, D.; Uebing, A.; Broberg, C.S.; Babu-Narayan, S.; Bayne, S.; Poole-Wilson, P.A.; Sutton, R.; Francis, D.P.; et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J. Am. Coll. Cardiol. 2006, 48, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, K.; Okonko, D.O.; Diller, G.P.; Broberg, C.S.; Salukhe, T.V.; Babu-Narayan, S.V.; Li, W.; Uebing, A.; Bayne, S.; Wensel, R.; et al. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation 2006, 113, 2796–2802. [Google Scholar] [CrossRef] [PubMed]
- Gladden, L.B.; Yates, J.W.; Stremel, R.W.; Stamford, B.A. Gas exchange and lactate anaerobic thresholds: Inter- and intraevaluator agreement. J. Appl. Physiol. 1985, 58, 2082–2089. [Google Scholar] [PubMed]
- Baba, R.; Nagashima, M.; Goto, M.; Nagano, Y.; Yokota, M.; Tauchi, N.; Nishibata, K. Oxygen uptake efficiency slope: A new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J. Am. Coll. Cardiol. 1996, 28, 1567–1572. [Google Scholar] [CrossRef]
- Nixon, P.A.; Orenstein, D.M.; Kelsey, S.F.; Doershuk, C.F. The prognostic value of exercise testing in patients with cystic fibrosis. N. Engl. J. Med. 1992, 327, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Pianosi, P.; Leblanc, J.; Almudevar, A. Peak oxygen uptake and mortality in children with cystic fibrosis. Thorax 2005, 60, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.G.; Systrom, D.M.; Ginns, L.C. An elevated breathing reserve index at the lactate threshold is a predictor of mortality in patients with cystic fibrosis awaiting lung transplantation. Am. J. Respir. Crit. Care Med. 2002, 165, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Selvadurai, H.C.; McKay, K.O.; Blimkie, C.J.; Cooper, P.J.; Mellis, C.M.; Van Asperen, P.P. The relationship between genotype and exercise tolerance in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2002, 165, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Accurso, F.J.; Rowe, S.M.; Clancy, J.P.; Boyle, M.P.; Dunitz, J.M.; Durie, P.R.; Sagel, S.D.; Hornick, D.B.; Konstan, M.W.; Donaldson, S.H.; et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N. Engl. J. Med. 2010, 363, 1991–2003. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, H.; Arets, H.G.; Aurora, P.; Boas, S.; Cerny, F.; Hulzebos, E.H.; Karila, C.; Lands, L.C.; Lowman, J.D.; Swisher, A.; et al. Statement on Exercise Testing in Cystic Fibrosis. Respiration 2015, 90, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Diller, G.P.; Dimopoulos, K.; Okonko, D.; Li, W.; Babu-Narayan, S.V.; Broberg, C.S.; Johansson, B.; Bouzas, B.; Mullen, M.J.; Poole-Wilson, P.A.; et al. Exercise intolerance in adult congenital heart disease: Comparative severity, correlates, and prognostic implication. Circulation 2005, 112, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, R.; Diller, G.P.; Borgia, F.; Benson, L.; Tay, E.L.; Alonso-Gonzalez, R.; Silva, M.; Charalambides, M.; Swan, L.; Dimopoulos, K.; et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 2012, 125, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Sutton, N.J.; Peng, L.; Lock, J.E.; Lang, P.; Marx, G.R.; Curran, T.J.; O’Neill, J.A.; Picard, S.T.; Rhodes, J. Effect of pulmonary artery angioplasty on exercise function after repair of tetralogy of Fallot. Am. Heart J. 2008, 155, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Giardini, A.; Specchia, S.; Tacy, T.A.; Coutsoumbas, G.; Gargiulo, G.; Donti, A.; Formigari, R.; Bonvicini, M.; Picchio, F.M. Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of Fallot. Am. J. Cardiol. 2007, 99, 1462–1467. [Google Scholar] [CrossRef] [PubMed]
- Giardini, A.; Hager, A.; Lammers, A.E.; Derrick, G.; Muller, J.; Diller, G.P.; Dimopoulos, K.; Odendaal, D.; Gargiulo, G.; Picchio, F.M.; et al. Ventilatory efficiency and aerobic capacity predict event-free survival in adults with atrial repair for complete transposition of the great arteries. J. Am. Coll. Cardiol. 2009, 53, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.M.; van der Bom, T.; de Vries, L.C.; Balducci, A.; Bouma, B.J.; Pieper, P.G.; van Dijk, A.P.; van der Plas, M.N.; Picchio, F.M.; Mulder, B.J. Exercise training improves exercise capacity in adult patients with a systemic right ventricle: A randomized clinical trial. Eur. Heart J. 2012, 33, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Shafer, K.M.; Janssen, L.; Carrick-Ranson, G.; Rahmani, S.; Palmer, D.; Fujimoto, N.; Livingston, S.; Matulevicius, S.A.; Forbess, L.W.; Brickner, B.; et al. Cardiovascular response to exercise training in the systemic right ventricle of adults with transposition of the great arteries. J. Physiol. 2015, 593, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Sless, R.; Stern, N.J. Transposition of exercise protocols: Cardiovascular response to exercise in patients with transposition of the great arteries. J. Physiol. 2015, 593, 4081–4082. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, B.R.; Bera, K.D. Why right is never left: The systemic right ventricle in transposition of the great arteries. J. Physiol. 2015, 593, 5039–5041. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Zak, V.; Sleeper, L.A.; Paridon, S.M.; Colan, S.D.; Geva, T.; Mahony, L.; Li, J.S.; Breitbart, R.E.; Margossian, R.; et al. Laboratory measures of exercise capacity and ventricular characteristics and function are weakly associated with functional health status after Fontan procedure. Circulation 2010, 121, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Paridon, S.M.; Mitchell, P.D.; Colan, S.D.; Williams, R.V.; Blaufox, A.; Li, J.S.; Margossian, R.; Mital, S.; Russell, J.; Rhodes, J.; et al. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J. Am. Coll. Cardiol. 2008, 52, 99–107. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, V.V.; Badesch, D.B.; Delcroix, M.; Fleming, T.R.; Gaine, S.P.; Galie, N.; Gibbs, J.S.; Kim, N.H.; Oudiz, R.J.; Peacock, A.; et al. End points and clinical trial design in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2009, 54 (Suppl. 1), S97–S107. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Ivy, D.D.; Gaitan, G.; Szatmari, A.; Rudzinski, A.; Garcia, A.E.; Sastry, B.K.; Pulido, T.; Layton, G.R.; Serdarevic-Pehar, M.; et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation 2012, 125, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Abman, S.H.; Kinsella, J.P.; Rosenzweig, E.B.; Krishnan, U.; Kulik, T.; Mullen, M.; Wessel, D.L.; Steinhorn, R.; Adatia, I.; Hanna, B.; et al. Implications of the U.S. Food and Drug Administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2013, 187, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Alpert, B.S.; Gilman, P.A.; Strong, W.B.; Ellison, M.F.; Miller, M.D.; McFarlane, J.; Hayashidera, T. Hemodynamic and ECG responses to exercise in children with sickle cell anemia. Am. J. Dis. Child. 1981, 135, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Pianosi, P.; D’Souza, S.J.; Charge, T.D.; Beland, M.J.; Esseltine, D.W.; Coates, A.L. Cardiac output and oxygen delivery during exercise in sickle cell anemia. Am. Rev. Respir. Dis. 1991, 143, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Pianosi, P.; D’Souza, S.J.; Esseltine, D.W.; Charge, T.D.; Coates, A.L. Ventilation and gas exchange during exercise in sickle cell anemia. Am. Rev. Respir. Dis. 1991, 143, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Liem, R.I.; Reddy, M.; Pelligra, S.A.; Savant, A.P.; Fernhall, B.; Rodeghier, M.; Thompson, A.A. Reduced fitness and abnormal cardiopulmonary responses to maximal exercise testing in children and young adults with sickle cell anemia. Physiol. Rep. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.M.; Liem, R.I.; Lu, Z.; Saville, B.; Acra, S.; Shankar, S.; Buchowski, M. Longitudinal differences in aerobic capacity between children with sickle cell anemia and matched controls. Pediatr. Blood Cancer 2015, 62, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Dham, N.; Ensing, G.; Minniti, C.; Campbell, A.; Arteta, M.; Rana, S.; Darbari, D.; Nouraie, M.; Onyekwere, O.; Lasota, M.; et al. Prospective echocardiography assessment of pulmonary hypertension and its potential etiologies in children with sickle cell disease. Am. J. Cardiol. 2009, 104, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Panepinto, J.A.; O’Mahar, K.M.; DeBaun, M.R.; Loberiza, F.R.; Scott, J.P. Health-related quality of life in children with sickle cell disease: Child and parent perception. Br. J. Haematol. 2005, 130, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Anthi, A.; Machado, R.F.; Jison, M.L.; Taveira-Dasilva, A.M.; Rubin, L.J.; Hunter, L.; Hunter, C.J.; Coles, W.; Nichols, J.; Avila, N.A.; et al. Hemodynamic and functional assessment of patients with sickle cell disease and pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2007, 175, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, V.; Kato, G.J.; Gibbs, J.S.; Barst, R.J.; Machado, R.F.; Nouraie, M.; Hassell, K.L.; Little, J.A.; Schraufnagel, D.E.; Krishnamurti, L.; et al. Echocardiographic markers of elevated pulmonary pressure and left ventricular diastolic dysfunction are associated with exercise intolerance in adults and adolescents with homozygous sickle cell anemia in the United States and United Kingdom. Circulation 2011, 124, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Liem, R.I.; Onyejekwe, K.; Olszewski, M.; Nchekwube, C.; Zaldivar, F.P.; Radom-Aizik, S.; Rodeghier, M.J.; Thompson, A.A. The acute phase inflammatory response to maximal exercise testing in children and young adults with sickle cell anaemia. Br. J. Haematol. 2015, 171, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Kemper, H.C.; van Mechelen, W.; Post, G.B.; Snel, J.; Twisk, J.W.; van Lenthe, F.J.; Welten, D.C. The Amsterdam Growth and Health Longitudinal Study. The past (1976–1996) and future (1997-?). Int. J. Sports Med. 1997, 18 (Suppl. 3), S140–S150. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Bailey, D.A.; Cameron, N.; Rasmussen, R.L. Longitudinal comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. Ann. Hum. Biol. 1981, 8, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Welsman, J.R. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc. Sport Sci. Rev. 1994, 22, 435–476. [Google Scholar] [CrossRef] [PubMed]
- Geithner, C.A.; Thomis, M.A.; Vanden Eynde, B.; Maes, H.H.; Loos, R.J.; Peeters, M.; Claessens, A.L.; Vlietinck, R.; Malina, R.M.; Beunen, G.P. Growth in peak aerobic power during adolescence. Med. Sci. Sports Exerc. 2004, 36, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Krahenbuhl, G.S.; Skinner, J.S.; Kohrt, W.M. Developmental aspects of maximal aerobic power in children. Exerc. Sport Sci. Rev. 1985, 13, 503–538. [Google Scholar] [CrossRef] [PubMed]
- McMurray, R.G.; Andersen, L.B. The influence of exercise on metabolic syndrome in youth: A review. J. Lifestyle Med. 2010, 4, 176–186. [Google Scholar] [CrossRef]
- Adegboye, A.R.; Anderssen, S.A.; Froberg, K.; Sardinha, L.B.; Heitmann, B.L.; Steene-Johannessen, J.; Kolle, E.; Andersen, L.B. Recommended aerobic fitness level for metabolic health in children and adolescents: A study of diagnostic accuracy. Br. J. Sports Med. 2011, 45, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.M.; Weiler-Ravell, D.; Whipp, B.J.; Wasserman, K. Aerobic parameters of exercise as a function of body size during growth in children. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 56, 628–634. [Google Scholar] [PubMed]
- Ashish, N.; Bamman, M.M.; Cerny, F.J.; Cooper, D.M.; D’Hemecourt, P.; Eisenmann, J.C.; Ericson, D.; Fahey, J.; Falk, B.; Gabriel, D.; et al. The clinical translation gap in child health exercise research: A call for disruptive innovation. Clin. Transl. Sci. 2015, 8, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M. Tracking of physical activity and physical fitness across the lifespan. Res. Q. Exerc. Sport 1996, 67 (Suppl. 3), S48–S57. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M. Physical activity and fitness: Pathways from childhood to adulthood. Am. J. Hum. Biol. 2001, 13, 162–172. [Google Scholar] [CrossRef]
- Taylor, W.C.; Blair, S.N.; Cummings, S.S.; Wun, C.C.; Malina, R.M. Childhood and adolescent physical activity patterns and adult physical activity. Med. Sci. Sports Exerc. 1999, 31, 118–123. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pianosi, P.T.; Liem, R.I.; McMurray, R.G.; Cerny, F.J.; Falk, B.; Kemper, H.C.G. Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake. Children 2017, 4, 6. https://doi.org/10.3390/children4010006
Pianosi PT, Liem RI, McMurray RG, Cerny FJ, Falk B, Kemper HCG. Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake. Children. 2017; 4(1):6. https://doi.org/10.3390/children4010006
Chicago/Turabian StylePianosi, Paolo T., Robert I. Liem, Robert G. McMurray, Frank J. Cerny, Bareket Falk, and Han C. G. Kemper. 2017. "Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake" Children 4, no. 1: 6. https://doi.org/10.3390/children4010006
APA StylePianosi, P. T., Liem, R. I., McMurray, R. G., Cerny, F. J., Falk, B., & Kemper, H. C. G. (2017). Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake. Children, 4(1), 6. https://doi.org/10.3390/children4010006