Continuous Renal Replacement Therapy in Critically-Ill Term and Preterm Newborns: A Single-Center Study in Belgrade
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion and Exclusion Criteria
2.3. Tools and Equipment Used
2.4. Study Implementation
2.5. Laboratory Parameters
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Characteristics of Continuous Renal Replacement Therapy
3.3. Laboratory Parameters
4. Discussion
4.1. Predictors of Poor Outcomes
4.2. CRRT Duration and Timing
4.3. Laboratory Biomarkers in CRRT
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRRT | Continuous renal replacement therapy |
NICU | Neonatal intensive care unit |
RRT | Renal replacement therapy |
AKI | Acute kidney injury |
PRISM III | Pediatric Risk of Mortality III |
HDF | Hemodiafiltration |
HF | Hemofiltration |
SD | Standard deviation |
TTTSy | Twin-to-twin transfusion syndrome |
IQR | Interquartile range |
PROM | Premature rupture of membranes |
IUGR | Intrauterine growth restriction |
CHD | Congenital heart disease |
GIT | Gastrointestinal tract |
References
- Vanhaesebrouck, S.; Zecic, A.; Goossens, L.; Keymeulen, A.; Garabedian, L.; De Meulemeester, J.; Naessens, P.; De Coen, K.; Smets, K. Trends in neonatal morbidity and mortality for very low birthweight infants: A 20-year single-center experience. J. Matern. Fetal Neonatal Med. 2023, 36, 2227311. [Google Scholar] [CrossRef]
- Kaddourah, A.; Goldstein, S.L. Renal replacement therapy in neonates. Clin. Perinatol. 2014, 41, 517–527. [Google Scholar] [CrossRef]
- Nada, A.; Bonachea, E.M.; Askenazi, D.J. Acute kidney injury in the fetus and neonate. Semin. Fetal Neonatal Med. 2017, 22, 90–97. [Google Scholar] [CrossRef]
- Askenazi, D.J.; Goldstein, S.L.; Koralkar, R.; Fortenberry, J.; Baum, M.; Hackbarth, R.; Blowey, D.; Bunchman, T.E.; Brophy, P.D.; Symons, J.; et al. Continuous Renal Replacement Therapy for Children ≤ 10 kg: A Report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry. J. Pediatr. 2013, 162, 587–592.e3. [Google Scholar] [CrossRef]
- Raina, R.; Vijayaraghavan, P.; Kapur, G.; Sethi, S.K.; Krishnappa, V.; Kumar, D.; Bunchman, T.E.; Bolen, S.D.; Chand, D. Hemodialysis in neonates and infants: A systematic review. Semin. Dial. 2018, 31, 289–299. [Google Scholar] [CrossRef]
- Coleman, C.; Tambay Perez, A.; Selewski, D.T.; Steflik, H.J. Neonatal Acute Kidney Injury. Front. Pediatr. 2022, 10, 842544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cortina, G.; Daverio, M.; Demirkol, D.; Chanchlani, R.; Deep, A. Continuous renal replacement therapy in neonates and children: What does the pediatrician need to know? An overview from the Critical Care Nephrology Section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Eur. J. Pediatr. 2023, 183, 529–541. [Google Scholar] [CrossRef]
- Guzzo, I.; de Galasso, L.; Bayazit, A.K.; Yildizdas, D.; Schmitt, C.P.; Hayes, W.; Shroff, R.; Jankauskiene, A.; Virsilas, E.; Longo, G.; et al. Acute paediatric kidney replacement therapies in Europe: Demographic results from the EurAKId Registry. Nephrol. Dial. Transplant. 2022, 37, 770–780. [Google Scholar] [CrossRef]
- Noh, E.S.; Kim, H.H.; Kim, H.S.; Han, Y.S.; Yang, M.; Ahn, S.Y.; Sung, S.I.; Chang, Y.S.; Park, W.S. Continuous Renal Replacement Therapy in Preterm Infants. Yonsei Med. J. 2019, 60, 984–991. [Google Scholar] [CrossRef]
- Ponikvar, R.; Kandus, A.; Urbančič, A.; Kornhauser, A.G.; Primožič, J.; Ponikvar, J.B. Continuous Renal Replacement Therapy and Plasma Exchange in Newborns and Infants. Artif. Organs 2002, 26, 163–168. [Google Scholar] [CrossRef]
- Mok, T.Y.D.; Tseng, M.-H.; Chiang, M.-C.; Lin, J.-L.; Chu, S.M.; Hsu, J.-F.; Lien, R. Renal replacement therapy in the neonatal intensive care unit. Pediatr. Neonatol. 2018, 59, 474–480. [Google Scholar] [CrossRef]
- Lee, S.T.; Cho, H. Fluid overload and outcomes in neonates receiving continuous renal replacement therapy. Pediatr. Nephrol. 2016, 31, 2145–2152. [Google Scholar] [CrossRef]
- Xu, J.; Chu, X.; Zhang, W.; Sun, Y.; Qiu, G.; Cai, C.; Chen, D. Analysis of risk factors for death in 59 cases of critically ill neonates receiving continuous renal replacement therapy: A two-centered retrospective study. Eur. J. Pediatr. 2022, 182, 353–361. [Google Scholar] [CrossRef]
- Jetton, J.G.; Boohaker, L.J.; Sethi, S.K.; Wazir, S.; Rohatgi, S.; Soranno, D.E.; Chishti, A.S.; Woroniecki, R.; Mammen, C.; Swanson, J.R.; et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 2017, 1, 184–194. [Google Scholar] [CrossRef]
- Santiago, M.J.; López-Herce, J.; Urbano, J.; Solana, M.J.; del Castillo, J.; Ballestero, Y.; Botrán, M.; Bellón, J.M. Clinical course and mortality risk factors in critically ill children requiring continuous renal replacement therapy. Intensive Care Med. 2010, 36, 843–849. [Google Scholar] [CrossRef]
- Sanderson, K.R.; Warady, B.; Carey, W.; Tolia, V.; Boynton, M.H.; Benjamin, D.K.; Jackson, W.; Laughon, M.; Clark, R.H.; Greenberg, R.G. Mortality Risk Factors among Infants Receiving Dialysis in the Neonatal Intensive Care Unit. J. Pediatr. 2022, 242, 159–165. [Google Scholar] [CrossRef]
- Gonçalves, J.P.; Severo, M.; Rocha, C.; Jardim, J.; Mota, T.; Ribeiro, A. Performance of PRISM III and PELOD-2 scores in a pediatric intensive care unit. Eur. J. Pediatr. 2015, 174, 1305–1310. [Google Scholar] [CrossRef]
- Cortina, G.; McRae, R.; Hoq, M.; Donath, S.; Chiletti, R.; Arvandi, M.; Gothe, R.M.; Joannidis, M.; Butt, W. Mortality of Critically Ill Children Requiring Continuous Renal Replacement Therapy: Effect of Fluid Overload, Underlying Disease, and Timing of Initiation*. Pediatr. Crit. Care Med. 2019, 20, 314–322. [Google Scholar] [CrossRef]
- Symons, J.M.; Brophy, P.D.; Gregory, M.J.; McAfee, N.; Somers, M.J.; Bunchman, T.E.; Goldstein, S.L. Continuous renal replacement therapy in children up to 10 kg. Am. J. Kidney Dis. 2003, 41, 984–989. [Google Scholar] [CrossRef]
- Modem, V.; Thompson, M.; Gollhofer, D.; Dhar, A.V.; Quigley, R. Timing of Continuous Renal Replacement Therapy and Mortality in Critically Ill Children*. Crit. Care Med. 2014, 42, 943–953. [Google Scholar] [CrossRef]
- Gist, K.M.; Menon, S.; Anton-Martin, P.; Bigelow, A.M.; Cortina, G.; Deep, A.; De la Mata-Navazo, S.; Gelbart, B.; Gorga, S.; Guzzo, I.; et al. Time to Continuous Renal Replacement Therapy Initiation and 90-Day Major Adverse Kidney Events in Children and Young Adults. JAMA Netw. Open 2024, 7, e2349871. [Google Scholar] [CrossRef]
- Ostermann, M.; Bellomo, R.; Burdmann, E.A.; Doi, K.; Endre, Z.H.; Goldstein, S.L.; Kane-Gill, S.L.; Liu, K.D.; Prowle, J.R.; Shaw, A.D.; et al. Controversies in acute kidney injury: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2020, 98, 294–309. [Google Scholar] [CrossRef]
- Xu, X.; Nie, S.; Xu, H.; Liu, B.; Weng, J.; Chen, C.; Liu, H.; Yang, Q.; Li, H.; Kong, Y.; et al. Detecting Neonatal AKI by Serum Cystatin C. J. Am. Soc. Nephrol. 2023, 34, 1253–1263. [Google Scholar] [CrossRef]
- Valle, E.d.O.; Smolentzov, I.; Gorzoni, J.L.M.; Salgado, I.C.; Mainardes, L.C.; Gomes, V.O.; Júnior, C.H.M.; Rodrigues, C.E.; Júnior, J.M.V. A clinical model to predict successful renal replacement therapy (RRT) discontinuation in patients with Acute Kidney Injury (AKI). Clinics 2023, 78, 100280. [Google Scholar] [CrossRef]
- Tal, L.; Angelo, J.R.; Akcan-Arikan, A. Neonatal extracorporeal renal replacement therapy—A routine renal support modality? Pediatr. Nephrol. 2016, 31, 2013–2015. [Google Scholar] [CrossRef]
- Coulthard, M.G.; Crosier, J.; Griffiths, C.; Smith, J.; Drinnan, M.; Whitaker, M.; Beckwith, R.; Matthews, J.N.S.; Flecknell, P.; Lambert, H.J. Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): Comparison with peritoneal and conventional haemodialysis. Pediatr. Nephrol. 2014, 29, 1873–1881. [Google Scholar] [CrossRef]
- Ronco, C.; Garzotto, F.; Brendolan, A.; Zanella, M.; Bellettato, M.; Vedovato, S.; Chiarenza, F.; Ricci, Z.; Goldstein, S.L. Continuous renal replacement therapy in neonates and small infants: Development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 2014, 383, 1807–1813. [Google Scholar] [CrossRef]
Total | Survivors | Non- Survivors | p-Value | ||
---|---|---|---|---|---|
Total (n, %) | 41 | 10 (24.4%) | 31 (75.6%) | ||
Gender (n, %) | Male | 27 (65.85%) | 5 (18.5%) | 22 (81.5%) | 0.267 a |
Female | 14 (34.15%) | 5 (35.7%) | 9 (64.3%) | ||
Gestational age in weeks (median, IQR) | 35 (32–38) | 36 (31.75–38) | 35 (30–38) | 0.818 b | |
Prematurity (n, %) | 25 (60.97%) | 6 (24.0%) | 19 (76.0%) | 1.000 a | |
Age at admission in days (median, IQR) | 3 (1–6) | 2.5 (1–7.75) | 4 (2–6) | 0.917 b | |
Body weight at admission in kg (average, SD) | 2.27 ± 0.78 | 2.48 ± 0.61 | 2.20 ± 0.84 | 0.360 c | |
PRISM III score (median, IQR) | 13 (9–18.5) | 15 (5.25–18.25) | 14 (12–23) | 0.893 b | |
Perinatal anamnesis (n, %) | Asphyxia | 12 (29.27%) | 2 (16.7%) | 10 (83.3%) | 0.694 a |
TTTSy | 5 (12.19%) | 2 (40.0%) | 3 (60.0%) | 0.580 a | |
Placental abruption | 4 (9.76%) | 2 (50.0%) | 2 (50.0%) | 0.245 a | |
COVID- positive mother | 1 (2.44%) | 1 (100.0%) | 0 (0.0%) | 0.244 a | |
Oligohydramnios | 4 (9.76%) | 0 (0.0%) | 4 (100.0%) | 0.256 d | |
Polyhydramnios | 3 (7.32%) | 0 (0.0%) | 3 (100.0%) | ||
IUGR | 2 (4.88%) | 0 (0.0%) | 2 (100.0%) | 1.000 a | |
PROM | 3 (7.32%) | 1 (33.3%) | 2 (66.7%) | 1.000 a | |
Maternal hypertension | 4 (9.76%) | 0 (0.0%) | 4 (100.0%) | 0.556 a | |
No significant occurrences | 11 (26.83%) | 3 (27.3%) | 8 (72.7%) | 1.000 a | |
Main cause of hospitalization (n, %) | Kidney failure | 11 (26.83%) | 3 (27.27%) | 8 (72.72%) | |
Sepsis | 4 (9.76%) | 1 (25.0%) | 3 (75.0%) | 0.712 a | |
CHD | 9 (21.95%) | 1 (11.1%) | 8 (88.9%) | 0.410 a | |
Hydrops | 2 (4.88%) | 1 (50.0%) | 1 (50.0%) | 0.143 a | |
Asphyxia | 2 (4.88%) | 1 (50.0%) | 1 (50.0%) | ||
Surgical condition | 12 (29.27%) | 3 (25.0%) | 9 (75.0%) | ||
Other | 1 (2.44%) | 0 (0.0%) | 1 (100.0%) | ||
Associated insufficiency of other organs (n, %) | Total | 27 (65.85%) | 4 (14.8%) | 23 (85.2%) | 0.064 a |
Lungs | 16 (39.02%) | 2 (12.5%) | 14 (87.5%) | 0.265 a | |
Liver | 8 (19.51%) | 2 (25.0%) | 6 (75.0%) | 1.000 a | |
Heart | 15 (36.58%) | 2 (13.3%) | 13 (86.7%) | 0.277 a | |
GIT | 3 (7.32%) | 0 (0.0%) | 3 (100.0%) | 0.564 a | |
Inotropic support (n, %) | 37 (90.24%) | 8 (21.6%) | 29 (78.4%) | 0.245 a |
Total | Survivors | Non- Survivors | p-Value | |||
---|---|---|---|---|---|---|
Indication for CRRT (n, %) | Anuria/volume overload | 33 (80.49%) | 7 (21.2%) | 26 (78.8%) | 0.378 a | |
Intoxication/acidosis | 10 (24.39%) | 2 (20.0%) | 8 (80.0%) | 1.000 a | ||
Electrolyte imbalance | 6 (14.63%) | 2 (33.3%) | 4 (66.7%) | 0.622 a | ||
Anuria (n, %) | Before CRRT | 25 (60.97%) | 5 (20.0%) | 20 (80.0%) | 0.472 a | |
After CRRT initiation | 19 (46.34%) | 0 (0.0%) | 19 (100.0%) | 0.001 *a | ||
Mode of dialysis (n, %) | Only HDF | 13 (31.71%) | 0 (0.0%) | 13 (100.0%) | 0.017 *a | |
HDF and HF | 28 (68.29%) | 10 (35.7%) | 18 (64.3%) | |||
Age at initiation of CRRT in days (median, IQR) | 8 (4–13.5) | 8 (3.5–22.75) | 8 (5–10) | 0.870 b | ||
Time from admission to initiation of CRRT in hours (median, IQR) | 72 (18–138) | 18 (1–294) | 72 (48–120) | 0.235 b | ||
Duration of CRRT in hours (median, IQR) | 50 (19.5–120.5) | 99 (49.5–409.25) | 111 (61–150) | 0.022 *b | ||
Duration of HF after HDF in hours (median, IQR) | 28.5 (0–73) | 44.5 (32.25–150.25) | 70 (26–91) | 0.020 *b | ||
Duration of CRRT (n, %) | > 24 h | 30 (73.17%) | 10 (33.3%) | 20 (66.7%) | 0.039 *a | |
< 24 h | 11 (26.83%) | 0 (0.0%) | 11 (100%) | |||
Complications during CRRT (n, %) | Yes | 33 (80.49%) | 5 (15.2%) | 28 (84.8%) | 0.013 *a | |
No | 8 (19.51%) | 5 (62.5%) | 3 (37.5%) | |||
Urea in serum (mmol/L) (average, SD) | Before HDF | 11.2 ± 5.0 | 9.5 ± 5.40 | 11.7 ± 4.94 | 0.238 c | |
After HDF | 4.7 ± 2.9 | 4.44 ± 3.05 | 4.8 ± 3.0 | 0.747 c | ||
Serum creatinine (umol/L) (average, SD) | Before HDF | 170.7 ± 97.3 | 178.3 ± 141.17 | 168.2 ± 83.3 | 0.783 c | |
After HDF | 79.4 ± 47.0 | 90.2 ± 62.7 | 75.4 ± 41.5 | 0.410 c | ||
K+ (mmol/L) | Before initiation of HDF (average, SD) | 4.98 ± 1.27 | 4.85 ± 1.28 | 5.02 ± 1.31 | 0.718 c | |
After initiation of HDF (median, IQR) | 3.50 (3.13–4.00) | 3.15 (2.90–3.72) | 3.50 (3.20–3.80) | 0.049 *c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rsovac, S.; Milosevic, K.; Spasojevic, B.; Cvetkovic, M.; Lomic, G.M.; Medjo, B.; Cobeljic, M.G.; Vukasinovic, N.; Selakovic, V.; Todorovic, D.; et al. Continuous Renal Replacement Therapy in Critically-Ill Term and Preterm Newborns: A Single-Center Study in Belgrade. Children 2025, 12, 828. https://doi.org/10.3390/children12070828
Rsovac S, Milosevic K, Spasojevic B, Cvetkovic M, Lomic GM, Medjo B, Cobeljic MG, Vukasinovic N, Selakovic V, Todorovic D, et al. Continuous Renal Replacement Therapy in Critically-Ill Term and Preterm Newborns: A Single-Center Study in Belgrade. Children. 2025; 12(7):828. https://doi.org/10.3390/children12070828
Chicago/Turabian StyleRsovac, Snezana, Katarina Milosevic, Brankica Spasojevic, Mirjana Cvetkovic, Gordana Milosevski Lomic, Biljana Medjo, Mina G. Cobeljic, Nadja Vukasinovic, Vesna Selakovic, Dusan Todorovic, and et al. 2025. "Continuous Renal Replacement Therapy in Critically-Ill Term and Preterm Newborns: A Single-Center Study in Belgrade" Children 12, no. 7: 828. https://doi.org/10.3390/children12070828
APA StyleRsovac, S., Milosevic, K., Spasojevic, B., Cvetkovic, M., Lomic, G. M., Medjo, B., Cobeljic, M. G., Vukasinovic, N., Selakovic, V., Todorovic, D., Petrovic, M., Plavec, D., & Kalanj, J. (2025). Continuous Renal Replacement Therapy in Critically-Ill Term and Preterm Newborns: A Single-Center Study in Belgrade. Children, 12(7), 828. https://doi.org/10.3390/children12070828