Indocyanine Green Fluorescence Navigation in Pediatric Hepatobiliary Surgery: Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Collection and Synthesis
2.4. Quality Appraisal
3. Results
3.1. Cholecystectomy
3.2. Biliary Atresia (BA)
3.3. Choledochal Cyst (CDC)
3.4. Liver Tumors
3.5. Liver Transplant
3.6. Liver Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelhafeez, A.; Talbot, L.; Murphy, A.J.; Davidoff, A.M. Indocyanine Green-Guided Pediatric Tumor Resection: Approach, Utility, and Challenges. Front. Pediatr. 2021, 9, 689612. [Google Scholar] [CrossRef] [PubMed]
- Pachl, M.J. Fluorescent Guided Lymph Node Harvest in Laparoscopic Wilms Nephroureterectomy. Urology 2021, 158, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Di Mitri, M.; Thomas, E.; Di Carmine, A.; Manghi, I.; Cravano, S.M.; Bisanti, C.; Collautti, E.; Ruspi, F.; Cordola, C.; Vastano, M.; et al. Intraoperative Ultrasound in Minimally Invasive Laparoscopic and Robotic Pediatric Surgery: Our Experiences and Literature Review. Children 2023, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.T.; Au, D.M.; Wong, K.K.Y. Application of indocyanine green in pediatric surgery. Pediatr. Surg. Int. 2019, 35, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.A.; Hemal, A.K. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: Current status and review of literature. Int. Urol. Nephrol. 2019, 51, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Miguel, C.; Camps, J.; Oliveros, F.H. The Role of Indocyanine Green in Pediatric Gastrointestinal Surgery: Systematic Review. Eur. J. Pediatr. Surg. 2024, 34, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Di Mitri, M.; Di Carmine, A.; Zen, B.; Collautti, E.; Bisanti, C.; D’Antonio, S.; Libri, M.; Gargano, T.; Lima, M. Advancing Pediatric Surgery with Indocyanine Green (ICG) Fluorescence Imaging: A Comprehensive Review. Children 2025, 12, 515. [Google Scholar] [CrossRef] [PubMed]
- Masuya, R.; Matsukubo, M.; Nakame, K.; Kai, K.; Hamada, T.; Yano, K.; Imamura, N.; Hiyoshi, M.; Nanashima, A.; Ieiri, S. Using indocyanine green fluorescence in laparoscopic surgery to identify and preserve rare branching of the right hepatic artery in pediatric congenital biliary dilatation. Surg. Today 2022, 52, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; PRISMA-P Group; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Graves, C.; Ely, S.; Idowu, O.; Newton, C.; Kim, S. Direct Gallbladder Indocyanine Green Injection Fluorescence Cholangiography During Laparoscopic Cholecystectomy. J. Laparoendosc. Adv. Surg. Tech. A 2017, 27, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bautista, B.; Mata, D.P.; Parente, A.; Pérez-Caballero, R.; De Agustín, J.C. First Experience with Fluorescence in Pediatric Laparoscopy. Eur. J. Pediatr. Surg. Rep. 2019, 7, e43–e46. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.K.; Marulanda, K.; Phillips, M.R. Laparoscopic Double Cholecystectomy in a Pediatric Patient for Gallbladder Duplication: An Unusual Case of Biliary Anatomy. Am Surg. 2020, 86, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Calabro, K.A.; Harmon, C.M.; Vali, K. Fluorescent Cholangiography in Laparoscopic Cholecystectomy and the Use in Pediatric Patients. J. Laparoendosc. Adv. Surg. Tech. A 2020, 30, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.; Rathod, K.J.; Cerulo, M.; Del Conte, F.; Saxena, R.; Coppola, V.; Sinha, A.; Esposito, G.; Escolino, M. Indocyanine green fluorescent cholangiography: The new standard practice to perform laparoscopic cholecystectomy in pediatric patients. A comparative study with conventional laparoscopic technique. Surgery 2024, 175, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, T.K.; Rathod, K.J.; Saxena, R.; Pathak, M.; Jadhav, A.S.; Nayak, S.; Varshney, V.; Soni, S.C.; Sinha, A. Indocyanine Green Fluorescence-Guided Surgery in Pediatric Hepatobiliary Procedures: A Feasibility Study for Improved Intraoperative Visualization. Eur. J. Pediatr. Surg. 2025, 35, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, Y.; Iinuma, Y.; Yokoyama, N.; Otani, T.; Masui, D.; Komatsuzaki, N.; Higashidate, N.; Tsuruhisa, S.; Iida, H.; Nakaya, K.; et al. Near-infrared fluorescence cholangiography with indocyanine green for biliary atresia. Real-time imaging during the Kasai procedure: A pilot study. Pediatr. Surg. Int. 2015, 31, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, Y.; Yoshimaru, K.; Matsuura, T.; Shibui, Y.; Kohashi, K.; Takahashi, Y.; Obata, S.; Sozaki, R.; Izaki, T.; Taguchi, T. The outcome of real-time evaluation of biliary flow using near-infrared fluorescence cholangiography with Indocyanine green in biliary atresia surgery. J. Pediatr. Surg. 2019, 54, 2574–2578. [Google Scholar] [CrossRef] [PubMed]
- Shirota, C.; Hinoki, A.; Togawa, T.; Ito, S.; Sumida, W.; Makita, S.; Amano, H.; Takimoto, A.; Takada, S.; Okamoto, M.; et al. Intraoperative indocyanine green fluorescence cholangiography can rule out biliary atresia: A preliminary report. Front. Pediatr. 2022, 10, 1005879. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; Jin, Y.; Li, S.; Liao, J.; Zhao, Y.; Chen, Y.; Huang, J. Exploratory application of indocyanine green quantification in biliary atresia observational study. Photodiagn. Photodyn. Ther. 2022, 39, 102960. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liao, J.; Li, S.; Zhang, S.; Huang, J. Laparoscopic indocyanine green fluorescence imaging technique in rare type II cystic biliary atresia. Photodiagn. Photodyn. Ther. 2023, 44, 103846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, X.; Ye, Z.; Wu, Q.; Luo, Y. Role of indocyanine green-guided near-infrared fluorescence imaging in identification of the cause of neonatal cholestasis. Medicine 2024, 103, e38757. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.Z.; Mutore, K.; Bradd, M.V.; Pandya, S.; Corbitt, N. A Pilot Study for Biliary Atresia Diagnosis: Fluorescent Imaging of Indocyanine Green in Stool. J. Pediatr. Surg. 2024, 59, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Jaseel, M.; Vasudevan, A.K.; Sihag, A.; Shanmugam, N.; Sankaranarayanan, S.; Rela, M.; Ramachandran, P. Indocyanine Green Fluorescence Imaging for Intraoperative Confirmation of Bile Flow from Hilar Microbile Ducts During Kasai Portoenterostomy. J. Indian Assoc. Pediatr. Surg. 2025, 30, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Onishi, S.; Yamada, K.; Murakami, M.; Kedoin, C.; Muto, M.; Ieiri, S. Co-injection of Bile and Indocyanine Green for Detecting Pancreaticobiliary Maljunction of Choledochal Cyst. Eur. J. Pediatr. Surg. Rep. 2022, 10, e127–e130. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Miguel, C.; López-Santamaría, M.; Oliveros, F.H. The Role of Indocyanine Green Navigation in Choledochal Cyst Surgery. Indian J. Surg. 2023, 85, 1272–1274. [Google Scholar] [CrossRef]
- Mitani, Y.; Kubota, A.; Ueno, M.; Mori, M.; Santiago, T.C.; McCarville, M.B.; Kaste, S.C.; Pappo, A.S.; Talbot, L.J.; Murphy, A.J.; et al. Real-time identification of hepatoblastoma using a near infrared imaging with indocyanine green. J. Pediatr. Surg. Case Rep. 2014, 2, 180–183. [Google Scholar] [CrossRef]
- Yamamichi, T.; Oue, T.; Yonekura, T.; Owari, M.; Nakahata, K.; Umeda, S.; Nara, K.; Ueno, T.; Uehara, S.; Usui, N. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma. J. Pediatr. Surg. 2015, 50, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Ohno, M.; Fujino, A.; Kanamori, Y.; Irie, R.; Yoshioka, T.; Miyazaki, O.; Uchida, H.; Fukuda, A.; Sakamoto, S.; et al. Fluorescence-Guided Surgery for Hepatoblastoma with Indocyanine Green. Cancers 2019, 11, 1215. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zheng, M.; Li, J.; Tan, T.; Yang, J.; Pan, J.; Hu, C.; Zou, Y.; Yang, T. Clinical Application of Indocyanine Green Fluorescence Imaging in the Resection of Hepatoblastoma: A Single Institution’s Experiences. Front. Surg. 2022, 9, 932721. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Liu, X.; Pan, S.; Li, T.; Zhou, J. Effectiveness of indocyanine green fluorescence imaging in resection of hepatoblastoma. Pediatr. Surg. Int. 2023, 39, 181. [Google Scholar] [CrossRef] [PubMed]
- Souzaki, R.; Kawakubo, N.; Matsuura, T.; Yoshimaru, K.; Koga, Y.; Takemoto, J.; Shibui, Y.; Kohashi, K.; Hayashida, M.; Oda, Y.; et al. Navigation surgery using indocyanine green fluorescent imaging for hepatoblastoma patients. Pediatr. Surg. Int. 2019, 35, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Wu, Y.; Su, J.; Chen, L.; Liao, M.; Zhao, Z.; Lu, Z.; Xiong, X.; Jin, S.; Deng, X. Deploying Indocyanine Green Fluorescence-Guided Navigation System in Precise Laparoscopic Resection of Pediatric Hepatoblastoma. Cancers 2022, 14, 6057. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Feng, J.; Ren, Q.; Qin, H.; Yang, W.; Cheng, H.; Yao, X.; Xu, J.; Han, J.; Chang, S.; et al. Evaluating the clinical efficacy and limitations of indocyanine green fluorescence-guided surgery in childhood hepatoblastoma: A retrospective study. Photodiagn. Photodyn. Ther. 2023, 44, 103790. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Namgoong, J.M.; Kwon, H.H.; Kwon, Y.J.; Kim, D.Y.; Kim, S.C. The Advantages of Indocyanine Green Fluorescence Imaging in Detecting and Treating Pediatric Hepatoblastoma: A Preliminary Experience. Front. Pediatr. 2021, 9, 635394. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Qin, H.; Yang, W.; Cheng, H.; Xu, J.; Han, J.; Mou, J.; Wang, H.; Ni, X. Tumor-Background Ratio is an effective method to identify tumors and false-positive nodules in indocyanine-green navigation surgery for pediatric liver cancer. Front. Pediatr. 2022, 10, 875688. [Google Scholar] [CrossRef] [PubMed]
- Lake, C.M.; Bondoc, A.J.; Dasgupta, R.; Jenkins, T.M.; Towbin, A.J.; Smith, E.A.; Alonso, M.H.; Geller, J.I.; Tiao, G.M. Indocyanine green is a sensitive adjunct in the identification and surgical management of local and metastatic hepatoblastoma. Cancer Med. 2021, 10, 4322–4343. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.H.Y.; Chok, K.S.H.; Wong, K.K.Y. Indocyanine green fluorescence-assisted laparoscopic hepatectomy for hepatocellular carcinoma in a pre-adolescent girl: A case report. Hong Kong Med. J. 2020, 26, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.S.; Patel, K.R.; Yang, T.; Nguyen, H.N.; Masand, P.; Vasudevan, S.A. Pathologic correlation with near infrared-indocyanine green guided surgery for pediatric liver cancer. J. Pediatr. Surg. 2022, 57, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Liu, X.; Zhang, L.; Li, T.; Zhou, J. Inflammatory myofibroblastic tumor of the liver after adrenal neuroblastoma surgery: A case report. Discov. Oncol. 2024, 15, 174. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Shimizu, T.; Mori, M.; Okamatsu, C.; Nakamura, N.; Watanabe, T. Rim-type indocyanine green fluorescence pattern in a child with undifferentiated embryonal sarcoma of the liver treated with navigation surgery. Pediatr. Blood Cancer 2022, 69, e29799. [Google Scholar] [CrossRef] [PubMed]
- Troisi, R.I.; Elsheikh, Y.M.; Shagrani, M.A.; Broering, D. First fully laparoscopic donor hepatectomy for pediatric liver transplantation using the indocyanine green near-infrared fluorescence imaging in the Middle East: A case report. Ann. Saudi Med. 2014, 34, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.K.; Suh, K.S.; Kim, H.S.; Yoon, K.C.; Ahn, S.W.; Kim, H.; Yi, N.J.; Lee, K.W. Pediatric Living Donor Liver Transplantation Using a Monosegment Procured by Pure 3D Laparoscopic Left Lateral Sectionectomy and In Situ Reduction. J. Gastrointest. Surg. 2018, 22, 1135–1136. [Google Scholar] [CrossRef] [PubMed]
- Umemura, A.; Nitta, H.; Takahara, T.; Hasegawa, Y.; Katagiri, H.; Kanno, S.; Takeda, D.; Makabe, K.; Kobayashi, M.; Sasaki, A. Pure Laparoscopic Living Donor Left Lateral Sectionectomy Using Glissonean Approach and Original Bridging Technique. Surg. Laparosc. Endosc. Percutan. Tech. 2021, 31, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wei, L.; Zhu, M.; Zeng, Z.; Qu, W.; Zhu, Z. A novel approach of intraoperative cholangiography in laparoscopic left lateral sectionectomy in living donor liver transplantation. Surg. Endosc. 2023, 37, 4974–4981. [Google Scholar] [CrossRef] [PubMed]
- Kisaoglu, A.; Demiryilmaz, I.; Dandin, O.; Ozkan, O.; Aydinli, B. Management of reperfusion deficiency with indocyanine green fluorescence imaging during deceased donor liver transplantation in a pediatric recipient. HPB 2020, 22, 633. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, C.P.; Lautz, T.B.; Superina, R. Indocyanine green fluorescence imaging as an adjunct for the localization of a bile leak after split liver transplantation. Pediatr. Transplant. 2023, 27, e14431. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; Relling, M.V.; de Graaf, S.; Rodman, J.H.; Pieper, J.A.; Christensen, M.L.; Crom, W.R. Hepatic drug clearance in children: Studies with indocyanine green as a model substrate. J. Pharm. Sci. 1989, 78, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Kubota, A.; Okada, A.; Fukui, Y.; Kawahara, H.; Imura, K.; Kamata, S. Indocyanine green test is a reliable indicator of postoperative liver function in biliary atresia. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 61–65. [Google Scholar] [PubMed]
- Quintero, J.; Miserachs, M.; Ortega, J.; Bueno, J.; Dopazo, C.; Bilbao, I.; Castells, L.; Charco, R. Indocyanine green plasma disappearance rate: A new tool for the classification of paediatric patients with acute liver failure. Liver Int. 2014, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.; Nerup, N.; Møller, S.; de Nijs, R.; Rasmussen, A.; Bo Svendsen, L.; Kjaer, M.S.; Brix Christensen, V.; Borgwardt, L. Minimally invasive assessment of hepatic function in children with indocyanine green elimination: A validation study. Scand. J. Gastroenterol. 2019, 54, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Ficerai-Garland, G.; Helt, T.W.; Nielsen, J.; de Nijs, R.; Vissing, N.H.; Winther, C.L.; Møller, S.; Setterberg, V.; Squires, J.E.; Borgwardt, L.; et al. Indocyanine green clearance’s association with liver function in paediatric liver disease. Acta Paediatr. 2025, 114, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Pogorelić, Z.; Aralica, M.; Jukić, M.; Žitko, V.; Despot, R.; Jurić, I. Gallbladder Disease in Children: A 20-year Single-center Experience. Indian Pediatr. 2019, 56, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, T.; Masuda, K.; Urano, Y.; Kawaguchi, Y.; Satou, S.; Kaneko, J.; Hasegawa, K.; Shibahara, J.; Fukayama, M.; Tsuji, S.; et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann. Surg. Oncol. 2014, 21, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Miyata, A.; Ishizawa, T.; Kamiya, M.; Shimizu, A.; Kaneko, J.; Ijichi, H.; Shibahara, J.; Fukayama, M.; Midorikawa, Y.; Urano, Y.; et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging. PLoS ONE 2014, 9, e112667. [Google Scholar] [CrossRef] [PubMed]
- Ladd, A.D.; Zarate Rodriguez, J.; Lewis, D.; Warren, C.; Duarte, S.; Loftus, T.J.; Nassour, I.; Soma, D.; Hughes, S.J.; Hammill, C.W.; et al. Low vs standard-dose indocyanine green in the identification of biliary anatomy using near-infrared fluorescence imaging: A multicenter randomized controlled trial. J. Am. Coll. Surg. 2023, 236, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kuang, J.; Xu, Y.; Li, T.; Li, P.; Huang, Z.; Zhang, S.; Weng, J.; Lai, Y.; Wu, Z.; et al. Investigation of the optimal indocyanine green dose in real-time fluorescent cholangiography during laparoscopic cholecystectomy with an ultra-high-definition 4K fluorescent system: A randomized controlled trial. Updat. Surg. 2023, 75, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Speich, R.; Saesseli, B.; Hoffmann, U.; Neftel, K.A.; Reichen, J. Anaphylactoid reactions after indocyanine-green administration. Ann. Intern. Med. 1988, 109, 345–346. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, J.; Pandia, M.P.; Jaffe, R.A. Occurrence of severe hypotension after indocyanine green injection during the intraoperative period. A A Case Rep. 2013, 1, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Chennamsetty, A.; Toroussian, R.; Lau, C. Anaphylactic shock after intravenous administration of indocyanine green during robotic partial nephrectomy. Urol. Case Rep. 2017, 12, 37–38. [Google Scholar] [CrossRef]
- Lim, C.; Vibert, E.; Azoulay, D.; Salloum, C.; Ishizawa, T.; Yoshioka, R.; Mise, Y.; Sakamoto, Y.; Aoki, T.; Sugawara, Y.; et al. Indocyanine green fluorescence imaging in the surgical management of liver cancers: Current facts and future implications. J. Visc. Surg. 2014, 151, 117–124. [Google Scholar] [CrossRef] [PubMed]
References (Country, Year) | Indication for ICG NIRF Surgery | Study Design | No. Patients | Age (Range) | Timing of ICG Injection | ICG Dose (Route) |
---|---|---|---|---|---|---|
Cholecystectomy | ||||||
Graves et al. (USA, 2017) [12] | Illumination of relevant biliary system during laparoscopic cholecystectomy | Case series | 11 | Mean: 16 years | Intraoperative | 0.025 mg/mL ICG-bile solution. (Injected inside the gall bladder) |
Fernández-Bautista et al. (Spain, 2019) [13] | Identification of the bile duct during laparoscopic cholecystectomy | Case report | 1 | 13 years | Intraoperative | 0.2 mg/kg |
Bryant et al. (USA, 2020) [14] | Identification of anatomic variant of duplicated gall bladder with an accessory right hepatic duct branching off the cystic duct | Case report | 1 | 17 years | Intraoperative | Non-specified |
Calabro et al. (USA, 2020) [15] | Identification of biliary tree anatomy during laparoscopic cholecystectomy | Case series | 31 | Mean: 15 years old (range 6–18 years) | After anesthesia induction | 1 mL of a 25 mg/mL solution (IV) |
Esposito et al. (Italy, 2024) [16] | Compare outcomes of laparoscopic cholecystectomy with or without ICG | Retrospective study (comparative) | 173 | Median: 12 years (4–17 years) | Median time: 15 h before surgery (range 8–20 h) | 0.35 mg/kg (IV) |
T K et al. (India, 2025) [17] | Visualization of the biliary anatomy | Prospective study | 2 | 13 years both | 2–6 h before surgery | 0.5 mg/kg (IV) |
Biliary atresia (BA) | ||||||
Hirayama et al. (Japan, 2015) [18] | Visualize the biliary flow during and after anastomosis | Retrospective study | 5 | Median: 42 days. (31–75 days) | 24 h before surgery | 0.1 mg/kg (IV) |
Yanagi et al. (Japan, 2019) [19] | Observing the hilar microbile ducts during dissection | Retrospective study | 10 | Mean: 75 days (48–122 days) | 24 h before surgery | 0.5 mg/kg (IV) |
Shirota et al. (Japan, 2022) [20] | Explore the use of intravenous ICG cholangiography for the exclusion of BA | Retrospective study | 57 | Median: 61 days (34–201 days) | Three times: 24 h before surgery, 1 h before surgery or both | 0.05 mg/kg (IV) |
Zhao et al. (China, 2022) [21] | Anatomical degree of hepatic portal fibrous tissue evaluation and prognostic correlation after surgery | Observational study | 9 | Mean: 73 days (32–112 days). | 4–17 h before surgery | 0.05 mg/kg (IV) |
Wang et al. (China, 2023) [22] | Monitor bile flow during Kasai procedure (laparoscopic) | Case report | 1 | 25 days | After induction of general anesthesia | 0.05 mg/kg (IV) |
Zhang et al. (China, 2024) [23] | Evaluation of the extrahepatic bile duct during exploratory laparoscopy | Retrospective study | 16 | Mean: 55 days (42–93 days) | 12 h before surgery | 0.3 mg/kg (IV) |
Lim et al. (USA, 2024) [24] | Evaluation of ICG fluorescence in soiled diapers in neonates with jaundice during the 24 h following intravenous ICG injection | Prospective cohort study | 22 | Mean: 8 days | 24 h before surgery | 0.1 mg/kg (IV) |
T K et al. (India, 2025) [17] | Visualize the biliary flow during and after anastomosis | Prospective study | 9 | Median 71 days (52–163 days) | 18–24 h before surgery | 0.5 mg/kg (IV) |
Jaseel et al. (India, 2025) [25] | Identification of bile flow during Kasai procedure (open) | Retrospective study | 11 | Mean: 70 days (44–111 days) | 12 h before surgery | 0.1 mg/kg (IV) |
Choledochal cyst | ||||||
Masuya et al. (Japan, 2022) [8] | Locate and preserve a variant of the right hepatic artery (congenital biliary dilatation type-IVa) | Case report | 1 | 9 years | Intraoperative, before dissection of the dilated CBD | 0.6 mg/kg (IV) |
Onishi et al. (Japan, 2022) [26] | Detection of pancreaticobiliary maljunction with co-injection of bile and ICG (choledochal cyst type Ia) | Case report | 1 | 4 years | Intraoperative, before dissection of the dilated CBD | Mix of 30% ICG and 70% bile (inside the gallbladder through catheter injection) |
Delgado-Miguel et al. (Spain, 2023) [27] | Identification of the choledocal cyst margins (choledochal cyst type Ic) | Case report | 1 | 18 months | 8 h before surgery | 0.5 mg/kg (IV) |
T K et al. (India, 2025) [17] | Visualize the biliary anatomy | Prospective study | 6 | Median: 6 years (3–16 years) | 12–18 h before | 0.5 mg/kg (IV) |
References (Country, Year) | Indication for ICG NIRF Surgery | Study Design | No. Patients | Age (Range) | Timing of ICG Injection | ICG Dose (Route) |
---|---|---|---|---|---|---|
Hepatoblastoma | ||||||
Mitani et al. (Japan, 2014) [28] | Identification of tumor recurrence in liver surface | Case report | 1 | 32 months | 48 h before surgery | 0.5 mg/kg (IV) |
Yamamichi et al. (Japan, 2015) [29] | Surgical navigation with ICG to improve complete resection | Case series | 3 | Mean: 3 years (1–6 years) | 3–4 days before surgery | 0.5 mg/kg (IV) |
Souzaki et al. (Japan, 2019) [33] | Detection residual tumor and invasion of the diaphragm | Retrospective study | 4 | Median: 28 months (12–35 months) | 60–138 h prior surgery | 0.5 mg/kg (IV) |
Yamada et al. (Japan, 2019) [30] | Fluorescence guided tumor resection | Retrospective study | 12 | Median: 12 months (8–168 months) | 72 h before surgery | No data available about doses they used |
Lake et al. (USA, 2021) [38] | Lesion identification and complete tumor resection | Retrospective study | 9 | Median: 3 years (1–12 years) | 1–6 days before surgery | 0.5 mg/kg (IV) |
Cho et al. (South Korea, 2021) [36] | Demarcation of liver primary tumor | Retrospective study | 17 | Median: 18 months (4–140 months) | 24–48 h before surgery | 0.3 mg/kg (IV) |
Shen et al. (China, 2022) [31] | Identification of margins for tumor resection | Retrospective study | 16 | Median: 15 months (8–134 months) | 48–72 h before surgery | 0.5 mg/kg (IV) |
Whitlock et al. (USA, 2022) [40] | Intraoperative guidance for resection of primary pediatric liver tumors | Retrospective study | 12 | Median: 91 months (10–228 months) | 24–96 h prior surgery | 0.2–0.75 mg/kg IV |
Feng et al. (China, 2022) [37] | Comparison of tumor fluorescence with false-positive nodules | Retrospective study | 8 | Median: no data (8–154 months) | 1 day before surgery | 0.1–0.2 mg/kg (IV) |
Qiu et al. (China, 2022) [34] | Fluorescence-guided laparoscopic tumor resection | Retrospective study | 7 | Median: no data (13 days–36 months) | 48 h before surgery | 0.5 mg/kg (IV) |
Shen et al. (China, 2023) [32] | Tumor resection Postoperative evaluation of the fluorescence | Retrospective study | 23 | Median: 26 months (5–80 months) | 24–48 h before surgery | 0.1 mg/kg (IV) |
Liu et al. (China, 2023) [35] | Real-time fluorescence navigation during tumor resection | Retrospective study | 22 | Median: 32 months (15–45 months) | 10 cases: 24 h before surgery 9 cases: 48 h before surgery 3 cases: 72 h before surgery | 10 cases: 0.1 mg/kg (IV) 9 cases: 0.3 mg/kg (IV) 3 cases: 0.5 mg/kg (IV) |
Other liver tumors | ||||||
Chung et al. (Hong Kong, 2020) [39] | Intraoperative tumor navigation for laparoscopic hepatectomy (hepatocellular carcinoma) | Case report | 1 | 9 years | 24 h before surgery | 0.5 mg/kg (IV) |
Yamamoto et al. (Japan, 2022) [42] | Identification of unaffected margins (undifferentiated embryonal sarcoma of the liver) | Case report | 1 | 7 years | 4 days before surgery | 0.5 mg/kg (IV) |
Whitlock et al. (USA, 2022) [40] | Intraoperative guidance for resection (hepatocellular carcinoma) | Retrospective study | 1 | 8 months | 24 h before surgery | 0.5 mg/kg (IV) |
Whitlock et al. (USA, 2022) [40] | Intraoperative guidance for resection (malignant rhabdoid tumor) | Retrospective study | 1 | 5 years | 24 h before surgery | 0.2 mg/kg (IV) |
Shen et al. (China, 2024) [41] | Intraoperative tumor identification (inflammatory myofibroblastic tumor) | Case report | 1 | 55 months | No data | Non specified |
References (Country, Year) | Indication for ICG NIRF Surgery | Study Design | No. Patients | Age (Range) | Timing of ICG Injection | ICG Dose (Route) |
---|---|---|---|---|---|---|
Liver transplant | ||||||
Troisi et al. (Saudi Arabia, 2014) [43] | Optimize bile duct division in laparoscopic in left lateral sectionectomy | Case report | 1 | 2 years | Intraoperative | 0.1 mg/kg (IV) |
Hong et al. (South Korea, 2018) [44] | Intraoperative visualization of bile duct anatomy for identification of the optimal division point | Case report | 1 | 43 years | Intraoperative | Non-specified |
Kisaoglu et al. (Turkey, 2020) [47] | Identifying alterations in graft perfusion | Case report | 1 | 4 years | Intraoperative | 0.05 mg/kg (IV) |
Umemura et al. (Japan, 2021) [45] | Confirm the cutting line while performing laparoscopic left lateral sectionectomy | Retrospective study | 5 | Non specified | Intraoperative | Non-specified |
Li et al. (China, 2023) [46] | Visualization of bile duct division in laparoscopic left lateral sectionectomy | Retrospective study (comparative) | 21 | Mean: 33 years | Intraoperative | 2.5 mg/body (IV) |
Lemoine et al. (USA, 2023) [48] | Localization of bile leak after liver transplantation | Case report | 1 | 5 years | Intraoperative | 0.5 mg/kg (IV) |
Liver function | ||||||
Evans et al. (USA, 1989) [49] | Evaluate hepatic drug clearance in children and adults | Observational study | 115 | Mean age: 6.7 years, (0.9–17.8 years) | 9–14 h before measurements | 0.5 mg/kg (IV) |
Kubota et al. (Japan, 1993) [50] | Evaluating hepatic function in postoperative biliary atresia patients | Retrospective study | 19 | Mean age: 4.9 years (2.3–8.3 years) | Every year after the surgery | 1 mg/kg (IV) |
Quintero et al. (Spain, 2014) [51] | Evaluate ICG plasma disappearance rate as a predictor of pediatric acute liver failure evolution | Prospective study | 48 | Survivors: 6.5 years (5–9 years) Non-survivors: 3 years (1.5–7) | Non specified | 0.25 mg/kg (IV) |
Nielsen et al. (Denmark, 2019) [52] | Compare ICG elimination kinetics measured by spectrophotometry of serial blood samples and by pulse spectrophotometry. | Observational study | 87 | Mean age: 11.9 years (0.6–19 years) | 0, 5, 10, 15, and 20 min after measurements | 0.25 mg/kg (IV) |
Ficerai-Garland et al. (USA, 2025) [53] | Measure the ICG clearance obtained by pulse spectrophotometry | Observational study | 124 | Mean age: 11 years (6–15 years) | 5, 10, 15 and 20 min after injection of ICG | 0.25 mg/kg (IV) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Miguel, C.; Arredondo-Montero, J.; Moreno-Alfonso, J.C.; Garavis Montagut, I.; Rodríguez, M.; Ruiz Jiménez, I.; Carrera, N.; Roncero, P.A.; Fuentes, E.; Díez, R.; et al. Indocyanine Green Fluorescence Navigation in Pediatric Hepatobiliary Surgery: Systematic Review. Children 2025, 12, 950. https://doi.org/10.3390/children12070950
Delgado-Miguel C, Arredondo-Montero J, Moreno-Alfonso JC, Garavis Montagut I, Rodríguez M, Ruiz Jiménez I, Carrera N, Roncero PA, Fuentes E, Díez R, et al. Indocyanine Green Fluorescence Navigation in Pediatric Hepatobiliary Surgery: Systematic Review. Children. 2025; 12(7):950. https://doi.org/10.3390/children12070950
Chicago/Turabian StyleDelgado-Miguel, Carlos, Javier Arredondo-Montero, Julio César Moreno-Alfonso, Isabella Garavis Montagut, Marta Rodríguez, Inmaculada Ruiz Jiménez, Noela Carrera, Pablo Aguado Roncero, Ennio Fuentes, Ricardo Díez, and et al. 2025. "Indocyanine Green Fluorescence Navigation in Pediatric Hepatobiliary Surgery: Systematic Review" Children 12, no. 7: 950. https://doi.org/10.3390/children12070950
APA StyleDelgado-Miguel, C., Arredondo-Montero, J., Moreno-Alfonso, J. C., Garavis Montagut, I., Rodríguez, M., Ruiz Jiménez, I., Carrera, N., Roncero, P. A., Fuentes, E., Díez, R., & Hernández-Oliveros, F. (2025). Indocyanine Green Fluorescence Navigation in Pediatric Hepatobiliary Surgery: Systematic Review. Children, 12(7), 950. https://doi.org/10.3390/children12070950