Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights
Abstract
1. Introduction
2. Auxology and the Historical Concept of ISS
- -
- FSS: children grow along a percentile track consistent with family history and bone age is typically normal [18].
- -
- CDGP: characterized by delayed bone age, slow growth in childhood, and late pubertal onset, often with normal final adult height [19].
- -
- Non-familial ISS: children without obvious familial traits or delayed puberty, sometimes with subtle dysmorphic features or unexplained growth failure.
3. The GH–IGF-1 Axis and Beyond: A Pathway-Based Framework
Gene | Function | Phenotype | Comments |
---|---|---|---|
SHOX [35] | Homeobox transcription factor involved in growth plate regulation | Mesomelic short stature, Madelung deformity, reduced arm span; more severe in females | Common in ISS; test via MLPA or CGH; rhGH therapy often beneficial |
ACAN [32] | Key structural proteoglycan in cartilage matrix (aggrecan) | Proportionate short stature, advanced bone age, early-onset osteoarthritis, midface hypoplasia | Autosomal dominant; GH response variable; radiography may aid diagnosis |
NPR2 [36] | Receptor for CNP in growth plate chondrocytes | Mild to moderate proportionate short stature, sometimes with advanced bone age | May benefit from CNP analogs; consider in familial ISS |
IGF1R [37] | Receptor for IGF-1, mediating growth-promoting signals | Intrauterine and postnatal growth restriction, microcephaly, variable intellectual outcome | Variable response to IGF-1 therapy; heterozygous deletions common |
GHR [38] | Receptor for growth hormone, mediating IGF-1 production | GHI: short stature with high GH and low IGF-1 levels; variable skeletal features | Check in children with GHI pattern; biallelic more severe |
STAT5B [39] | Transducer in GH signaling pathway via JAK-STAT mechanism | Severe postnatal growth failure with immune dysfunction (recurrent infections, eczema) | Consider in syndromic short stature with eczema or recurrent infections |
COL2A1 [40] | Collagen type II involved in cartilage and skeletal development | Short trunk, scoliosis, early-onset osteoarthritis, possible hearing loss or eye anomalies | Mild forms may resemble ISS; radiology can aid differentiation |
3.1. Partial GH Insensitivity
3.2. IGF-1 Signaling and Receptor Abnormalities
3.3. Growth Plate Matrix and Extracellular Structure
3.4. Paracrine Signaling Pathways
3.5. Transcription Factors and Chromatin Regulation
4. Genetic Testing in Children with ISS: When and How?
- -
- Height below −3 SDS, with increasing probability to find underlining genetic causes for more severe form of ISS;
- -
- Disproportionate stature;
- -
- Family history of short stature;
- -
- Advanced bone age or skeletal anomalies;
- -
- Poor response to rhGH despite good adherence;
- -
- Presence of additional features (e.g., joint hypermobility, dysmorphisms, developmental delay).
5. Clinical and Therapeutic Implications of Genetic Findings
6. Rethinking the Definition and Use of ISS
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CDGP | Constitutional delay of growth and puberty |
CGH | Comparative genomic hybridization |
cGMP | Cyclic guanosine monophosphate |
CNP | C-type natriuretic peptide |
ECM | Extracellular matrix |
ESPE | European Society for Paediatric Endocrinology |
FGFR3 | Fibroblast growth factor receptor 3 |
FSS | Familial short stature |
GH | Growth hormone |
GHD | GH deficiency |
GHI | GH insensitivity |
GHR | GH receptor |
HMGA2 | High-mobility group-A2 |
IGF-1 | Insulin-like growth factor-1 |
IGFBP-3 | IGF binding protein-3 |
IGF1R | IGF-1 receptor |
ISS | Idiopathic short stature |
JAK | Janus kinase |
MAPK | Mitogen-activated protein kinase |
MLPA | Multiplex ligation-dependent probe amplification |
NGS | Next-generation sequencing |
NPR | Natriuretic peptide receptor |
rhGH | Recombinant human growth hormone |
SDS | Standard deviation score |
SHOX | Short stature homeobox-containing gene |
STAT | Signal transducer and activator of transcription |
VUS | Variants of uncertain significance |
WES | Whole exome sequencing |
WGS | Whole genome sequencing |
References
- Rogol, A.D.; Hayden, G.F. Etiologies and Early Diagnosis of Short Stature and Growth Failure in Children and Adolescents. J. Pediatr. 2014, 164, S1–S14.e6. [Google Scholar] [CrossRef] [PubMed]
- Consensus Guidelines for the Diagnosis and Treatment of Adults with Growth Hormone Deficiency: Summary Statement of the Growth Hormone Research Society Workshop on Adult Growth Hormone Deficiency. J. Clin. Endocrinol. Metab. 1998, 83, 379–381. [CrossRef]
- Cohen, L.E. Idiopathic Short Stature: A Clinical Review. JAMA 2014, 311, 1787. [Google Scholar] [CrossRef]
- Wit, J.M.; Clayton, P.E.; Rogol, A.D.; Savage, M.O.; Saenger, P.H.; Cohen, P. Idiopathic Short Stature: Definition, Epidemiology, and Diagnostic Evaluation. Growth Horm. IGF Res. Off. J. Growth Horm. Res. Soc. Int. IGF Res. Soc. 2008, 18, 89–110. [Google Scholar] [CrossRef]
- Cohen, P.; Rogol, A.D.; Deal, C.L.; Saenger, P.; Reiter, E.O.; Ross, J.L.; Chernausek, S.D.; Savage, M.O.; Wit, J.M. 2007 ISS Consensus Workshop Participants. Consensus Statement on the Diagnosis and Treatment of Children with Idiopathic Short Stature: A Summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J. Clin. Endocrinol. Metab. 2008, 93, 4210–4217. [Google Scholar] [CrossRef]
- Pasquino, A.M.; Albanese, A.; Bozzola, M.; Butler, G.E.; Buzi, F.; Cherubini, V.; Chiarelli, F.; Cavallo, L.; Drop, S.L.; Stanhope, R.; et al. Idiopathic Short Stature. J. Pediatr. Endocrinol. Metab. JPEM 2001, 14 (Suppl. S2), 967–974. [Google Scholar] [CrossRef] [PubMed]
- Durand, C.; Rappold, G.A. Height Matters-from Monogenic Disorders to Normal Variation. Nat. Rev. Endocrinol. 2013, 9, 171–177. [Google Scholar] [CrossRef]
- Dauber, A.; Rosenfeld, R.G.; Hirschhorn, J.N. Genetic Evaluation of Short Stature. J. Clin. Endocrinol. Metab. 2014, 99, 3080–3092. [Google Scholar] [CrossRef]
- Hauer, N.N.; Sticht, H.; Boppudi, S.; Büttner, C.; Kraus, C.; Trautmann, U.; Zenker, M.; Zweier, C.; Wiesener, A.; Jamra, R.A.; et al. Genetic Screening Confirms Heterozygous Mutations in ACAN as a Major Cause of Idiopathic Short Stature. Sci. Rep. 2017, 7, 12225. [Google Scholar] [CrossRef]
- Martinez-Monseny, A.F. Unravelling Short Stature in Pediatrics: The Crucial Role of Genetic Perspective. Transl. Pediatr. 2024, 13, 864–868. [Google Scholar] [CrossRef]
- Vasques, G.A.; Andrade, N.L.M.; Jorge, A.A.L. Genetic Causes of Isolated Short Stature. Arch. Endocrinol. Metab. 2019, 63, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.; Sävendahl, L.; De Luca, F.; Dauber, A.; Phillip, M.; Wit, J.M.; Nilsson, O. Short and Tall Stature: A New Paradigm Emerges. Nat. Rev. Endocrinol. 2015, 11, 735–746. [Google Scholar] [CrossRef]
- Dauber, A.; Yu, Y.; Turchin, M.C.; Chiang, C.W.; Meng, Y.A.; Demerath, E.W.; Patel, S.R.; Rich, S.S.; Rotter, J.I.; Schreiner, P.J.; et al. Genome-Wide Association of Copy-Number Variation Reveals an Association between Short Stature and the Presence of Low-Frequency Genomic Deletions. Am. J. Hum. Genet. 2011, 89, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.E.; Rogol, A.D. Children With Idiopathic Short Stature: An Expanding Role for Genetic Investigation in Their Medical Evaluation. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2024, 30, 679–686. [Google Scholar] [CrossRef]
- Tanner, J.M. Growth as a Measure of the Nutritional and Hygienic Status of a Population. Horm. Res. 1992, 38 (Suppl. S1), 106–115. [Google Scholar] [CrossRef]
- Labarta, J.I.; Ranke, M.B.; Maghnie, M.; Martin, D.; Guazzarotti, L.; Pfäffle, R.; Koledova, E.; Wit, J.M. Important Tools for Use by Pediatric Endocrinologists in the Assessment of Short Stature. J. Clin. Res. Pediatr. Endocrinol. 2021, 13, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Ranke, M.B.; Lindberg, A.; KIGS International Board. Observed and Predicted Growth Responses in Prepubertal Children with Growth Disorders: Guidance of Growth Hormone Treatment by Empirical Variables. J. Clin. Endocrinol. Metab. 2010, 95, 1229–1237. [Google Scholar] [CrossRef]
- Rajkumar, V.; Waseem, M. Familial Short Stature. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Palmert, M.R.; Dunkel, L. Clinical Practice. Delayed Puberty. N. Engl. J. Med. 2012, 366, 443–453. [Google Scholar] [CrossRef]
- Yau, M.; Rapaport, R. Growth Hormone Stimulation Testing: To Test or Not to Test? That Is One of the Questions. Front. Endocrinol. 2022, 13, 902364. [Google Scholar] [CrossRef]
- Reiter, E.O. Hormonal Treatment of Idiopathic Short Stature. Horm. Res. Paediatr. 2007, 67, 58–63. [Google Scholar] [CrossRef]
- Pedicelli, S.; Peschiaroli, E.; Violi, E.; Cianfarani, S. Controversies in the Definition and Treatment of Idiopathic Short Stature (ISS). J. Clin. Res. Pediatr. Endocrinol. 2011, 1, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Suk, S.Y.; Sang, L.H.; Rhie, Y.-J.; Wook, C.H.; Kim, J.; Ah, L.Y.; Kim, Y.-M.; Hye, K.J.; Bae, A.M.; Hee, H.Y.; et al. Development of AI-Based Growth Prediction Models for Children with Growth Disorders: A 3-Year Analysis Using the Lg Growth Study. Endocr. Abstr. 2025, 110, EP722. [Google Scholar] [CrossRef]
- Storr, H.L.; Freer, J.; Child, J.; Davies, J.H. Assessment of Childhood Short Stature: A GP Guide. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2023, 73, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.U.; Khan, H.; Ullah, K.; Nawaz, S.; Abdullah; Khan, M.J.; Ahmed, S.; Ilyas, M.; Ali, A.; Ullah, I.; et al. Clinical and Genetic Investigation of 14 Families with Various Forms of Short Stature Syndromes. Clin. Genet. 2024, 106, 347–353. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like Growth Factor 1 (IGF-1): A Growth Hormone. Mol. Pathol. MP 2001, 54, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.G.; Wilson, D.M.; Lee, P.D.; Hintz, R.L. Insulin-like Growth Factors I and II in Evaluation of Growth Retardation. J. Pediatr. 1986, 109, 428–433. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Marie, P.J. Fibroblast Growth Factor Signaling in Skeletal Development and Disease. Genes Dev. 2015, 29, 1463–1486. [Google Scholar] [CrossRef]
- Kronenberg, H.M. PTHrP and Skeletal Development. Ann. N. Y. Acad. Sci. 2006, 1068, 1–13. [Google Scholar] [CrossRef]
- Nilsson, O.; Marino, R.; De Luca, F.; Phillip, M.; Baron, J. Endocrine Regulation of the Growth Plate. Horm. Res. Paediatr. 2005, 64, 157–165. [Google Scholar] [CrossRef]
- Roughley, P.J.; Mort, J.S. The Role of Aggrecan in Normal and Osteoarthritic Cartilage. J. Exp. Orthop. 2014, 1, 8. [Google Scholar] [CrossRef]
- Gkourogianni, A.; Andrew, M.; Tyzinski, L.; Crocker, M.; Douglas, J.; Dunbar, N.; Fairchild, J.; Funari, M.F.A.; Heath, K.E.; Jorge, A.A.L.; et al. Clinical Characterization of Patients With Autosomal Dominant Short Stature Due to Aggrecan Mutations. J. Clin. Endocrinol. Metab. 2017, 102, 460–469. [Google Scholar] [CrossRef]
- Fukami, M.; Seki, A.; Ogata, T. SHOX Haploinsufficiency as a Cause of Syndromic and Nonsyndromic Short Stature. Mol. Syndromol. 2016, 7, 3–11. [Google Scholar] [CrossRef]
- Vasques, G.A.; Amano, N.; Docko, A.J.; Funari, M.F.A.; Quedas, E.P.S.; Nishi, M.Y.; Arnhold, I.J.P.; Hasegawa, T.; Jorge, A.A.L. Heterozygous Mutations in Natriuretic Peptide Receptor-B (NPR2) Gene as a Cause of Short Stature in Patients Initially Classified as Idiopathic Short Stature. J. Clin. Endocrinol. Metab. 2013, 98, E1636–E1644. [Google Scholar] [CrossRef] [PubMed]
- Binder, G.; Rappold, G.A. SHOX Deficiency Disorders. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Olney, R.C.; Bükülmez, H.; Bartels, C.F.; Prickett, T.C.R.; Espiner, E.A.; Potter, L.R.; Warman, M.L. Heterozygous Mutations in Natriuretic Peptide Receptor-B (NPR2) Are Associated with Short Stature. J. Clin. Endocrinol. Metab. 2006, 91, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Abuzzahab, M.J.; Schneider, A.; Goddard, A.; Grigorescu, F.; Lautier, C.; Keller, E.; Kiess, W.; Klammt, J.; Kratzsch, J.; Osgood, D.; et al. IGF-I Receptor Mutations Resulting in Intrauterine and Postnatal Growth Retardation. N. Engl. J. Med. 2003, 349, 2211–2222. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, C.; Li, C.; Zhang, X. Growth Hormone Receptor Mutations Related to Individual Dwarfism. Int. J. Mol. Sci. 2018, 19, 1433. [Google Scholar] [CrossRef]
- Kofoed, E.M.; Hwa, V.; Little, B.; Woods, K.A.; Buckway, C.K.; Tsubaki, J.; Pratt, K.L.; Bezrodnik, L.; Jasper, H.; Tepper, A.; et al. Growth Hormone Insensitivity Associated with a STAT5b Mutation. N. Engl. J. Med. 2003, 349, 1139–1147. [Google Scholar] [CrossRef]
- Chen, M.; Miao, H.; Liang, H.; Ke, X.; Yang, H.; Gong, F.; Wang, L.; Duan, L.; Chen, S.; Pan, H.; et al. Clinical Characteristics of Short-Stature Patients With Collagen Gene Mutation and the Therapeutic Response to rhGH. Front. Endocrinol. 2022, 13, 820001. [Google Scholar] [CrossRef]
- Wit, J.M.; Joustra, S.D.; Losekoot, M.; Van Duyvenvoorde, H.A.; De Bruin, C. Differential Diagnosis of the Short IGF-I-Deficient Child with Apparently Normal Growth Hormone Secretion. Horm. Res. Paediatr. 2021, 94, 81–104. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like Growth Factor-I Treatment of Children with Laron Syndrome (Primary Growth Hormone Insensitivity). Pediatr. Endocrinol. Rev. PER 2008, 5, 766–771. [Google Scholar]
- Das, N.; Tarenia, S.S.; Saha, S.; Gaikwad, P.M.; Hathi, D.K.; Goswami, S.; Baidya, A.; Sengupta, N. Laron Syndrome: A Tale of Two Siblings. J. ASEAN Fed. Endocr. Soc. 2023, 38, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Klammt, J.; Neumann, D.; Gevers, E.F.; Andrew, S.F.; Schwartz, I.D.; Rockstroh, D.; Colombo, R.; Sanchez, M.A.; Vokurkova, D.; Kowalczyk, J.; et al. Dominant-Negative STAT5B Mutations Cause Growth Hormone Insensitivity with Short Stature and Mild Immune Dysregulation. Nat. Commun. 2018, 9, 2105. [Google Scholar] [CrossRef]
- Backeljauw, P.F.; Kuntze, J.; Frane, J.; Calikoglu, A.S.; Chernausek, S.D. Adult and Near-Adult Height in Patients with Severe Insulin-Like Growth Factor-I Deficiency after Long-Term Therapy with Recombinant Human Insulin-Like Growth Factor-I. Horm. Res. Paediatr. 2013, 80, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Aguirre, J.; Rosenbloom, A.L.; Guevara-Aguirre, M.; Saavedra, J.; Procel, P. Recommended IGF-I Dosage Causes Greater Fat Accumulation and Osseous Maturation Than Lower Dosage and May Compromise Long-Term Growth Effects. J. Clin. Endocrinol. Metab. 2013, 98, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Grimberg, A.; DiVall, S.A.; Polychronakos, C.; Allen, D.B.; Cohen, L.E.; Quintos, J.B.; Rossi, W.C.; Feudtner, C.; Murad, M.H.; on behalf of the Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm. Res. Paediatr. 2016, 86, 361–397. [Google Scholar] [CrossRef]
- Osio, D.; Dahlgren, J.; Wikland, K.A.; Westphal, O. Improved Final Height with Long-term Growth Hormone Treatment in Noonan Syndrome. Acta Paediatr. 2005, 94, 1232–1237. [Google Scholar] [CrossRef]
- Rodríguez, F.; Gaete, X.; Cassorla, F. Etiology and Treatment of Growth Delay in Noonan Syndrome. Front. Endocrinol. 2021, 12, 691240. [Google Scholar] [CrossRef]
- Clayton, P.E.; Hanson, D.; Magee, L.; Murray, P.G.; Saunders, E.; Abu-Amero, S.N.; Moore, G.E.; Black, G.C.M. Exploring the Spectrum of 3-M Syndrome, a Primordial Short Stature Disorder of Disrupted Ubiquitination. Clin. Endocrinol. 2012, 77, 335–342. [Google Scholar] [CrossRef]
- Karacan Küçükali, G.; Keskin, M.; Aycan, Z.; Savaş-Erdeve, Ş.; Çetinkaya, S. 3M Syndrome: Evaluating the Clinical and Laboratory Features and the Response of the Growth Hormone Treatment: Single Center Experience. Eur. J. Med. Genet. 2023, 66, 104828. [Google Scholar] [CrossRef]
- Laviola, L.; Natalicchio, A.; Giorgino, F. The IGF-I Signaling Pathway. Curr. Pharm. Des. 2007, 13, 663–669. [Google Scholar] [CrossRef]
- Göpel, E.; Rockstroh, D.; Pfäffle, H.; Schlicke, M.; Pozza, S.B.-D.; Gannagé-Yared, M.-H.; Gucev, Z.; Mohn, A.; Harmel, E.-M.; Volkmann, J.; et al. A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children. J. Clin. Endocrinol. Metab. 2020, 105, e1705–e1717. [Google Scholar] [CrossRef]
- Liu, J.P.; Baker, J.; Perkins, A.S.; Robertson, E.J.; Efstratiadis, A. Mice Carrying Null Mutations of the Genes Encoding Insulin-like Growth Factor I (Igf-1) and Type 1 IGF Receptor (Igf1r). Cell 1993, 75, 59–72. [Google Scholar] [CrossRef]
- Allen, D.B.; Merchant, N.; Miller, B.S.; Backeljauw, P.F. Evolution and Future of Growth Plate Therapeutics. Horm. Res. Paediatr. 2021, 94, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, C.; Yu, S.; Ye, X.; Jiang, Y.; He, P.; Shan, X. Downregulation of ACAN Is Associated with the Growth Hormone Pathway and Induces Short Stature. J. Clin. Lab. Anal. 2023, 37, e24830. [Google Scholar] [CrossRef] [PubMed]
- Van Der Steen, M.; Pfundt, R.; Maas, S.J.W.H.; Bakker-van Waarde, W.M.; Odink, R.J.; Hokken-Koelega, A.C.S. ACAN Gene Mutations in Short Children Born SGA and Response to Growth Hormone Treatment. J. Clin. Endocrinol. Metab. 2017, 102, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Vasques, G.A.; Arnhold, I.J.P.; Jorge, A.A.L. Role of the Natriuretic Peptide System in Normal Growth and Growth Disorders. Horm. Res. Paediatr. 2014, 82, 222–229. [Google Scholar] [CrossRef]
- Irfanullah; Zeb, A.; Shinwari, N.; Shah, K.; Gilani, S.Z.T.; Khan, S.; Lee, K.W.; Raza, S.I.; Hussain, S.; Liaqat, K.; et al. Molecular and in Silico Analyses Validates Pathogenicity of Homozygous Mutations in the NPR2 Gene Underlying Variable Phenotypes of Acromesomelic Dysplasia, Type Maroteaux. Int. J. Biochem. Cell Biol. 2018, 102, 76–86. [Google Scholar] [CrossRef]
- Hisado-Oliva, A.; Ruzafa-Martin, A.; Sentchordi, L.; Funari, M.F.A.; Bezanilla-López, C.; Alonso-Bernáldez, M.; Barraza-García, J.; Rodriguez-Zabala, M.; Lerario, A.M.; Benito-Sanz, S.; et al. Mutations in C-Natriuretic Peptide (NPPC): A Novel Cause of Autosomal Dominant Short Stature. Genet. Med. 2018, 20, 91–97. [Google Scholar] [CrossRef]
- Plachy, L.; Dusatkova, P.; Amaratunga, S.A.; Neuman, V.; Sumnik, Z.; Lebl, J.; Pruhova, S. Monogenic Causes of Familial Short Stature. Front. Endocrinol. 2024, 15, 1506323. [Google Scholar] [CrossRef]
- Plachy, L.; Dusatkova, P.; Maratova, K.; Petruzelkova, L.; Zemkova, D.; Elblova, L.; Kucerova, P.; Toni, L.; Kolouskova, S.; Snajderova, M.; et al. NPR2 Variants Are Frequent among Children with Familiar Short Stature and Respond Well to Growth Hormone Therapy. J. Clin. Endocrinol. Metab. 2020, 105, e746–e752. [Google Scholar] [CrossRef]
- Yuan, K.; Chen, J.; Chen, Q.; Chen, H.; Zhu, J.; Fang, Y.; Wang, C. NPR2 Gene Variants in Familial Short Stature: A Single-Center Study. J. Pediatr. Endocrinol. Metab. 2022, 35, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.F.; Ross, J.L.; Zimmermann, A.G.; Quigley, C.A.; Child, C.J.; Kalifa, G.; Deal, C.; Drop, S.L.S.; Rappold, G.; Cutler, G.B. GH Treatment to Final Height Produces Similar Height Gains in Patients With SHOX Deficiency and Turner Syndrome: Results of a Multicenter Trial. J. Clin. Endocrinol. Metab. 2013, 98, E1383–E1392. [Google Scholar] [CrossRef] [PubMed]
- Benabbad, I.; Rosilio, M.; Child, C.J.; Carel, J.-C.; Ross, J.L.; Deal, C.L.; Drop, S.L.S.; Zimmermann, A.G.; Jia, N.; Quigley, C.A.; et al. Safety Outcomes and Near-Adult Height Gain of Growth Hormone-Treated Children with SHOX Deficiency: Data from an Observational Study and a Clinical Trial. Horm. Res. Paediatr. 2017, 87, 42–50. [Google Scholar] [CrossRef]
- Hauer, N.N.; Popp, B.; Schoeller, E.; Schuhmann, S.; Heath, K.E.; Hisado-Oliva, A.; Klinger, P.; Kraus, C.; Trautmann, U.; Zenker, M.; et al. Clinical Relevance of Systematic Phenotyping and Exome Sequencing in Patients with Short Stature. Genet. Med. Off. J. Am. Coll. Med. Genet. 2018, 20, 630–638. [Google Scholar] [CrossRef]
- Jee, Y.H.; Andrade, A.C.; Baron, J.; Nilsson, O. Genetics of Short Stature. Endocrinol. Metab. Clin. North Am. 2017, 46, 259–281. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, A.V.; Cottrell, E.; Thanasupawat, T.; Joustra, S.D.; Triggs-Raine, B.; Fujimoto, M.; Kant, S.G.; Van Der Kaay, D.; Clement-de Boers, A.; Brooks, A.S.; et al. Characterization of HMGA2 Variants Expands the Spectrum of Silver-Russell Syndrome. JCI Insight 2024, 9, e169425. [Google Scholar] [CrossRef]
- Fusco, I.; Babu, D.; Mellone, S.; Barizzone, N.; Prodam, F.; Fanelli, A.; Muniswamy, R.; Petri, A.; Bellone, S.; Bona, G.; et al. Variations in the High-Mobility Group-A2 Gene (HMGA2) Are Associated with Idiopathic Short Stature. Pediatr. Res. 2016, 79, 258–261. [Google Scholar] [CrossRef]
- Ferrari, K.J.; Scelfo, A.; Jammula, S.; Cuomo, A.; Barozzi, I.; Stützer, A.; Fischle, W.; Bonaldi, T.; Pasini, D. Polycomb-Dependent H3K27me1 and H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Mol. Cell 2014, 53, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Gibson, W.T.; Hood, R.L.; Zhan, S.H.; Bulman, D.E.; Fejes, A.P.; Moore, R.; Mungall, A.J.; Eydoux, P.; Babul-Hirji, R.; An, J.; et al. Mutations in EZH2 Cause Weaver Syndrome. Am. J. Hum. Genet. 2012, 90, 110–118. [Google Scholar] [CrossRef]
- Deevy, O.; Monger, C.; Matrà, F.; Tuck, E.; Conway, E.; Badonyi, M.; Nimmo, D.; Rodighiero, S.; Zhang, Q.; Davidovich, C.; et al. Dominant Negative Effects on H3K27 Methylation by Weaver Syndrome-Associated EZH2 Variants. arXiv 2023. [Google Scholar] [CrossRef]
- Martinez, F.; Marín-Reina, P.; Sanchis-Calvo, A.; Perez-Aytés, A.; Oltra, S.; Roselló, M.; Mayo, S.; Monfort, S.; Pantoja, J.; Orellana, C. Novel Mutations of NFIX Gene Causing Marshall-Smith Syndrome or Sotos-like Syndrome: One Gene, Two Phenotypes. Pediatr. Res. 2015, 78, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Trimouille, A.; Houcinat, N.; Vuillaume, M.-L.; Fergelot, P.; Boucher, C.; Toutain, J.; Caignec, C.L.; Vincent, M.; Nizon, M.; Andrieux, J.; et al. 19p13 Microduplications Encompassing NFIX Are Responsible for Intellectual Disability, Short Stature and Small Head Circumference. Eur. J. Hum. Genet. EJHG 2018, 26, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Menke, L.A.; Van Belzen, M.J.; Alders, M.; Cristofoli, F.; The DDD Study; Ehmke, N.; Fergelot, P.; Foster, A.; Gerkes, E.H.; Hoffer, M.J.V.; et al. CREBBP Mutations in Individuals without Rubinstein–Taybi Syndrome Phenotype. Am. J. Med. Genet. A. 2016, 170, 2681–2693. [Google Scholar] [CrossRef]
- Al-Jawahiri, R.; Foroutan, A.; Kerkhof, J.; McConkey, H.; Levy, M.; Haghshenas, S.; Rooney, K.; Turner, J.; Shears, D.; Holder, M.; et al. SOX11 Variants Cause a Neurodevelopmental Disorder with Infrequent Ocular Malformations and Hypogonadotropic Hypogonadism and with Distinct DNA Methylation Profile. Genet. Med. Off. J. Am. Coll. Med. Genet. 2022, 24, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Di Candia, F.; Fontana, P.; Paglia, P.; Falco, M.; Rosano, C.; Piscopo, C.; Cappuccio, G.; Siano, M.A.; De Brasi, D.; Mandato, C.; et al. Clinical Heterogeneity of Kabuki Syndrome in a Cohort of Italian Patients and Review of the Literature. Eur. J. Pediatr. 2022, 181, 171–187. [Google Scholar] [CrossRef]
- Leonardi, L.; Testa, A.; Feleppa, M.; Paparella, R.; Conti, F.; Marzollo, A.; Spalice, A.; Giona, F.; Gnazzo, M.; Andreoli, G.M.; et al. Immune Dysregulation in Kabuki Syndrome: A Case Report of Evans Syndrome and Hypogammaglobulinemia. Front. Pediatr. 2023, 11, 1087002. [Google Scholar] [CrossRef]
- Andrade, N.L.M.; Cellin, L.P.; Rezende, R.C.; Vasques, G.A.; Jorge, A.A.L. Idiopathic Short Stature: What to Expect from Genomic Investigations. Endocrines 2023, 4, 1–17. [Google Scholar] [CrossRef]
- Freire, B.L.; Homma, T.K.; Lerario, A.M.; Seo, G.H.; Han, H.; de Assis Funari, M.F.; Gomes, N.L.; Rosemberg, C.; Krepischi, A.C.V.; de Andrade Vasques, G.; et al. High Frequency of Genetic/Epigenetic Disorders in Short Stature Children Born with Very Low Birth Weight. Am. J. Med. Genet. A 2022, 188, 2599–2604. [Google Scholar] [CrossRef]
- Shangguan, H.; Wang, J.; Lin, J.; Huang, X.; Zeng, Y.; Chen, R. A Study on Genotypes and Phenotypes of Short Stature Caused by Epigenetic Modification Gene Variants. Eur. J. Pediatr. 2024, 183, 1403–1414. [Google Scholar] [CrossRef]
- Lui, J.C. Growth Disorders Caused by Variants in Epigenetic Regulators: Progress and Prospects. Front. Endocrinol. 2024, 15, 1327378. [Google Scholar] [CrossRef]
- Tüysüz, B.; Kasap, B.; Uludağ Alkaya, D.; Alp Ünkar, Z.; Köseoğlu, P.; Geyik, F.; Özer, E.; Önal, H.; Gezdirici, A.; Ercan, O. Investigation of (Epi)Genetic Causes in Syndromic Short Children Born Small for Gestational Age. Eur. J. Med. Genet. 2023, 66, 104854. [Google Scholar] [CrossRef] [PubMed]
- Rappold, G.A.; Fukami, M.; Niesler, B.; Schiller, S.; Zumkeller, W.; Bettendorf, M.; Heinrich, U.; Vlachopapadoupoulou, E.; Reinehr, T.; Onigata, K.; et al. Deletions of the Homeobox Gene SHOX (Short Stature Homeobox) Are an Important Cause of Growth Failure in Children with Short Stature. J. Clin. Endocrinol. Metab. 2002, 87, 1402–1406. [Google Scholar] [CrossRef]
- Stuppia, L.; Calabrese, G.; Gatta, V.; Pintor, S.; Morizio, E.; Fantasia, D.; Guanciali Franchi, P.; Rinaldi, M.M.; Scarano, G.; Concolino, D.; et al. SHOX Mutations Detected by FISH and Direct Sequencing in Patients with Short Stature. J. Med. Genet. 2003, 40, E11. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Tyagi, A.; Bamba, C.; Kumari, A.; Kaur, H.; Seth, S.; Kaur, A.; Panigrahi, I.; Dayal, D.; Pramanik, S.; et al. SHOX Variations in Idiopathic Short Stature in North India and a Review of Cases from Asian Countries. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 41–49. [Google Scholar] [CrossRef]
- Delil, K.; Karabulut, H.G.; Hacıhamdioğlu, B.; Şıklar, Z.; Berberoğlu, M.; Öçal, G.; Tükün, A.; Ruhi, H.I. Investigation of SHOX Gene Mutations in Turkish Patients with Idiopathic Short Stature. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 144–149. [Google Scholar] [CrossRef]
- Hwang, I.T.; Mizuno, Y.; Amano, N.; Lee, H.J.; Shim, Y.S.; Nam, H.-K.; Rhie, Y.-J.; Yang, S.; Lee, K.-H.; Hasegawa, T.; et al. Role of NPR2 Mutation in Idiopathic Short Stature: Identification of Two Novel Mutations. Mol. Genet. Genomic Med. 2020, 8, e1146. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.; Wang, J.; Xu, K.; Fan, X.; Gong, C.; Wu, Z.; Zhang, T.J.; Wu, N. Molecular Diagnostic Yield of Exome Sequencing and Chromosomal Microarray in Short Stature: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2023, 177, 1149. [Google Scholar] [CrossRef] [PubMed]
- Cavarzere, P.; Pietrobelli, A.; Gandini, A.; Munari, S.; Baffico, A.M.; Maffei, M.; Gaudino, R.; Guzzo, A.; Arrigoni, M.; Coviello, D.; et al. Role of Genetic Investigation in the Diagnosis of Short Stature in a Cohort of Italian Children. J. Endocrinol. Investig. 2024, 47, 1237–1250. [Google Scholar] [CrossRef]
- Rezapour, A.; Souresrafil, A.; Barzegar, M.; Sheikhy-Chaman, M.; Tatarpour, P. Economic Evaluation of Next-generation Sequencing Techniques in Diagnosis of Genetic Disorders: A Systematic Review. Clin. Genet. 2023, 103, 513–528. [Google Scholar] [CrossRef]
- Phillips, K.A.; Douglas, M.P.; Wordsworth, S.; Buchanan, J.; Marshall, D.A. Availability and Funding of Clinical Genomic Sequencing Globally. BMJ Glob. Health 2021, 6, e004415. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martin, N.; Magnus, D. Privacy and Ethical Challenges in Next-Generation Sequencing. Expert Rev. Precis. Med. Drug Dev. 2019, 4, 95–104. [Google Scholar] [CrossRef]
- Clarke, A.J. Managing the Ethical Challenges of Next-Generation Sequencing in Genomic Medicine. Br. Med. Bull. 2014, 111, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Grimberg, A.; Allen, D.B. Growth Hormone Treatment for Growth Hormone Deficiency and Idiopathic Short Stature: New Guidelines Shaped by the Presence and Absence of Evidence. Curr. Opin. Pediatr. 2017, 29, 466–471. [Google Scholar] [CrossRef]
- Hintz, R.L.; Attie, K.M.; Baptista, J.; Roche, A. Effect of Growth Hormone Treatment on Adult Height of Children with Idiopathic Short Stature. N. Engl. J. Med. 1999, 340, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.; Baxter, L.; Cave, C.B.; Milne, R. Recombinant Growth Hormone for Idiopathic Short Stature in Children and Adolescents. Cochrane Database Syst. Rev. 2007. [Google Scholar] [CrossRef]
- Collett-Solberg, P.F.; Ambler, G.; Backeljauw, P.F.; Bidlingmaier, M.; Biller, B.M.K.; Boguszewski, M.C.S.; Cheung, P.T.; Choong, C.S.Y.; Cohen, L.E.; Cohen, P.; et al. Diagnosis, Genetics, and Therapy of Short Stature in Children: A Growth Hormone Research Society International Perspective. Horm. Res. Paediatr. 2019, 92, 1–14. [Google Scholar] [CrossRef]
- Kawai, M.; Momoi, T.; Yorifuji, T.; Muroi, J.; Uematsu, A.; Yamanaka, C.; Sasaki, H.; Furusho, K. Growth Hormone Therapy Does Not Improve the Final Height of Girls with Short Stature Not Caused by Growth Hormone Deficiency. Clin. Pediatr. Endocrinol. 1998, 7, 93–98. [Google Scholar] [CrossRef]
- Kawai, M.; Momoi, T.; Yorifuji, T.; Yamanaka, C.; Sasaki, H.; Furusho, K. Unfavorable Effects of Growth Hormone Therapy on the Final Height of Boys with Short Stature Not Caused by Growth Hormone Deficiency. J. Pediatr. 1997, 130, 205–209. [Google Scholar] [CrossRef]
- Tanaka, T.; Fujieda, K.; Yokoya, S.; Shimatsu, A.; Tachibana, K.; Tanaka, H.; Tanizawa, T.; Teramoto, A.; Nagai, T.; Nishi, Y.; et al. No Improvement of Adult Height in Non-Growth Hormone (GH) Deficient Short Children with GH Treatment. Clin. Pediatr. Endocrinol. Case Rep. Clin. Investig. Off. J. Jpn. Soc. Pediatr. Endocrinol. 2006, 15, 15–21. [Google Scholar] [CrossRef]
- Xie, L.; Li, Y.; Zhang, J.; Guo, S.; Chen, Q.; Ma, H.; Jiang, W. Effect of Long-Acting PEGylated Growth Hormone for Catch-up Growth in Children with Idiopathic Short Stature: A 2-Year Real-World Retrospective Cohort Study. Eur. J. Pediatr. 2024, 183, 4531–4539. [Google Scholar] [CrossRef]
- Dauber, A.; Phillip, M.; Ferran, J.-M.; Kelepouris, N.; Nedjatian, N.; Olsen, A.H.; de Lima Jorge, A.A. Clinical Predictors of Good/Poor Response to Growth Hormone Treatment in Children with Idiopathic Short Stature. Horm. Res. Paediatr. 2024, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Renes, J.S.; Reedijk, A.M.J.; Losekoot, M.; Kant, S.G.; Van Der Steen, M.; Van Der Kaay, D.C.M.; Hokken-Koelega, A.C.S.; Van Duyvenvoorde, H.A.; De Bruin, C. Clinical Characteristics of Pathogenic ACAN Variants and 3-Year Response to Growth Hormone Treatment: Real-World Data. Horm. Res. Paediatr. 2024, 97, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Kawashima-Sonoyama, Y.; Wada, K.; Yamamoto, K.; Fujimoto, M.; Namba, N.; Taketani, T. Clinical Characteristics of and Growth Hormone Treatment Effects on Short Stature with Type 1 Insulin-like Growth Factor Receptor (IGF1R) Gene Alteration. Endocr. J. 2024, 71, 687–694. [Google Scholar] [CrossRef]
- Savarirayan, R.; Irving, M.; Bacino, C.A.; Bostwick, B.; Charrow, J.; Cormier-Daire, V.; Le Quan Sang, K.-H.; Dickson, P.; Harmatz, P.; Phillips, J.; et al. C-Type Natriuretic Peptide Analogue Therapy in Children with Achondroplasia. N. Engl. J. Med. 2019, 381, 25–35. [Google Scholar] [CrossRef]
- Sheng, M.; Rosenfeld, R.; Miller, B.; Silverman, L.; Huntsman, L.A.; Sabir, I.; Dauber, A. Design of a Phase 2, Randomized, Controlled, Multicentre Study of Vosoritide Treatment in Children with Idiopathic Short Stature. Endocr. Abstr. 2025, 110, P647. [Google Scholar] [CrossRef]
- Mastromauro, C.; Giannini, C.; Chiarelli, F. Short Stature Related to Growth Hormone Insensitivity (GHI) in Childhood. Front. Endocrinol. 2023, 14, 1141039. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-Targeted Drugs: Current Paradigms and Future Challenges. Signal Transduct. Target. Ther. 2024, 9, 332. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Donmez, A.S.; Cayir, A. A Genetic Approach in the Evaluation of Short Stature. Eurasian J. Med. 2023, 54, S179–S186. [Google Scholar] [CrossRef]
- Shelley, J.P.; Shi, M.; Peterson, J.F.; Van Driest, S.L.; Simmons, J.H.; Mosley, J.D. A Polygenic Score for Height Identifies an Unmeasured Genetic Predisposition among Pediatric Patients with Idiopathic Short Stature. Genome Med. 2025, 17, 23. [Google Scholar] [CrossRef]
- Lazar, L.; Eshel, A.; Moadi, L.; Yackobovitch-Gavan, M.; Bar-Maisels, M.; Shtaif, B.; Nevo, M.; Phillip, M.; Turjeman, S.; Koren, O.; et al. Children with Idiopathic Short Stature Have Significantly Different Gut Microbiota than Their Normal Height Siblings: A Case-Control Study. Front. Endocrinol. 2024, 15, 1343337. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Ye, B.; Yang, M.; Shan, Y.; Yan, D.; Fang, D.; Zhang, K.; Yu, Y. Gut Microbiota and Metabolic Changes in Children with Idiopathic Short Stature. BMC Pediatr. 2024, 24, 468. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Step | Description |
---|---|
Clinical and auxological evaluation | Assess height SDS, growth velocity, target height, body proportions, pubertal stage, and family history. |
Biochemical screening | Perform GH stimulation tests, serum IGF-1, IGFBP-3, thyroid panel, complete blood count, and celiac screening. |
Identification of red flags | Look for disproportionate stature, skeletal anomalies, advanced or delayed bone age, dysmorphic features, or poor response to rhGH. |
First-line genetic testing | Analyze SHOX via MLPA or CGH; perform karyotype in females with signs suggestive of Turner syndrome. |
Second-line genetic testing | Use targeted NGS panels including genes from GH–IGF-1 axis, ECM components, and growth plate signaling pathways. |
Advanced genomic testing | Apply WES or WGS for unresolved or syndromic cases. |
Pre- and post-test genetic counseling | Provide structured genetic counseling to explain findings, address VUS, and guide family implications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparella, R.; Bei, A.; Bernabei, I.; Tarani, F.; Niceta, M.; Pucarelli, I.; Tarani, L. Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights. Children 2025, 12, 855. https://doi.org/10.3390/children12070855
Paparella R, Bei A, Bernabei I, Tarani F, Niceta M, Pucarelli I, Tarani L. Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights. Children. 2025; 12(7):855. https://doi.org/10.3390/children12070855
Chicago/Turabian StylePaparella, Roberto, Arianna Bei, Irene Bernabei, Francesca Tarani, Marcello Niceta, Ida Pucarelli, and Luigi Tarani. 2025. "Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights" Children 12, no. 7: 855. https://doi.org/10.3390/children12070855
APA StylePaparella, R., Bei, A., Bernabei, I., Tarani, F., Niceta, M., Pucarelli, I., & Tarani, L. (2025). Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights. Children, 12(7), 855. https://doi.org/10.3390/children12070855