Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea
Abstract
1. Introduction
1.1. Paediatric Obesity
1.2. Systemic Inflammation and Neuromuscular Control in Paediatric OSA
1.3. Sleep-Disordered Breathing
1.3.1. Pathophysiological Links Between Paediatric Obesity and OSA
1.3.2. Differences in Pathogenesis of Sleep-Disordered Breathing in Obese Adults and Children
1.3.3. Comorbid Adenotonsillar Hypertrophy in Obesity and OSA
1.3.4. Methods
2. Aims
3. Body Fat Distribution in Obese Children
3.1. Differences in Body Fat Distribution Between Obese Prepubertal Children and Adults
3.2. Gender Differences in Body Fat Distribution Among Prepubertal Children
3.3. Hormonal Influences on Body Fat Distribution from Childhood Through Adolescence and Adulthood
3.4. Upper Airway Fat Distribution in Paediatric OSA
4. Anthropometric Parameters
4.1. Neck Circumference and Neck-to-Height Ratio
4.2. Neck Circumference, Waist Circumference, and Neck-to-Waist Ratio
4.3. Waist-to-Hip Ratio
5. Instrumental Evaluation
5.1. Ultrasound
5.1.1. Neck Ultrasonography
5.1.2. Ultrasound Assessment of Abdominal Fat
5.1.3. Polysomnography and Neck Ultrasonography
5.2. Body Composition
5.2.1. Body Composition Assessment Is Essential in the Clinical Evaluation of Paediatric Obesity
5.2.2. Body Composition Analysis in Managing Obese Children with OSA
5.2.3. Fat-to-Muscle Ratio and Risk of OSA
5.2.4. Polysomnography and Body Composition Analysis in Paediatric OSA Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: Causes and consequences. J. Fam. Med. Prim. Care 2015, 4, 187–192. [Google Scholar] [CrossRef]
- Muyulema, S.L.; Carpio-Arias, T.V.; Verdezoto, N.; Guanga Lara, V.E.; Manzano, A.S.; Pulgar, H.; Vinueza Veloz, M.F. Worldwide trends in childhood overweight and obesity over the last 20 years. Clin. Nutr. ESPEN 2025, 65, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Garver, W.S.; Newman, S.B.; Gonzales-Pacheco, D.M.; Castillo, J.J.; Jelinek, D.; Heidenreich, R.A.; Orlando, R.A. The genetics of childhood obesity and interaction with dietary macronutrients. Genes Nutr. 2013, 8, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Börnhorst, C.; Ahrens, W.; De Henauw, S.; Hunsberger, M.; Molnár, D.; Moreno, L.A.; Russo, P.; Schreuder, A.; Sina, E.; Tornaritis, M.; et al. Age-Specific Quantification of Overweight/Obesity Risk Factors From Infancy to Adolescence and Differences by Educational Level of Parents. Int. J. Public Health 2023, 68, 1605798. [Google Scholar] [CrossRef]
- Shankaran, S.; Bann, C.; Das, A.; Lester, B.; Bada, H.; Bauer, C.R.; La Gasse, L.; Higgins, R.D. Risk for obesity in adolescence starts in early childhood. J. Perinatol. 2011, 31, 711–716. [Google Scholar] [CrossRef]
- Szczyrska, J. Pediatric obesity—Time to act as early as possible. Pediatr. Endocrinol. Diabetes Metab. 2023, 29, 267–273. [Google Scholar] [CrossRef]
- Shaban Mohamed, M.A.; AbouKhatwa, M.M.; Saifullah, A.A.; Hareez Syahmi, M.; Mosaad, M.; Elrggal, M.E.; Dehele, I.S.; Elnaem, M.H. Risk Factors, Clinical Consequences, Prevention, and Treatment of Childhood Obesity. Children 2022, 9, 1975. [Google Scholar] [CrossRef]
- Wójcik, M.; Alvarez-Pitti, J.; Kozioł-Kozakowska, A.; Brzeziński, M.; Gabbianelli, R.; Herceg-Čavrak, V.; Wühl, E.; Lucas, I.; Radovanović, D.; Melk, A.; et al. Psychosocial and environmental risk factors of obesity and hypertension in children and adolescents-a literature overview. Front. Cardiovasc. Med. 2023, 10, 1268364. [Google Scholar] [CrossRef]
- Kelsey, M.M.; Zaepfel, A.; Bjornstad, P.; Nadeau, K.J. Age-related consequences of childhood obesity. Gerontology 2014, 60, 222–228. [Google Scholar] [CrossRef]
- Malhotra, S.; Sivasubramanian, R.; Singhal, V. Adult obesity and its complications: A pediatric disease? Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 46–54. [Google Scholar] [CrossRef]
- Hoey, H. Management of obesity in children differs from that of adults. Proc. Nutr. Soc. 2014, 73, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.P.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef]
- Nosetti, L.; Zaffanello, M.; De Bernardi, F.; Piacentini, G.; Roberto, G.; Salvatore, S.; Simoncini, D.; Pietrobelli, A.; Agosti, M. Age and Upper Airway Obstruction: A Challenge to the Clinical Approach in Pediatric Patients. Int. J. Environ. Res. Public Health 2020, 17, 3531. [Google Scholar] [CrossRef]
- Zaffanello, M.; Piacentini, G.; La Grutta, S. The cardiovascular risk in paediatrics: The paradigm of the obstructive sleep apnoea syndrome. Blood Transfus. 2020, 18, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Zaffanello, M.; Ferrante, G.; Zoccante, L.; Ciceri, M.L.; Nosetti, L.; Tenero, L.; Piazza, M.; Piacentini, G. Predictive Power of Oxygen Desaturation Index (ODI) and Apnea-Hypopnea Index (AHI) in Detecting Long-Term Neurocognitive and Psychosocial Outcomes of Sleep-Disordered Breathing in Children: A Questionnaire-Based Study. J. Clin. Med. 2023, 12, 3036. [Google Scholar] [CrossRef]
- Spicuzza, L.; Leonardi, S.; La Rosa, M. Pediatric sleep apnea: Early onset of the ‘syndrome’? Sleep Med. Rev. 2009, 13, 111–122. [Google Scholar] [CrossRef]
- Gaines, J.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Calhoun, S.L.; He, F.; Liao, D.; Sawyer, M.D.; Bixler, E.O. Inflammation mediates the association between visceral adiposity and obstructive sleep apnea in adolescents. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E851–E858. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.R.; Patil, S.P.; Squier, S.; Schneider, H.; Kirkness, J.P.; Smith, P.L. Obesity and upper airway control during sleep. J. Appl. Physiol. 2010, 108, 430–435. [Google Scholar] [CrossRef]
- Sands, S.A.; Eckert, D.J.; Jordan, A.S.; Edwards, B.A.; Owens, R.L.; Butler, J.P.; Schwab, R.J.; Loring, S.H.; Malhotra, A.; White, D.P.; et al. Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 930–937. [Google Scholar] [CrossRef]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target. Ther. 2023, 8, 218. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Niu, Y.; Zhao, X.L.; Ruan, H.J.; Xiang, Y.; Wang, L.Y.; Feng, Y.; Tang, Q.Y. Associations Between Serum TNF-α, IL-6, hs-CRP and GLMD in Obese Children and Adolescents: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2023, 16, 3915–3923. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F. Airway smooth muscle cells: Contributing to and regulating airway mucosal inflammation? Eur. Respir. J. 2000, 15, 961–968. [Google Scholar] [CrossRef]
- Liu, X.; Yin, S.; Chen, Y.; Wu, Y.; Zheng, W.; Dong, H.; Bai, Y.; Qin, Y.; Li, J.; Feng, S.; et al. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Mol. Med. Rep. 2018, 17, 5484–5491. [Google Scholar] [CrossRef]
- Tiddens, H.; Silverman, M.; Bush, A. The role of inflammation in airway disease: Remodeling. Am. J. Respir. Crit. Care Med. 2000, 162, S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Arnold, W.C.; Guilleminault, C. Upper airway resistance syndrome 2018: Non-hypoxic sleep-disordered breathing. Expert Rev. Respir. Med. 2019, 13, 317–326. [Google Scholar] [CrossRef]
- Redline, S.; Tishler, P.V.; Schluchter, M.; Aylor, J.; Clark, K.; Graham, G. Risk factors for sleep-disordered breathing in children: Associations with obesity, race, and respiratory problems. Am. J. Respir. Crit. Care Med. 1999, 159, 1527–1532. [Google Scholar] [CrossRef]
- Bin-Hasan, S.; Katz, S.; Nugent, Z.; Nehme, J.; Lu, Z.; Khayat, A.; Al-Saleh, S.; Amin, R.; Narang, I. Prevalence of obstructive sleep apnea among obese toddlers and preschool children. Sleep Breath. 2018, 22, 511–515. [Google Scholar] [CrossRef]
- Gatt, D.; Ahmadiankalati, M.; Voutsas, G.; Katz, S.; Lu, Z.; Narang, I. Identification of obstructive sleep apnea in children with obesity: A cluster analysis approach. Pediatr. Pulmonol. 2024, 59, 81–88. [Google Scholar] [CrossRef]
- Lopez, P.P.; Stefan, B.; Schulman, C.I.; Byers, P.M. Prevalence of sleep apnea in morbidly obese patients who presented for weight loss surgery evaluation: More evidence for routine screening for obstructive sleep apnea before weight loss surgery. Am. Surg. 2008, 74, 834–838. [Google Scholar] [PubMed]
- Garvey, J.F.; Pengo, M.F.; Drakatos, P.; Kent, B.D. Epidemiological aspects of obstructive sleep apnea. J. Thorac. Dis. 2015, 7, 920–929. [Google Scholar] [CrossRef]
- Martins, F.O.; Conde, S.V. Gender Differences in the Context of Obstructive Sleep Apnea and Metabolic Diseases. Front. Physiol. 2021, 12, 792633. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Tsiligianni, I.; Schiza, S. Evaluation of Obstructive Sleep Apnea in Female Patients in Primary Care: Time for Improvement? Med. Princ. Pract. 2021, 30, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Magnusdottir, S.; Hill, E.A. Prevalence of obstructive sleep apnea (OSA) among preschool aged children in the general population: A systematic review. Sleep Med. Rev. 2024, 73, 101871. [Google Scholar] [CrossRef] [PubMed]
- Narang, I.; Mathew, J.L. Childhood obesity and obstructive sleep apnea. J. Nutr. Metab. 2012, 2012, 134202. [Google Scholar] [CrossRef]
- Van Hoorenbeeck, K.; Verhulst, S.L. Metabolic complications and obstructive sleep apnea in obese children: Time to wake up! Am. J. Respir. Crit. Care Med. 2014, 189, 13–15. [Google Scholar] [CrossRef]
- Lumeng, J.C.; Chervin, R.D. Epidemiology of pediatric obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 242–252. [Google Scholar] [CrossRef]
- Pahkala, R.; Seppä, J.; Ikonen, A.; Smirnov, G.; Tuomilehto, H. The impact of pharyngeal fat tissue on the pathogenesis of obstructive sleep apnea. Sleep Breath. 2014, 18, 275–282. [Google Scholar] [CrossRef]
- Oliven, A.; Carmi, N.; Coleman, R.; Odeh, M.; Silbermann, M. Age-related changes in upper airway muscles morphological and oxidative properties. Exp. Gerontol. 2001, 36, 1673–1686. [Google Scholar] [CrossRef]
- Malhotra, A.; Huang, Y.; Fogel, R.; Lazic, S.; Pillar, G.; Jakab, M.; Kikinis, R.; White, D.P. Aging influences on pharyngeal anatomy and physiology: The predisposition to pharyngeal collapse. Am. J. Med. 2006, 119, 72.e9–72.e14. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.B.H.; Lim, C.Y.S.; Tan, S.; Foo, Y.W.; Tok, C.L.X.; Lim, Y.Y.; Goh, D.Y.T.; Loke, K.Y.; Lee, Y.S. Screening for obstructive sleep apnea (OSA) in children and adolescents with obesity: A scoping review of national and international pediatric obesity and pediatric OSA management guidelines. Obes. Rev. 2024, 25, e13712. [Google Scholar] [CrossRef]
- Di Cicco, M.; Kantar, A.; Masini, B.; Nuzzi, G.; Ragazzo, V.; Peroni, D. Structural and functional development in airways throughout childhood: Children are not small adults. Pediatr. Pulmonol. 2021, 56, 240–251. [Google Scholar] [CrossRef]
- Kaditis, A.G.; Alexopoulos, E.I.; Hatzi, F.; Karadonta, I.; Chaidas, K.; Gourgoulianis, K.; Zintzaras, E.; Syrogiannopoulos, G.A. Adiposity in relation to age as predictor of severity of sleep apnea in children with snoring. Sleep Breath. 2008, 12, 25–31. [Google Scholar] [CrossRef]
- Andersen, I.G.; Holm, J.C.; Homøe, P. Obstructive sleep apnea in children and adolescents with and without obesity. Arch. Oto-Rhino-Laryngol. 2019, 276, 871–878. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Y.; Wu, L.; Huang, Y.; Li, S.; Liu, J.; Zong, X.; Tai, J.; Chen, F. Associations of Obstructive Sleep Apnea Risk with Obesity, Body Composition and Metabolic Abnormalities in School-Aged Children and Adolescents. Nutrients 2024, 16, 2419. [Google Scholar] [CrossRef] [PubMed]
- Greenfeld, M.; Tauman, R.; DeRowe, A.; Sivan, Y. Obstructive sleep apnea syndrome due to adenotonsillar hypertrophy in infants. Int. J. Pediatr. Otorhinolaryngol. 2003, 67, 1055–1060. [Google Scholar] [PubMed]
- Kang, K.T.; Chou, C.H.; Weng, W.C.; Lee, P.L.; Hsu, W.C. Associations between adenotonsillar hypertrophy, age, and obesity in children with obstructive sleep apnea. PLoS ONE 2013, 8, e78666. [Google Scholar] [CrossRef]
- Dayyat, E.; Kheirandish-Gozal, L.; Sans Capdevila, O.; Maarafeya, M.M.A.; Gozal, D. Obstructive sleep apnea in children: Relative contributions of body mass index and adenotonsillar hypertrophy. Chest 2009, 136, 137–144. [Google Scholar] [CrossRef]
- Wan Mahmud Sabri, W.M.N.; Mohamed, R.Z.; Yaacob, N.M.; Hussain, S. Prevalence of Metabolic Syndrome and its Associated Risk Factors in Pediatric Obesity. J. ASEAN Fed. Endocr. Soc. 2022, 37, 24–30. [Google Scholar] [CrossRef]
- Armañac-Julián, P.; Martín-Montero, A.; Lázaro, J.; Hornero, R.; Laguna, P.; Kheirandish-Gozal, L.; Gozal, D.; Gil, E.; Bailón, R.; Gutiérrez-Tobal, G. Persistent sleep-disordered breathing independently contributes to metabolic syndrome in prepubertal children. Pediatr. Pulmonol. 2024, 59, 111–120. [Google Scholar] [CrossRef]
- Voltan, C.; Concer, F.; Pecoraro, L.; Pietrobelli, A.; Piacentini, G.; Zaffanello, M. Exploring the Complex Interplay of Obesity, Allergic Diseases, and Sleep-Disordered Breathing in Children. Children 2024, 11, 595. [Google Scholar] [CrossRef]
- Siriwat, R.; Wang, L.; Shah, V.; Mehra, R.; Ibrahim, S. Obstructive sleep apnea and insulin resistance in children with obesity. J. Clin. Sleep Med. 2020, 16, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.; Costa, L.H.; Linhares, R.C.; Pradella-Hallinan, M.; Coelho, F.M.S.; Oliveira, G.D.P. Sleep disorders in Down syndrome: A systematic review. Arq. De Neuro-Psiquiatr. 2022, 80, 424–443. [Google Scholar] [CrossRef]
- Basil, J.S.; Santoro, S.L.; Martin, L.J.; Healy, K.W.; Chini, B.A.; Saal, H.M. Retrospective Study of Obesity in Children with Down Syndrome. J. Pediatr. 2016, 173, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Itani, R.; Gillett, E.S.; Perez, I.A. Sleep Consequences of Prader-Willi Syndrome. Curr. Neurol. Neurosci. Rep. 2023, 23, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, G.; Barrea, L.; Sanduzzi Zamparelli, A.; de Alteriis, G.; Laudisio, D.; Muscogiuri, G.; Canora, A.; Bocchino, M.; Colao, A.; Savastano, S. Body composition and obstructive sleep apnoea assessment in adult patients with Prader-Willi syndrome: A case control study. J. Endocrinol. Investig. 2022, 45, 1967–1975. [Google Scholar] [CrossRef]
- Mussi, N.; Forestiero, R.; Zambelli, G.; Rossi, L.; Caramia, M.R.; Fainardi, V.; Esposito, S. The First-Line Approach in Children with Obstructive Sleep Apnea Syndrome (OSA). J. Clin. Med. 2023, 12, 7092. [Google Scholar] [CrossRef]
- Arens, R.; Sin, S.; Nandalike, K.; Rieder, J.; Khan, U.I.; Freeman, K.; Wylie-Rosett, J.; Lipton, M.L.; Wootton, D.M.; McDonough, J.M.; et al. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 2011, 183, 782–787. [Google Scholar]
- Elliot, J.G.; Donovan, G.M.; Wang, K.C.W.; Green, F.H.Y.; James, A.L.; Noble, P.B. Fatty airways: Implications for obstructive disease. Eur. Respir. J. 2019, 54, 1900857. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Yang, W.; Shen, T.; Xue, P.; Yan, X.; Chen, D.; Qiao, Y.; Chen, M.; Ren, R.; et al. Correlations between obstructive sleep apnea and adenotonsillar hypertrophy in children of different weight status. Sci. Rep. 2019, 9, 11455. [Google Scholar] [CrossRef]
- Shah, N.M.; Kaltsakas, G. Respiratory complications of obesity: From early changes to respiratory failure. Breathe 2023, 19, 220263. [Google Scholar] [CrossRef]
- Shanmugasundaram, K.; Bade, G.; Sampath, M.; Talwar, A. Effect of Obesity on Airway Mechanics. Indian J. Endocrinol. Metab. 2023, 27, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Peçanha, A.S.; Monteiro, A.M.; Gazolla, F.M.; Madeira, I.R.; Bordallo, M.A.N.; Carvalho, C.N.M.; Cavalini, L.T. Ultrasound as a method to evaluate the distribution of abdominal fat in obese prepubertal children and the relationship between abdominal fat and metabolic alterations. Radiol. Bras. 2018, 51, 293–296. [Google Scholar] [CrossRef]
- Brei, C.; Much, D.; Heimberg, E.; Schulte, V.; Brunner, S.; Stecher, L.; Vollhardt, C.; Bauer, J.S.; Amann-Gassner, U.; Hauner, H. Sonographic assessment of abdominal fat distribution during the first year of infancy. Pediatr. Res. 2015, 78, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.V.; Murthy, V.L.; Abbasi, S.A.; Blankstein, R.; Kwong, R.Y.; Goldfine, A.B.; Jerosch-Herold, M.; Lima, J.A.; Ding, J.; Allison, M.A. Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA Study. JACC Cardiovasc. Imaging 2014, 7, 1221–1235. [Google Scholar] [CrossRef]
- Raheem, J.; Sliz, E.; Shin, J.; Holmes, M.V.; Pike, G.B.; Richer, L.; Gaudet, D.; Paus, T.; Pausova, Z. Visceral adiposity is associated with metabolic profiles predictive of type 2 diabetes and myocardial infarction. Commun. Med. 2022, 2, 81. [Google Scholar] [CrossRef]
- Caprio, S.; Perry, R.; Kursawe, R. Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation. Gastroenterology 2017, 152, 1638–1646. [Google Scholar] [CrossRef]
- Suliga, E. Visceral adipose tissue in children and adolescents: A review. Nutr. Res. Rev. 2009, 22, 137–147. [Google Scholar] [CrossRef]
- Canapari, C.A.; Hoppin, A.G.; Kinane, T.B.; Thomas, B.J.; Torriani, M.; Katz, E.S. Relationship between sleep apnea, fat distribution, and insulin resistance in obese children. J. Clin. Sleep Med. 2011, 7, 268–273. [Google Scholar] [CrossRef]
- Bonsignore, M.R.; McNicholas, W.T.; Montserrat, J.M.; Eckel, J. Adipose tissue in obesity and obstructive sleep apnoea. Eur. Respir. J. 2012, 39, 746–767. [Google Scholar] [CrossRef]
- Manzano-Carrasco, S.; Garcia-Unanue, J.; Lopez-Fernandez, J.; Hernandez-Martin, A.; Sanchez-Sanchez, J.; Gallardo, L.; Felipe, J.L. Differences in body composition and physical fitness parameters among prepubertal and pubertal children engaged in extracurricular sports: The active health study. Eur. J. Public Health 2022, 32, i67–i72. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.W.; Gold, E.; Manning, P.; Goulding, A. Gender differences in body fat content are present well before puberty. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 1082–1084. [Google Scholar] [CrossRef]
- Steiner, B.M.; Berry, D.C. The Regulation of Adipose Tissue Health by Estrogens. Front. Endocrinol. 2022, 13, 889923. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Artaza, J.; Woodhouse, L.; Gonzalez-Cadavid, N.; Singh, A.B.; Lee, M.I.; Storer, T.W.; Casaburi, R.; Shen, R.; Bhasin, S. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E154–E164. [Google Scholar] [CrossRef] [PubMed]
- Loomba-Albrecht, L.A.; Styne, D.M. Effect of puberty on body composition. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Vink, E.E.; van Coeverden, S.C.; van Mil, E.G.; Felius, B.A.; van Leerdam, F.J.; Delemarre-van de Waal, H.A. Changes and tracking of fat mass in pubertal girls. Obesity 2010, 18, 1247–1251. [Google Scholar] [CrossRef]
- Roemmich, J.N.; Rogol, A.D. Hormonal changes during puberty and their relationship to fat distribution. Am. J. Hum. Biol. 1999, 11, 209–224. [Google Scholar] [CrossRef]
- Houseknecht, K.L.; Spurlock, M.E. Leptin regulation of lipid homeostasis: Dietary and metabolic implications. Nutr. Res. Rev. 2003, 16, 83–96. [Google Scholar] [CrossRef]
- Djurhuus, C.B.; Gravholt, C.H.; Nielsen, S.; Mengel, A.; Christiansen, J.S.; Schmitz, O.E.; Møller, N. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E172–E177. [Google Scholar] [CrossRef]
- Hocking, S.; Samocha-Bonet, D.; Milner, K.L.; Greenfield, J.R.; Chisholm, D.J. Adiposity and insulin resistance in humans: The role of the different tissue and cellular lipid depots. Endocr. Rev. 2013, 34, 463–500. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, F.; Marcovecchio, M.L. Insulin resistance and obesity in childhood. Eur. J. Endocrinol. 2008, 159 (Suppl. 1), S67–S74. [Google Scholar] [CrossRef] [PubMed]
- Oberfield, S.E.; Sopher, A.B.; Gerken, A.T. Approach to the girl with early onset of pubic hair. J. Clin. Endocrinol. Metab. 2011, 96, 1610–1622. [Google Scholar] [CrossRef]
- Jeffery, A.N.; Metcalf, B.S.; Hosking, J.; Streeter, A.J.; Voss, L.D.; Wilkin, T.J. Age before stage: Insulin resistance rises before the onset of puberty: A 9-year longitudinal study (EarlyBird 26). Diabetes Care 2012, 35, 536–541. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, M.J. Childhood Obesity and Pubertal Development. Pediatr. Gastroenterol. Hepatol. Nutr. 2012, 15, 151–159. [Google Scholar]
- Gozal, D.; Sans Capdevila, O.; Kheirandish-Gozal, L. Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children. Am. J. Respir. Crit. Care Med. 2008, 177, 1142–1149. [Google Scholar]
- Dékány, L.; Molnár, V.; Molnár, A.; Bikov, A.; Lázár, Z.; Bárdos-Csenteri, O.; Benedek, P. Analysis of possible risk factors for the severity of paediatric obstructive sleep apnoea syndrome. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 5607–5614. [Google Scholar] [CrossRef]
- Ievers-Landis, C.E.; Redline, S. Pediatric sleep apnea: Implications of the epidemic of childhood overweight. Am. J. Respir. Crit. Care Med. 2007, 175, 436–441. [Google Scholar] [CrossRef]
- Shelton, K.E.; Woodson, H.; Gay, S.; Suratt, P.M. Pharyngeal fat in obstructive sleep apnea. Am. Rev. Respir. Dis. 1993, 148, 462–466. [Google Scholar] [CrossRef]
- Chen, H.C.; Wang, C.J.; Lo, Y.L.; Hsu, H.C.; Huang, C.G.; Kuo, I.C.; Lu, Y.A.; Hsin, L.J.; Lin, W.N.; Fang, T.J.; et al. Parapharyngeal fat pad area at the subglosso-supraglottic level is associated with corresponding lateral wall collapse and apnea-hypopnea index in patients with obstructive sleep apnea: A pilot study. Sci. Rep. 2019, 9, 17722. [Google Scholar] [CrossRef]
- Schwab, R.J.; Pasirstein, M.; Pierson, R.; Mackley, A.; Hachadoorian, R.; Arens, R.; Maislin, G.; Pack, A.I. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am. J. Respir. Crit. Care Med. 2003, 168, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Isono, S. Obesity and obstructive sleep apnoea: Mechanisms for increased collapsibility of the passive pharyngeal airway. Respirology 2012, 17, 32–42. [Google Scholar] [CrossRef]
- Kim, B.K.; Park, S.I.; Hong, S.D.; Jung, Y.G.; Kim, H.Y. Volume of parapharyngeal fat pad in obstructive sleep apnea syndrome: Prognostic role for multilevel sleep surgery. J. Clin. Sleep Med. 2022, 18, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Molnár, V.; Lakner, Z.; Molnár, A.; Tárnoki, D.L.; Tárnoki, Á.D.; Kunos, L.; Jokkel, Z.; Tamás, L. Ultrasound and Magnetic Resonance Imaging of the Tongue in Obstructive Sleep Apnoea. Appl. Sci. 2022, 12, 9583. [Google Scholar] [CrossRef]
- Kirkness, J.P.; Sowho, M.; Murano, E. The interplay between tongue tissue volume, hyoid position, and airway patency. Sleep 2014, 37, 1585–1586. [Google Scholar] [PubMed]
- Donnelly, L.F.; Strife, J.L.; Myer, C.M., 3rd. Glossoptosis (posterior displacement of the tongue) during sleep: A frequent cause of sleep apnea in pediatric patients referred for dynamic sleep fluoroscopy. AJR Am. J. Roentgenol. 2000, 175, 1557–1560. [Google Scholar] [CrossRef]
- Kim, A.M.; Keenan, B.T.; Jackson, N.; Chan, E.L.; Staley, B.; Poptani, H.; Torigian, D.A.; Pack, A.I.; Schwab, R.J. Tongue fat and its relationship to obstructive sleep apnea. Sleep 2014, 37, 1639–1648. [Google Scholar] [CrossRef]
- Ho, A.W.; Moul, D.E.; Krishna, J. Neck Circumference-Height Ratio as a Predictor of Sleep Related Breathing Disorder in Children and Adults. J. Clin. Sleep Med. 2016, 12, 311–317. [Google Scholar] [CrossRef]
- Katz, S.L.; Blinder, H.; Naik, T.; Barrowman, N.; Narang, I. Does neck circumference predict obstructive sleep apnea in children with obesity? Sleep Med. 2021, 78, 88–93. [Google Scholar] [CrossRef]
- Sukharom, R.; Tovichien, P.; Udomittipong, K.; Tiamduangtawan, P.; Chotinaiwattarakul, W. Polysomnographic features of children with obesity: Body mass index predict severe obstructive sleep apnea in obese children? Clin. Exp. Pediatr. 2025, 68, 80–90. [Google Scholar] [CrossRef]
- Katz, S.L.; Vaccani, J.P.; Barrowman, N.; Momoli, F.; Bradbury, C.L.; Murto, K. Does neck-to-waist ratio predict obstructive sleep apnea in children? J. Clin. Sleep Med. 2014, 10, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Lopes, L.L.; Costa, F.W.G.; Cevidanes, L.H.S.; de Barros Silva, P.G.; Gurgel, M.L.; Carvalho, F.S.R.; Júnior, C.M.C.; Ribeiro, T.R. Anthropometric measures and obstructive sleep apnea in children and adolescents: A systematic review of the literature and meta-analysis. Sleep Breath. 2024, 28, 11–28. [Google Scholar] [CrossRef]
- Gadekar, T.; Dudeja, P.; Basu, I.; Vashisht, S.; Mukherji, S. Correlation of visceral body fat with waist-hip ratio, waist circumference and body mass index in healthy adults: A cross sectional study. Med. J. Armed Forces India 2020, 76, 41–46. [Google Scholar] [CrossRef]
- Bock, J.M.; Rodysill, K.J.; Calvin, A.D.; Vungarala, S.; Sahakyan, K.R.; Cha, S.S.; Svatikova, A.; Lopez-Jimenez, F.; Somers, V.K. Waist-To-Hip Ratio Predicts Abnormal Overnight Oximetry in Men Independent of Body Mass Index. Front. Cardiovasc. Med. 2021, 8, 789860. [Google Scholar] [CrossRef]
- Maffeis, C.; Banzato, C.; Talamini, G. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J. Pediatr. 2008, 152, 207–213. [Google Scholar] [CrossRef]
- Widjaja, N.A.; Arifani, R.; Irawan, R. Value of waist-to-hip ratio as a predictor of metabolic syndrome in adolescents with obesity. Acta Biomed. 2023, 94, e2023076. [Google Scholar] [CrossRef]
- Smith, D.F.; Dalesio, N.M.; Benke, J.R.; Petrone, J.A.; Vigilar, V.; Cohen, A.P.; Ishman, S.L. Anthropometric and Dental Measurements in Children with Obstructive Sleep Apnea. J. Clin. Sleep Med. 2016, 12, 1279–1284. [Google Scholar] [CrossRef]
- Bixler, E.O.; Fernandez-Mendoza, J.; Liao, D.; Calhoun, S.; Rodriguez-Colon, S.M.; Gaines, J.; He, F.; Vgontzas, A.N. Natural history of sleep disordered breathing in prepubertal children transitioning to adolescence. Eur. Respir. J. 2016, 47, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- de Angelo, L.A.; Pereira, F.L.; Duarte, B.B.; Cahali, M.B. Use of ultrasonography in the evaluation of patients with sleep apnea: A systematic review. Braz. J. Otorhinolaryngol. 2024, 90, 101468. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, C.N.; Kang, K.T.; Hsiao, T.Y.; Lee, P.L.; Hsu, W.C. Ultrasonographic Evaluation of Upper Airway Structures in Children With Obstructive Sleep Apnea. JAMA Otolaryngol. Head. Neck Surg. 2018, 144, 897–905. [Google Scholar] [CrossRef]
- Yuen, H.M.; Lai, A.C.Y.; Liu, E.K.H.; Lee, M.C.; Chu, W.C.W.; Chan, J.W.Y.; Chan, N.Y.; Wing, Y.K.; Li, A.M.; Chan, K.C.; et al. Validation of the Sonographic Measurement of Lateral Parapharyngeal Wall Thickness in Childhood Obstructive Sleep Apnea. Nat. Sci. Sleep 2022, 14, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Huang, C.C.; Weng, C.K.; Chang, C.H.; Wang, S.J. Simultaneous recording of ultrasound and polysomnography during natural sleep in patients with obstructive sleep apnea: A pilot study. J. Sleep Res. 2017, 26, 481–486. [Google Scholar] [CrossRef]
- Charoensittisup, P.; Udomittipong, K.; Mahoran, K.; Palamit, A. Longitudinal effects of obesity on pulmonary function in obese children and adolescents. Pediatr. Res. 2024, 97, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Silva-Reis, A.; Brill, B.; Brandao-Rangel, M.A.R.; Moraes-Ferreira, R.; Melamed, D.; Aquino-Santos, H.C.; Frison, C.R.; Albertini, R.; Lopes-Martins RÁ, B.; de Oliveira, L.V.F.; et al. Association Between Visceral Fat and Lung Function Impairment in Overweight and Grade I Obese Women: A Cross-Sectional Study. Adv. Respir. Med. 2024, 92, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Mafort, T.T.; Rufino, R.; Costa, C.H.; Lopes, A.J. Obesity: Systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip. Respir. Med. 2016, 11, 28. [Google Scholar] [CrossRef]
- Cesanelli, L.; Cesanelli, F.; Degens, H.; Satkunskiene, D. Obesity-related reduced spirometry and altered breathing pattern are associated with mechanical disadvantage of the diaphragm. Respir. Physiol. Neurobiol. 2024, 325, 104267. [Google Scholar] [CrossRef]
- Seven, E.; Thuesen, B.H.; Linneberg, A.; Jeppesen, J.L. Abdominal Adiposity Distribution Quantified by Ultrasound Imaging and Incident Hypertension in a General Population. Hypertension 2016, 68, 1115–1122. [Google Scholar] [CrossRef]
- Pimanov, S.; Bondarenko, V.; Makarenko, E. Visceral fat in different locations assessed by ultrasound: Correlation with computed tomography and cut-off values in patients with metabolic syndrome. Clin. Obes. 2020, 10, e12404. [Google Scholar] [CrossRef]
- Angoorani, H.; Karimi, Z.; Naderi, F.; Mazaherinezhad, A. Is ultrasound-measured abdominal fat thickness a reliable method for predicting metabolic diseases in obese and overweight women? Med. J. Islam. Repub. Iran. 2018, 32, 78. [Google Scholar] [CrossRef]
- Mohan Lal, B.; Vyas, S.; Malhotra, A.; Ray, A.; Gupta, G.; Pandey, S.; Pandey, R.M.; Aggarwal, S.; Sinha, S. Ultrasonography of the neck in patients with obstructive sleep apnea. Sleep Breath. 2023, 27, 903–912. [Google Scholar] [CrossRef]
- Kalkanis, A.; Testelmans, D.; Papadopoulos, D.; Van den Driessche, A.; Buyse, B. Insights into the Use of Point-of-Care Ultrasound for Diagnosing Obstructive Sleep Apnea. Diagnostics 2023, 13, 2262. [Google Scholar] [CrossRef]
- Udayakumar, G.S.; Priya, L.; Narayanan, V. Comparison of Ultrasound Parameters and Clinical Parameters in Airway Assessment for Prediction of Difficult Laryngoscopy and Intubation: An Observational Study. Cureus 2023, 15, e41392. [Google Scholar] [CrossRef]
- Wojtczak, J.A. Submandibular sonography: Assessment of hyomental distances and ratio, tongue size, and floor of the mouth musculature using portable sonography. J. Ultrasound Med. 2012, 31, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.K.; Rudingwa, P.; Mishra, S.K.; Pannerselvam, S. Ultrasound measurement of anterior neck soft tissue and tongue thickness to predict difficult laryngoscopy—An observational analytical study. Indian J. Anaesth. 2019, 63, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Isaiah, A.; Mezrich, R.; Wolf, J. Ultrasonographic Detection of Airway Obstruction in a Model of Obstructive Sleep Apnea. Ultrasound Int. Open 2017, 3, E34–E42. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.A.; Kamel, K.M.; Kaddah, S.Z.; Abd El-Hamid, E.E.; Shaban, M.M. Role of ultrasonography in assessment of anatomic upper airway changes in patients with obstructive sleep apnea. Adv. Respir. Med. 2020, 88, 548–557. [Google Scholar] [CrossRef]
- Shu, C.C.; Lee, P.; Lin, J.W.; Huang, C.T.; Chang, Y.C.; Yu, C.J.; Wang, H.C. The use of sub-mental ultrasonography for identifying patients with severe obstructive sleep apnea. PLoS ONE 2013, 8, e62848. [Google Scholar] [CrossRef]
- Liu, S.Y.C.; Bosschieter, P.F.N.; Abdelwahab, M.; Chao, P.Y.; Chen, A.; Kushida, C. Association of Backscattered Ultrasonographic Imaging of the Tongue With Severity of Obstructive Sleep Apnea in Adults. JAMA Otolaryngol. Head. Neck Surg. 2023, 149, 580–586. [Google Scholar] [CrossRef]
- Liu, Y.; Lun, H.; Hu, Q.; Wei, L.; Ye, L.; Zhu, S. Dynamic behavior of the oropharynx airway during deep breath in patients with obstructive sleep apnoea hypopnoea syndrome observed by ultrasonography. Sci. Rep. 2025, 15, 5585. [Google Scholar] [CrossRef]
- Orsso, C.E.; Silva, M.I.B.; Gonzalez, M.C.; Rubin, D.A.; Heymsfield, S.B.; Prado, C.M.; Haqq, A.M. Assessment of body composition in pediatric overweight and obesity: A systematic review of the reliability and validity of common techniques. Obes. Rev. 2020, 21, e13041. [Google Scholar] [CrossRef]
- Kreissl, A.; Jorda, A.; Truschner, K.; Skacel, G.; Greber-Platzer, S. Clinically relevant body composition methods for obese pediatric patients. BMC Pediatr. 2019, 19, 84. [Google Scholar] [CrossRef]
- Segal, K.R.; Van Loan, M.; Fitzgerald, P.I.; Hodgdon, J.A.; Van Itallie, T.B. Lean body mass estimation by bioelectrical impedance analysis: A four-site cross-validation study. Am. J. Clin. Nutr. 1988, 47, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef]
- Messina, C.; Albano, D.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; Guglielmi, G.; Sconfienza, L.M. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant. Imaging Med. Surg. 2020, 10, 1687–1698. [Google Scholar] [CrossRef]
- Ponti, F.; Plazzi, A.; Guglielmi, G.; Marchesini, G.; Bazzocchi, A. Body composition, dual-energy X-ray absorptiometry and obesity: The paradigm of fat (re)distribution. BJR Case Rep. 2019, 5, 20170078. [Google Scholar] [CrossRef]
- Fields, D.A.; Allison, D.B. Air-displacement plethysmography pediatric option in 2-6 years old using the four-compartment model as a criterion method. Obesity 2012, 20, 1732–1737. [Google Scholar] [CrossRef]
- Claros, G.; Hull, H.R.; Fields, D.A. Comparison of air displacement plethysmography to hydrostatic weighing for estimating total body density in children. BMC Pediatr. 2005, 5, 37. [Google Scholar] [CrossRef]
- Wells, J.C.; Fuller, N.J.; Wright, A.; Fewtrell, M.S.; Cole, T.J. Evaluation of air-displacement plethysmography in children aged 5–7 years using a three-component model of body composition. Br. J. Nutr. 2003, 90, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Glicksman, A.; Hadjiyannakis, S.; Barrowman, N.; Walker, S.; Hoey, L.; Katz, S.L. Body Fat Distribution Ratios and Obstructive Sleep Apnea Severity in Youth With Obesity. J. Clin. Sleep Med. 2017, 13, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Stich, F.M.; Huwiler, S.; D’Hulst, G.; Lustenberger, C. The Potential Role of Sleep in Promoting a Healthy Body Composition: Underlying Mechanisms Determining Muscle, Fat, and Bone Mass and Their Association with Sleep. Neuroendocrinology 2022, 112, 673–701. [Google Scholar] [CrossRef]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Cameron Chumlea, W. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Jardon, K.M.; Gijbels, A.; Hul, G.; Feskens, E.J.M.; Afman, L.A.; Linge, J.; Goossens, G.H.; Blaak, E.E. Body composition and body fat distribution in tissue-specific insulin resistance and in response to a 12-week isocaloric dietary macronutrient intervention. Nutr. Metab. 2024, 21, 20. [Google Scholar] [CrossRef]
- Katz, S.; Murto, K.; Barrowman, N.; Clarke, J.; Hoey, L.; Momoli, F.; Laberge, R.; Vaccani, J.P. Neck circumference percentile: A screening tool for pediatric obstructive sleep apnea. Pediatr. Pulmonol. 2015, 50, 196–201. [Google Scholar] [CrossRef]
- Nightingale, C.M.; Rudnicka, A.R.; Owen, C.G.; Donin, A.S.; Newton, S.L.; Furness, C.A.; Howard, E.L.; Gillings, R.D.; Wells, J.C.; Cook, D.G.; et al. Are ethnic and gender specific equations needed to derive fat free mass from bioelectrical impedance in children of South asian, black african-Caribbean and white European origin? Results of the assessment of body composition in children study. PLoS ONE 2013, 8, e76426. [Google Scholar] [CrossRef]
- Hannon, T.S.; Lee, S.; Chakravorty, S.; Lin, Y.; Arslanian, S.A. Sleep-disordered breathing in obese adolescents is associated with visceral adiposity and markers of insulin resistance. Int. J. Pediatr. Obes. 2011, 6, 157–160. [Google Scholar] [CrossRef]
- Chang, C.H.; Huang, C.C.; Wang, Y.H.; Chou, F.J.; Chen, J.W. Ultrasound Shear-Wave Elastography of the Tongue in Adults with Obstructive Sleep Apnea. Ultrasound Med. Biol. 2020, 46, 1658–1669. [Google Scholar] [CrossRef]
- Singh, M.; Tuteja, A.; Wong, D.T.; Goel, A.; Trivedi, A.; Tomlinson, G.; Chan, V. Point-of-Care Ultrasound for Obstructive Sleep Apnea Screening: Are We There Yet? A Systematic Review and Meta-analysis. Anesth. Analg. 2019, 129, 1673–1691. [Google Scholar] [CrossRef]
- Caruso, P.; Albuquerque, A.L.; Santana, P.V.; Cardenas, L.Z.; Ferreira, J.G.; Prina, E.; Trevizan, P.F.; Pereira, M.C.; Iamonti, V.; Pletsch, R.; et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. J. Bras. Pneumol. 2015, 41, 110–123. [Google Scholar] [CrossRef]
- Araújo, P.R.S.; Fonseca, J.; Marcelino, A.A.; Moreno, M.A.; Dornelas de Andrade, A.F.; Yañez, M.O.; Torres-Castro, R.; Resqueti, V.R.; Fregonezi, G.A.F. Reference values for respiratory muscle strength and maximal voluntary ventilation in the Brazilian adult population: A multicentric study. PLoS ONE 2024, 19, e0313209. [Google Scholar] [CrossRef]
- Fernandes Fagundes, N.C.; Carlyle, T.; Dalci, O.; Darendeliler, M.A.; Kornerup, I.; Major, P.W.; Montpetit, A.; Pliska, B.T.; Quo, S.; Heo, G.; et al. Use of facial stereophotogrammetry as a screening tool for pediatric obstructive sleep apnea by dental specialists. J. Clin. Sleep Med. 2022, 18, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, P.; Gilani, S.Z.; McArdle, N.; Hillman, D.; Walsh, J.; Maddison, K.; Goonewardene, M.; Mian, A. Predicting sleep apnea from three-dimensional face photography. J. Clin. Sleep Med. 2020, 16, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Udupa, J.K.; Sin, S.; Liu, Z.; Wileyto, E.P.; Torigian, D.A.; Arens, R. MR Image Analytics to Characterise the Upper Airway Structure in Obese Children with Obstructive Sleep Apnea Syndrome. PLoS ONE 2016, 11, e0159327. [Google Scholar] [CrossRef]
- Garnett, S.P.; Baur, L.A.; Srinivasan, S.; Lee, J.W.; Cowell, C.T. Body mass index and waist circumference in midchildhood and adverse cardiovascular disease risk clustering in adolescence. Am. J. Clin. Nutr. 2007, 86, 549–555. [Google Scholar] [CrossRef]
- Watts, K.; Bell, L.M.; Byrne, S.M.; Jones, T.W.; Davis, E.A. Waist circumference predicts cardiovascular risk in young Australian children. J. Paediatr. Child Health 2008, 44, 709–715. [Google Scholar] [CrossRef]
- Sodero, G.; Rigante, D.; Pane, L.C.; Sessa, L.; Quarta, L.; Candelli, M.; Cipolla, C. Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia. Diseases 2024, 12, 119. [Google Scholar] [CrossRef]
Parameter | Main Evidence | Useful Thresholds/Associations |
---|---|---|
BMI | A cut-off of 29.2 kg/m² predicts severe OSA (sensitivity 81%, specificity 49%) [99] | Use as an alert, but not sufficient on its own |
NC | Average increase of +1 cm in the OSA group vs. controls [101] | NC ≥ 35.8 cm predicts OSA severe [99] |
NHR | NHR > 0.25 (all) OR 3.47 for AHI > 2 [97] | >0.23 males, >0.25 females per oAHI > 5 [98] |
NWR | RR 1.97 for an increase of 0.1 units in the NWR; predictive, especially in the obese [142] | Significant association only in overweight/obese children |
Waist and hip circumferences | Waist +3 cm and hips +4 cm in OSA compared to non-OSA [101] | Waist ≥93.5 cm associated with severe OSA [99] |
Comorbidities ORL | Relevant ATH in children <7 years of age; obesity prevails in the older ones [100] | Evaluate tonsillar size and Mallampati score as additional factors |
Instrument | Strengths |
---|---|
PSG | Gold standard: defines AHI/oAHI, desaturations, and hypoventilation |
ODI | Rapid screening if PSG not available; ODI ≥ 7.9 events/h: OR 17.2 for severe OSA [99] |
DXA | Quantify regional fat; NAF ratio % associated with oAHI in males with BMI > 99th centile [138] |
Multi-frequency BIA | Evaluate FM%, FMI, and muscle mass; high FM (not lean body mass) correlates with OSA risk [45] |
ADP (BOD-POD® Paediatric option) | Validated technique 2–6 years for body composition follow-up [135] |
Other measures | Mallampati, end-tidal CO2, video recording included in advanced PSG protocols [138] |
Clinical Pathway Stage | Activity/Exam | Benchmarks or Decision Thresholds |
---|---|---|
Anamnesis | Habitual snoring (≥3 nights/week), breathing pauses, daytime sleepiness, and academic performance | The presence of ≥2 reported symptoms suggests an increased risk of OSA and indicates the need for further instrumental screening (ODI or PSG) |
Standardised anthropometry | Weight, height, NC, WC; NHR and NWR calculation. PSG priority if ≥ any of the following: | BMI > 29 kg/m2 at >+2.5 D NHR > 0.23 (M)/0.25 (F) NC ≥ 35.8 cm or high NWR |
Instrumental screening | Nocturnal pulse oximetry: if ODI ≥ 7.9 events/h | →PSG Direct |
Body composition | DXA (or BIA if DXA is not available), ADP | Specialist centres to assess fat distribution. ADP is helpful in the <6 years for nutritional follow-up |
Multidisciplinary management | ENT, pulmonologist, nutritionist and, if cognitive deficits are present, neuropsychologist | Confirmed or severe OSA (oAHI > 5), ATH, neurocognitive or behavioural disorders, need for therapeutic-nutritional planning |
Parameter | Definition | Strengths | Limitations | Thresholds/Sex-Specific Notes |
---|---|---|---|---|
NHR | NC/height | Simple; associated with AHI | May vary by growth stage | >0.23 males; >0.25 females (AHI > 5) |
NWR | Neck/waist circumference | Indicates fat distribution | Thresholds less standardised | ↑ Risk with NWR > 0.43 |
WHR | Waist/hip circumference | Estimate visceral obesity | Less accurate in children | Less consistent in paediatrics |
FMR | FM/muscle mass | Correlation strongly with OSA | Requires body composition tools | Strongest predictor among BIA metrics |
NAF% | % neck fat/abdominal fat | Reflects upper airway fat burden | Based on DXA or MRI | >0.90 = ↑ OSA risk (males, BMI > 99°) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaffanello, M.; Pietrobelli, A.; Piacentini, G.; Zoller, T.; Nosetti, L.; Guzzo, A.; Antoniazzi, F. Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea. Children 2025, 12, 912. https://doi.org/10.3390/children12070912
Zaffanello M, Pietrobelli A, Piacentini G, Zoller T, Nosetti L, Guzzo A, Antoniazzi F. Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea. Children. 2025; 12(7):912. https://doi.org/10.3390/children12070912
Chicago/Turabian StyleZaffanello, Marco, Angelo Pietrobelli, Giorgio Piacentini, Thomas Zoller, Luana Nosetti, Alessandra Guzzo, and Franco Antoniazzi. 2025. "Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea" Children 12, no. 7: 912. https://doi.org/10.3390/children12070912
APA StyleZaffanello, M., Pietrobelli, A., Piacentini, G., Zoller, T., Nosetti, L., Guzzo, A., & Antoniazzi, F. (2025). Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea. Children, 12(7), 912. https://doi.org/10.3390/children12070912