Can a Peripheral Blood Marker for Airway Neutrophilia Be Identified in Children with Bronchiectasis?
Highlights
- Airway neutrophilia is common in children with bronchiectasis.
- Airway neutrophilia is associated with the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Adenovirus, but there are no reliable peripheral blood markers for airway neutrophilia.
- Clinicians should continue to base assessment of airway inflammation in paediatric bronchiectasis on clinical features and lower airway sampling where indicated, rather than peripheral blood inflammatory ratios.
- CRP may provide supportive information but is not disease specific.
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
- (i)
- monocyte/lymphocyte ratio (MLR)
- (ii)
- neutrophil/lymphocyte ratio (NLR)
- (iii)
- platelet/lymphocyte ratio (PLR)
- (iv)
- platelet/mean platelet volume ratio (PVR)
2.2. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Bronchoalveolar Lavage Cell Cytology
3.3. Microbiology in BAL
3.4. Bacteria and Airway Neutrophilia
3.5. Viruses and Airway Neutrophilia
3.6. Peripheral Blood Values
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goyal, V.; Grimwood, K.; Marchant, J.; Masters, I.B.; Chang, A.B. Pediatric bronchiectasis: No longer an orphan disease. Pediatr. Pulmonol. 2016, 51, 450–469. [Google Scholar] [CrossRef]
- Pizzutto, S.J.; Hare, K.M.; Upham, J.W. Bronchiectasis in Children: Current Concepts in Immunology and Microbiology. Front. Pediatr. 2017, 5, 123. [Google Scholar] [CrossRef]
- Perea, L.; Faner, R.; Chalmers, J.D.; Sibila, O. Pathophysiology and genomics of bronchiectasis. Eur. Respir. Rev. 2024, 33, 240055. [Google Scholar] [CrossRef] [PubMed]
- Shteinberg, M.; Waterer, G.; Chotirmall, S.H. A Global Effort to Stop the Vicious Vortex: A Special American Journal of Respiratory and Critical Care Medicine Issue for World Bronchiectasis Day 2024. Am. J. Respir. Crit. Care Med. 2024, 210, 1–3. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef]
- Tunney, M.M.; Einarsson, G.G.; Wei, L.; Drain, M.; Klem, E.R.; Cardwell, C.; Ennis, M.; Boucher, R.C.; Wolfgang, M.C.; Elborn, J.S. Lung Microbiota and Bacterial Abundance in Patients with Bronchiectasis when Clinically Stable and during Exacerbation. Am. J. Respir. Crit. Care Med. 2013, 187, 1118–1126. [Google Scholar] [CrossRef]
- Daheshia, M.; Prahl, J.D.; Carmichael, J.J.; Parrish, J.S.; Seda, G. The immune response and its therapeutic modulation in bronchiectasis. Pulm. Med. 2012, 2012, 280528. [Google Scholar] [CrossRef]
- Johnson, E.; Long, M.B.; Chalmers, J.D. Biomarkers in bronchiectasis. Eur. Respir. Rev. 2024, 33, 230234. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.; Grimwood, K.; Masters, I.B.; Morris, P.S.; Chang, A.B. Lower airway microbiology and cellularity in children with newly diagnosed non-CF bronchiectasis. Pediatr. Pulmonol. 2012, 47, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Moriki, D.; Tsouprou, M.; Prountzos, S.; Koumpagioti, D.; Kalogiannis, M.; Alexopoulou, E.; Douros, K. Bacterial Isolates from Bronchoalveolar Lavage in Pediatric Patients with Protracted Bacterial Bronchitis or Bronchiectasis: A Retrospective Comparative Study. J. Clin. Med. 2025, 14, 7653. [Google Scholar] [CrossRef]
- Pillarisetti, N.; Broderick, D.; Ainsworth, A.; Mulholland, A.; Wagner Mackenzie, B.; Middleton, D.; Byrnes, C.A.; Taylor, M.W. The airway microbiota in children newly diagnosed with bronchiectasis largely retains its diversity. Eur. Respir. J. 2019, 54, 1900704. [Google Scholar] [CrossRef] [PubMed]
- Tirumala, V.; Klemt, C.; Xiong, L.; Chen, W.; van den Kieboom, J.; Kwon, Y.M. Diagnostic Utility of Platelet Count/Lymphocyte Count Ratio and Platelet Count/Mean Platelet Volume Ratio in Periprosthetic Joint Infection Following Total Knee Arthroplasty. J. Arthroplast. 2021, 36, 291–297. [Google Scholar] [CrossRef]
- Wiwanitkit, V. Plateletcrit, mean platelet volume, platelet distribution width: Its expected values and correlation with parallel red blood cell parameters. Clin. Appl. Thromb. Hemost. 2004, 10, 175–178. [Google Scholar] [CrossRef]
- El-Gazzar, A.G.; Kamel, M.H.; Elbahnasy, O.K.M.; El-Naggar, M.E. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Exper. Rev. Respir. Med. 2020, 14, 111–116. [Google Scholar] [CrossRef]
- Chang, A.B.; Bell, S.C.; Byrnes, C.A.; Dawkins, P.; Holland, A.E.; Kennedy, E.; King, P.T.; Laird, P.; Mooney, S.; Morgan, L.; et al. Thoracic Society of Australia and New Zealand (TSANZ) position statement on chronic suppurative lung disease and bronchiectasis in children, adolescents and adults in Australia and New Zealand. Respirology 2023, 28, 339–349. [Google Scholar] [CrossRef]
- Hare, K.M.; Pizzutto, S.J.; Chang, A.B.; Smith-Vaughan, H.C.; McCallum, G.B.; Beissbarth, J.; Versteegh, L.; Grimwood, K. Defining lower airway bacterial infection in children with chronic endobronchial disorders. Pediatr. Pulmonol. 2018, 53, 224–232. [Google Scholar] [CrossRef]
- Teague, W.G.; Lawrence, M.G.; Shirley, D.T.; Garrod, A.S.; Early, S.V.; Payne, J.B.; Wisniewski, J.A.; Heymann, P.W.; Daniero, J.J.; Steinke, J.W.; et al. Lung Lavage Granulocyte Patterns and Clinical Phenotypes in Children with Severe, Therapy-Resistant Asthma. J. Allergy Clin. Immunol. Pract. 2019, 7, 1803–1812.e10. [Google Scholar] [CrossRef]
- Allibone, E.C.; Allison, P.R.; Zinnemann, K. The Significance of Hæmophilus influenzæ in Chronic Bronchiectasis of Children. Proc. R. Soc. Med. 1955, 48, 1102. [Google Scholar] [CrossRef]
- Ruffles, T.J.C.; Marchant, J.M.; Masters, I.B.; Yerkovich, S.T.; Wurzel, D.F.; Gibson, P.G.; Busch, G.; Baines, K.J.; Simpson, J.L.; Smith-Vaughan, H.C.; et al. Outcomes of protracted bacterial bronchitis in children: A 5-year prospective cohort study. Respirology 2021, 26, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.; Mackay, I.M.; Sloots, T.P.; Masters, I.B.; Chang, A.B. Respiratory viruses in exacerbations of non-cystic fibrosis bronchiectasis in children. Arch. Dis. Child. 2014, 99, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Guan, W.J.; Xu, G.; Lin, Z.Y.; Tang, Y.; Lin, Z.M.; Gao, Y.; Li, H.M.; Zhong, N.S.; Zhang, G.J.; et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: A prospective study. Chest 2015, 147, 1635–1643. [Google Scholar] [CrossRef]
- Park, Y.E.; Sung, H.; Oh, Y.M. Respiratory Viruses in Acute Exacerbations of Bronchiectasis. J. Korean Med. Sci. 2021, 36, e217. [Google Scholar] [CrossRef]
- Kartsiouni, E.; Chatzipanagiotou, S.; Tamvakeras, P.; Douros, K. The role of viral infections in pulmonary exacerbations of patients with non-cystic fibrosis bronchiectasis: A systematic review. Respir. Investig. 2022, 60, 625–632. [Google Scholar] [CrossRef]
- Aliberti, S.; Gramegna, A.; Zucchetti, S.; Simonetta, E.; Amati, F.; Castelli, D.; Cavallero, A.; Franceschi, E.; Conio, V.; Grosso, A.; et al. Respiratory viruses in stable bronchiectasis: A multicenter evaluation in Northern Italy. Respir. Med. 2022, 205, 107056. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.B.; Mourad, B.; Buddle, L.; Peters, M.J.; Oliver, B.G.G.; Morgan, L.C. Viruses in bronchiectasis: A pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations. BMC Pulm. Med. 2018, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.; Masters, I.B.; Morris, P.S.; Galligan, J.; Ware, R.; Chang, A.B. Defining pulmonary exacerbation in children with non-cystic fibrosis bronchiectasis. Pediatr. Pulmonol. 2012, 47, 68–75. [Google Scholar] [CrossRef]
- Georgakopoulou, V.E.; Trakas, N.; Damaskos, C.; Garmpis, N.; Karakou, E.; Chatzikyriakou, R.; Lambrou, P.; Tsiafaki, X. Neutrophils to Lymphocyte Ratio as a Biomarker in Bronchiectasis Exacerbation: A Retrospective Study. Cureus 2020, 12, e9728. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Smith, M.P.; McHugh, B.J.; Doherty, C.; Govan, J.R.; Hill, A.T. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 2012, 186, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Nacaroglu, H.T.; Erdem, S.B.; Karaman, S.; Yazıcı, S.; Can, D. Can mean platelet volume and neutrophil-to-lymphocyte ratio be biomarkers of acute exacerbation of bronchiectasis in children? Cent. Eur. J. Immunol. 2017, 42, 358–362. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; de Gracia, J.; Vendrell Relat, M.; Giron, R.M.; Maiz Carro, L.; de la Rosa Carrillo, D.; Olveira, C. Multidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score. Eur. Respir. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Athanazio, R.A.; Giron, R.; Maiz-Carro, L.; de la Rosa, D.; Olveira, C.; de Gracia, J.; Vendrell, M.; Prados-Sanchez, C.; Gramblicka, G.; et al. Predicting high risk of exacerbations in bronchiectasis: The E-FACED score. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 275–284. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Olveira, C.; Giron, R.; Garcia-Clemente, M.; Maiz-Carro, L.; Sibila, O.; Golpe, R.; Mendez, R.; Rodriguez Hermosa, J.L.; Barreiro, E.; et al. Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules 2022, 12, 1399. [Google Scholar] [CrossRef] [PubMed]
- Coban, H.; Gungen, A.C. Is There a Correlation between New Scoring Systems and Systemic Inflammation in Stable Bronchiectasis? Can. Respir. J. 2017, 2017, 9874068. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A.; Soler-Cataluna, J.J.; Perpina-Tordera, M.; Roman-Sanchez, P.; Soriano, J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 2007, 132, 1565–1572. [Google Scholar] [CrossRef]
- Kwok, W.C.; Teo, K.C.; Lau, K.K.; Ho, J.C.-m. High-sensitivity C-reactive protein level in stable-state bronchiectasis predicts exacerbation risk. BMC Pulm. Med. 2024, 24, 80. [Google Scholar] [CrossRef]
- Courtney, J.M.; Kelly, M.G.; Watt, A.; Garske, L.; Bradley, J.; Ennis, M.; Elborn, J.S. Quality of life and inflammation in exacerbations of bronchiectasis. Chron. Respir. Dis. 2008, 5, 161–168. [Google Scholar] [CrossRef]
- Doumat, G.; Aksamit, T.R.; Kanj, A.N. Bronchiectasis: A clinical review of inflammation. Respir. Med. 2025, 244, 108179. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; Gilmour, A.; Chalmers, J.D. Dipeptidyl peptidase-1 inhibitors in bronchiectasis. Eur. Respir. Rev. 2025, 34, 240257. [Google Scholar] [CrossRef] [PubMed]
- Zhong, N.-S.; Qiu, R.; Cao, J.; Huang, Y.-M.; Zhou, H.; Xu, X.-X.; Xu, J.-F.; Ye, H.; Yang, Z.-R.; Gao, L.-Y.; et al. Effects of the DPP-1 inhibitor HSK31858 in adults with bronchiectasis in China (SAVE-BE): A phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Respir. Med. 2025, 13, 414–424. [Google Scholar] [CrossRef]
| Characteristic | N = 402 (Median (IQR) or n, %) |
|---|---|
| Age at chest CT scan | 3.12 (1.74–5.47) |
| First Nations | 67 (16.7%) |
| Male gender | 231 (57.5%) |
| Blood neutrophils (×109) | 3.37 (2.3–4.93) |
| Blood lymphocytes (×109) | 4.47 (3.26–5.94) |
| Blood eosinophils (×109) | 0.33 (0.16–0.63) |
| Platelet count (n = 396) | 331.5 (276.5–401) |
| Platelet volume | 9.5 (9–10.2) (n = 400) |
| MLR * | 0.16 (0.12–0.23) |
| NLR † | 0.735 (0.48–1.21) |
| PLR ‡ | 74.29 (56.14–97.06) |
| CRP § | 1.9 (1.9–3.7) (n = 203) |
| BAL total cell count | 350 (130–950) (n = 390) |
| BAL neutrophils (%) | 41 (11–75.9) (n = 394) |
| BAL eosinophils (%) | 0 (0–0.7) (n = 395) |
| BAL lymphocytes (%) | 9.00 (4.2–17.00) (n = 398) |
| BAL macrophages (%) | 42 (13–70.2) (n = 395) |
| Bacterial growth in BAL | 355 (88.3%) |
| Viral species identified in BAL | 131 (32.54%) |
| Bacteria | Frequency A (% B) |
|---|---|
| Haemophilus influenzae | 185 (46.02) |
| α-Haemolytic streptococcus | 169 (42.04) |
| Streptococcus pneumoniae | 95 (23.63) |
| Moraxella catarrhalis | 56 (13.93) |
| Staphylococcus aureus | 27 (6.72) |
| Pseudomonas aeruginosa C | 18 (4.48) |
| β-Haemolytic streptococcus | 8 (1.99) |
| CRP Not Available n = 199 | CRP Available n = 203 | p-Value | |
|---|---|---|---|
| Age at chest CT scan | 3.92 (2.1–6.25) | 2.52 (1.51–4.48) | <0.001 |
| First Nations | 29 (14.6%) | 38 (18.7%) | 0.26 |
| Male gender | 112 (56.3%) | 119 (58.6%) | 0.64 |
| Blood neutrophils (×109) | 3.5 (2.23–5.13) | 3.27 (2.32–4.78) | 0.75 |
| Blood lymphocytes (×109) | 3.97 (3–5.28) | 5.02 (3.65–6.68) | <0.001 |
| Blood monophils (×109) | 0.74 (0.54–0.94) | 0.75 (0.59–0.96) | 0.19 |
| Blood eosinophils (×109) | 0.33 (0.16–0.67) | 0.33 (0.16–0.59) | 0.49 |
| Platelet volume | 9.6 (9.1–10.3) | 9.4 (9–10) | 0.02 |
| MLR | 0.18 (0.13–0.24) | 0.15 (0.11–0.22) | <0.001 |
| NLR | 0.82 (0.53–1.31) | 0.65 (0.43–1.09) | 0.003 |
| PLR | 77.31 (57.91–104.59) | 69.25 (55.18–90.15) | 0.008 |
| PVR | 2.43 (1.78–3.21) | 1.89 (1.39–2.58) | <0.001 |
| BAL cell count | 340 (110–830) | 360 (140–980) | 0.35 |
| BAL macrophages | 39 (12.2–71) | 43.85 (14.3–70) | 0.58 |
| BAL lymphocytes | 7.6 (4.2–16.8) | 10 (4.5–17.5) | 0.35 |
| BAL neutrophils | 40 (12–77) | 41.8 (10.8–74.8) | 0.75 |
| BAL eosinophils | 0 (0–0.5) | 0 (0–0.8) | 0.047 |
| Virus present | 63 (31.7%) | 70 (34.5%) | 0.55 |
| Bacteria present | 170 (85.4%) | 185 (91.1%) | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wiltingh, H.W.; Marchant, J.; Chang, A.; Goyal, V. Can a Peripheral Blood Marker for Airway Neutrophilia Be Identified in Children with Bronchiectasis? Children 2026, 13, 174. https://doi.org/10.3390/children13020174
Wiltingh HW, Marchant J, Chang A, Goyal V. Can a Peripheral Blood Marker for Airway Neutrophilia Be Identified in Children with Bronchiectasis? Children. 2026; 13(2):174. https://doi.org/10.3390/children13020174
Chicago/Turabian StyleWiltingh, Hendrik Willem, Julie Marchant, Anne Chang, and Vikas Goyal. 2026. "Can a Peripheral Blood Marker for Airway Neutrophilia Be Identified in Children with Bronchiectasis?" Children 13, no. 2: 174. https://doi.org/10.3390/children13020174
APA StyleWiltingh, H. W., Marchant, J., Chang, A., & Goyal, V. (2026). Can a Peripheral Blood Marker for Airway Neutrophilia Be Identified in Children with Bronchiectasis? Children, 13(2), 174. https://doi.org/10.3390/children13020174

