Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPP | Biophysical profile |
DOAJ | Directory of open access journals |
HDFN | Hemolytic disease of the fetus and newborn |
IRB | Institutional review board |
IUT | Intrauterine blood transfusion |
IVIG | Intravenous immunoglobulin |
LD | Linear dichroism |
MCA | Middle cerebral artery |
MDPI | Multidisciplinary Digital Publishing Institute |
MoM | Multiples of the median |
NR | Not reported |
NST | Nonstress test |
RBC | Red blood cell |
TLA | Three letter acronym |
US | United States |
USA | United States of America |
References
- de Haas, M.; Thurik, F.F.; Koelewijn, J.M.; van der Schoot, C. Haemolytic disease of the fetus and newborn. Vox Sang. 2015, 109, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Zwiers, C.; van Kamp, I.; Oepkes, D.; Lopriore, E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn-review on current management and outcome. Expert Rev. Hematol. 2017, 10, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Geifman-Holtzman, O.; Wojtowycz, M.; Kosmas, E.; Artal, R. Female alloimmunization with antibodies known to cause hemolytic disease. Obstet. Gynecol. 1997, 89, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Moinuddin, I.; Fletcher, C.; Millward, P. Prevalence and specificity of clinically significant red cell alloantibodies in pregnant women-a study from a tertiary care hospital in Southeast Michigan. J. Blood Med. 2019, 10, 283–289. [Google Scholar] [CrossRef]
- Smith, H.M.; Shirey, R.S.; Thoman, S.K.; Jackson, J. Prevalence of clinically significant red blood cell alloantibodies in pregnant women at a large tertiary-care facility. Immunohematology 2013, 29, 127–130. [Google Scholar] [CrossRef]
- Brackney, K.; Labbad, G.; Hersh, A.; Rincon, M.; Bar-Shain, D.; Babb, R.; Gibson, K.S. Missed anti-D immune globulin administration to postpartum patients in 2 health systems: An unrecognized patient safety risk. AJOG Glob. Rep. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Bowman, J. Thirty-five years of Rh prophylaxis. Transfusion 2003, 43, 1661–1666. [Google Scholar] [CrossRef]
- Slootweg, Y.M.; Walg, C.; Koelewijn, J.M.; Van Kamp, I.L.; De Haas, M. Knowledge, attitude and practices of obstetric care providers towards maternal red-blood-cell immunization during pregnancy. Vox Sang. 2020, 115, 211–220. [Google Scholar] [CrossRef]
- Ruma, M.S.; Moise, K.J., Jr.; Kim, E.; Murtha, A.P.; Prutsman, W.J.; Hassan, S.S.; Lubarsky, S.L. Combined plasmapheresis and intravenous immune globulin for the treatment of severe maternal red cell alloimmunization. Am. J. Obstet. Gynecol. 2007, 196, 138.e1–138.e6. [Google Scholar] [CrossRef]
- Zwiers, C.; van der Bom, J.G.; van Kamp, I.L.; van Geloven, N.; Lopriore, E.; Smoleniec, J.; Devlieger, R.; Sim, P.E.; Ledingham, M.A.; Tiblad, E.; et al. Postponing Early intrauterine Transfusion with Intravenous immunoglobulin Treatment; the PETIT Study on Severe Hemolytic Disease of the Fetus and Newborn. Am. J. Obstet. Gynecol. 2018, 219, 291.e1–291.e9. [Google Scholar] [CrossRef]
- Smits-Wintjens, V.E.; Walther, F.J.; Lopriore, E. Rhesus haemolytic disease of the newborn: Postnatal management, associated morbidity and long-term outcome. Semin. Fetal Neonatal Med. 2008, 13, 265–271. [Google Scholar] [CrossRef]
- Yu, D.; Ling, L.E.; Krumme, A.A.; Tjoa, M.L.; Moise, K.J. Live birth prevalence of hemolytic disease of the fetus and newborn in the United States from 1996 to 2010. AJOG Glob. Rep. 2023, 3, 100203. [Google Scholar] [CrossRef]
- Houston, B.L.; Govia, R.; Abou-Setta, A.M.; Reid, G.J.; Hadfield, M.; Menard, C.; Noyd, J.; Main, S.; Zarychanski, R. Severe Rh alloimmunization and hemolytic disease of the fetus managed with plasmapheresis, intravenous immunoglobulin and intrauterine transfusion: A case report. Transfus. Apher. Sci. 2015, 53, 399–402. [Google Scholar] [CrossRef]
- Nwogu, L.C.; Moise, K.J., Jr.; Klein, K.L.; Tint, H.; Castillo, B.; Bai, Y. Successful management of severe red blood cell alloimmunization in pregnancy with a combination of therapeutic plasma exchange, intravenous immune globulin, and intrauterine transfusion. Transfusion 2018, 58, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.B.; Rossi, K.Q.; Nagaraja, H.N.; O’sHaughnessy, R.W. Hemolytic disease of the fetus and newborn due to multiple maternal antibodies. Am. J. Obstet. Gynecol. 2015, 213, 68.e1–68.e5. [Google Scholar] [CrossRef] [PubMed]
- de Winter, D.P.; Lopriore, E.; Thorup, E.; Petersen, O.B.; Dziegiel, M.H.; Sundberg, K.; Devlieger, R.; de Catte, L.; Lewi, L.; Debeer, A.; et al. Variations in antenatal management and outcomes in haemolytic disease of the fetus and newborn: An international, retrospective, observational cohort study. Lancet Haematol. 2024, 11, e927–e937. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ajne, G.; Wikman, A.; Lindqvist, C.; Reilly, M.; Tiblad, E. Management and clinical consequences of red blood cell antibodies in pregnancy: A population-based cohort study. Acta Obstet. Gynecol. Scand. 2021, 100, 2216–2225. [Google Scholar] [CrossRef]
- Sánchez-Durán, M.Á.; Higueras, M.T.; Halajdian-Madrid, C.; García, M.A.; Bernabeu-García, A.; Maiz, N.; Nogués, N.; Carreras, E. Management and outcome of pregnancies in women with red cell isoimmunization: A 15-year observational study from a tertiary care university hospital. BMC Pregnancy Childbirth 2019, 19, 356. [Google Scholar] [CrossRef]
- Zwiers, C.; Oepkes, D.; Lopriore, E.; Klumper, F.J.; de Haas, M.; van Kamp, I.L. The near disappearance of fetal hydrops in relation to current state-of-the-art management of red cell alloimmunization. Prenat. Diagn. 2018, 38, 943–950. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 75: Management of alloimmunization during pregnancy. Obstet. Gynecol. 2006, 108, 457–464. [Google Scholar] [CrossRef]
- Eysenbach, G. Improving the quality of Web surveys: The Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34, Erratum in J. Med. Internet Res. 2012, 14, e8. [Google Scholar] [CrossRef]
- Webb, J.; Delaney, M. Red Blood Cell Alloimmunization in the Pregnant Patient. Transfus. Med. Rev. 2018, 32, 213–219. [Google Scholar] [CrossRef]
- Lieberman, L.; Callum, J.; Cohen, R.; Cserti-Gazdewich, C.; Ladhani, N.N.N.; Buckstein, J.; Pendergrast, J.; Lin, Y. Impact of red blood cell alloimmunization on fetal and neonatal outcomes: A single center cohort study. Transfusion 2020, 60, 2537–2546. [Google Scholar] [CrossRef]
- Healsmith, S.; Savoia, H.; Kane, S.C. How clinically important are non-D Rh antibodies? Acta Obstet. Gynecol. Scand. 2019, 98, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Zwiers, C.; Lindenburg, I.T.M.; Klumper, F.J.; de Haas, M.; Oepkes, D.; Van Kamp, I.L. Complications of intrauterine intravascular blood transfusion: Lessons learned after 1678 procedures. Ultrasound Obstet. Gynecol. 2017, 50, 180–186. [Google Scholar] [CrossRef]
- Tiblad, E.; Kublickas, M.; Ajne, G.; Bui, T.H.; Ek, S.; Karlsson, A.; Wikman, A.; Westgren, M. Procedure-related complications and perinatal outcome after intrauterine transfusions in red cell alloimmunization in Stockholm. Fetal Diagn. Ther. 2011, 30, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Lindenburg, I.T.; Wolterbeek, R.; Oepkes, D.; Klumper, F.J.; Vandenbussche, F.P.; van Kamp, I.L. Quality control for intravascular intrauterine transfusion using cumulative sum (CUSUM) analysis for the monitoring of individual performance. Fetal Diagn. Ther. 2011, 29, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Moise, K.J., Jr.; Carpenter, R.J., Jr. Increased severity of fetal hemolytic disease with known rhesus alloimmunization after first-trimester transcervical chorionic villus biopsy. Fetal Diagn. Ther. 1990, 5, 76–78. [Google Scholar] [CrossRef]
- Moise, K.J., Jr. Diagnosing hemolytic disease of the fetus—Time to put the needles away? N. Engl. J. Med. 2006, 355, 192–194. [Google Scholar] [CrossRef]
- Klumper, F.J.; van Kamp, I.L.; Vandenbussche, F.P.; Meerman, R.H.; Oepkes, D.; Scherjon, S.A.; Eilers, P.H.; Kanhai, H.H. Benefits and risks of fetal red-cell transfusion after 32 weeks gestation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 91–96. [Google Scholar] [CrossRef]
- Markham, K.B.; Moise, K.J. 531: Anti-Rh (D) Alloimmunization: Outcomes at a single institution. Am. J. Obstet. Gynecol. 2018, 218, S318. [Google Scholar] [CrossRef]
- Mari, G.; Adrignolo, A.; Abuhamad, A.Z.; Pirhonen, J.; Jones, D.C.; Ludomirsky, A.; Copel, J.A. Diagnosis of fetal anemia with Doppler ultrasound in the pregnancy complicated by maternal blood group immunization. Ultrasound Obstet. Gynecol. 1995, 5, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.K.; Forestier-Zhang, L.; Watts, L.; Turner, A.; Ponte, C.; Teare, H.; Gray, D.; Gray, N.; Popert, R.; Hogg, J.; et al. The RUDY study platform - a novel approach to patient driven research in rare musculoskeletal diseases. Orphanet J. Rare Dis. 2016, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Iorio, A.; Meerpohl, J.; Taruscio, D.; Laricchiuta, P.; Mincarone, P.; Morciano, C.; Leo, C.G.; Sabina, S.; Akl, E.; et al. Developing methodology for the creation of clinical practice guidelines for rare diseases: A report from RARE-Bestpractices. Rare Dis. 2015, 3, e1058463. [Google Scholar] [CrossRef]
- Aymé, S.; Kole, A.; Groft, S. Empowerment of patients: Lessons from the rare diseases community. Lancet 2008, 371, 2048–2051. [Google Scholar] [CrossRef]
- Uhlenbusch, N.; Löwe, B.; Depping, M.K. Perceived burden in dealing with different rare diseases: A qualitative focus group study. BMJ Open 2019, 9, e033353. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Social Determinants of Health. Healthy People 2030. Published 2020. Available online: https://health.gov/healthypeople/priority-areas/social-determinants-health (accessed on 17 June 2025).
Demographic and Pregnancy Characteristics | Participants (N = 127) n (%) |
---|---|
Race and Ethnicity | |
Non-Hispanic White | 116 (91.3) |
Hispanic White | 5 (3.9) |
Non-Hispanic Black | 2 (1.6) |
Other | 4 (3.1) |
Education | |
High School or Equivalent | 12 (9.4) |
Some College | 17 (13.4) |
Associates Degree or Certificate Program | 20 (15.7) |
Bachelor’s Degree | 40 (31.5) |
Master’s Degree | 31 (24.4) |
Doctoral Degree | 7 (5.5) |
Insurance | |
Private | 82 (64.6) |
Government Provided | 26 (20.5) |
Private, Government Provided | 3 (2.4) |
Military | 10 (7.9) |
Other | 5 (3.9) |
None | 1 (0.8) |
Description of Region of Residence | |
Suburban | 59 (46.5) |
Urban | 41 (32.3) |
Rural | 27 (21.3) |
Number of Living Children | |
1 | 11 (8.7) |
2 | 54 (42.9) |
3 | 37 (29.4) |
4 | 12 (9.5) |
5+ | 12 (9.5) |
Number of Completed Alloimmunized Pregnancies That Progressed Beyond 12 Weeks Gestation | |
1 | 78 (61.4) |
2 | 33 (26.0) |
3 | 8 (6.3) |
4 | 5 (3.9) |
5+ | 3 (2.4) |
Characteristic | Alloimmunized Pregnancies with Specific Antibody Known (n = 192) | Fetal Antigen Status Known (n = 167) | |
---|---|---|---|
Antigen positive (n = 131) | Antigen negative (n = 36) | ||
n (%) | n (%) | n (%) | |
Single Antibody | 112 (56.6) | 71 (54.2) | 25 (69.4) |
Only Anti-D | 27 (24.1) | 23 (32.4) | 2 (8.0) |
Only Anti-E | 33 (29.5) | 22 (31.0) | 7 (28.0) |
Only Anti-K | 38 (33.9) | 18 (25.4) | 12 (48.0) |
Only Anti-c | 6 (5.4) | 6 (8.5) | 0 (0.0) |
Multiple Antibodies | 80 (41.7) | 58 (45.0) | 13 (34.2) |
Anti-D + Others | 41 (51.3) | 32 (55.2) | 5 (38.5) |
Anti-E + Others | 34 (42.5) | 24 (41.4) | 2 (15.4) |
Anti-K + Others | 15 (18.8) | 11 (19.0) | 3 (23.1) |
Anti-c + Others | 23 (28.8) | 17 (29.3) | 2 (15.4) |
Titer Status Known (n = 176) | (n = 120) | (n = 35) | |
Titers Reached Critical Levels | 125 (71.0) | 99 (82.5) | 18 (51.4) |
Highest Known Titer | |||
Anti-K Pregnancies | |||
<16 | 18 (34.0) | 7 (24.1) | 8 (53.3) |
16–256 | 21 (39.6) | 12 (41.4) | 6 (40.0) |
512+ | 14 (26.4) | 10 (34.5) | 1 (6.7) |
Non-Anti-K Pregnancies | |||
<16 | 60 (43.2) | 35 (35.0) | 13 (56.5) |
16–256 | 63 (45.3) | 51 (51.0) | 9 (39.1) |
512+ | 16 (11.5) | 14 (14.0) | 1 (4.3) |
Median Titer | 64.0 | 64.0 | 16.0 |
Fetal Antigen Status and Titer Levels Known (n = 166) | ||||
---|---|---|---|---|
Prenatal Treatments | Full Sample (n = 200) | Antigen Positive with Critical Titers (n = 106) | Antigen Positive with Non- Critical Titers (n = 20) | Antigen Negative (n = 40) |
n (%) | n (%) | n (%) | n (%) | |
MCA 1 Scan Conducted | ||||
None | 34 (17.1) | 6 (5.7) | 4 (20.0) | 11 (30.6) |
Once or Twice | 25 (12.5) | 7 (6.6) | 5 (25.0) | 7 (17.5) |
Once a Month | 18 (9.0) | 4 (3.8) | 6 (30.0) | 3 (7.5) |
Once Every Two Weeks | 42 (21.1) | 26 (24.5) | 3 (15.0) | 8 (20.0) |
Once a Week | 80 (40.0) | 63 (59.4) | 2 (10.0) | 10 (25.0) |
IVIG 2 | 19 (9.5) | 15 (14.2) | 0 (0.0) | 3 (7.5) |
Plasmapheresis | 7 (3.5) | 7 (6.6) | 0 (0.0 | 0 (0.0) |
Phenobarbital | 10 (5.0) | 9 (8.5) | 0 (0.0) | 0 (0.0) |
Corticosteroids | 71 (35.5) | 53 (50.0) | 1 (5.0) | 13 (32.5) |
NSTs 3 | 137 (68.5) | 82 (77.4) | 13 (65.0) | 27 (67.5) |
BPPs 4 | 99 (49.5) | 63 (59.4) | 10 (50.0) | 16 (40.0) |
IUT 5 | 45 (22.5) | 42 (39.6) | 0 (0.0) | 1 (2.5) |
Highest MoM 6 at First IUT | ||||
1.01–1.29 | 1 (2.6) | 1 (2.8) | 0 (0.0) | 0 (0.0) |
1.30–1.49 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
1.50–1.69 | 20 (52.6) | 19 (52.8) | 0 (0.0) | 0 (0.0) |
1.70–1.89 | 10 (26.3) | 9 (25.0) | 0 (0.0) | 1 (100.0) |
1.90 or Higher | 7 (18.4) | 7 (19.4) | 0 (0.0) | 0 (0.0) |
Number of IUTs | ||||
1 | 7 (16.3) | 7 (17.1) | 0 (0.0) | 0 (0.0) |
2 | 12 (27.9) | 11 (26.8) | 0 (0.0) | 1 (100.0) |
3 | 10 (23.3) | 10 (24.4) | 0 (0.0) | 0 (0.0) |
4 | 6 (14.0) | 5 (12.2) | 0 (0.0) | 0 (0.0) |
5 | 5 (11.6) | 5 (12.2) | 0 (0.0) | 0 (0.0) |
6+ | 3 (7.0) | 3 (7.3) | 0 (0.0) | 0 (0.0) |
IUT Complication | 17 (38.6) | 17 (40.5) | 0 (0.0) | 0 (0.0) |
Fetal Complications | ||||
Anemia on ultrasound | 58 (29.0) | 52 (49.1) | 1 (5.0) | 1 (2.5) |
Ascites | 10 (5.0) | 10 (9.4) | 0 (0.0) | 0 (0.0) |
Hydrops | 4 (2.1) | 4 (4.2) | 0 (0.0) | 0 (0.0) |
Death in Utero | 11 (5.5) | 10 (9.3) | 1 (5.0) | 0 (0.0) |
Death in Utero Due to HDFN | 10 (5.0) | 10 (9.4) | 0 (0.0) | 0 (0.0) |
Alloimmunized Pregnancy Number; Pregnancy Year | Antibody; Highest Known Titer | Monitoring/Treatments Received | MCA 1 Doppler MoM 2 at Time of First Transfusion; Gestational Age at First Transfusion | Gestational Age at Death | Patient-Reported Case Description | Subsequent Pregnancy History |
---|---|---|---|---|---|---|
First, 2012 | Anti-K 1024 | MCA Doppler ultrasounds; 1 IUT 3 | >1.90 18–19 weeks | 19 weeks | Patient request for referral, early MCA Dopplers and plasmapheresis and IVIG 4 denied. Donor blood added to ascites, baby injected with Lasix, baby showed more heart damage and worse anemia after the IUT, never moved again, died a week later. | Three subsequent antigen positive pregnancies receiving IVIG, plasmapheresis, phenobarbital, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 24–28 weeks all resulting in live birth. |
First, 2014 | Anti-D 2048 | None | Not conducted Not conducted | 24 weeks | Despite patient request, provider did not refer to MFM 5 prior to 24 weeks. First MFM appointment 2 days after fetal death in utero. | One subsequent antigen positive pregnancy, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 16–17 weeks resulting in live birth. |
Sixth, 2016 | NR 64 | MCA Doppler ultrasounds, 1 IUT | 1.50–1.69 20–21 weeks | 20 weeks | Baby’s MCA Doppler MoM fluctuating for previous 2.5 weeks before ending at 1.69. IUT conducted 48 h later. Upon admission for IUT baby had passed. Autopsy confirmed HDFN 6. | One subsequent pregnancy receiving IVIG and plasmapheresis, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 22–23 weeks resulting in live birth. |
Second, 2017 | Anti-D 64 | MCA Doppler ultrasounds, NSTs 7, antenatal corticosteroids, 1 IUT | NR 28–29 weeks | 28 weeks | Developed antibodies after missed Rh immune globulin. Patient reports failed IUT due to provider inexperience and hesitancy to refer for procedure. | One subsequent antigen positive pregnancy, IUTs beginning at 30–31 weeks, MCA dopplers beginning prior to 16 weeks, resulting in live birth. |
Second, 2018 | Anti-D, Anti-C 1024 | MCA Doppler ultrasounds; IVIG; 3 IUTs | >1.90 16–17 weeks | 20 weeks | IVIG initiated after MCA Doppler MoMs reading over 2.0. Chorioamnionitis following IUT, preterm labor. | No subsequent pregnancies. |
Third, 2018 | Anti-K, Anti-Fya, Anti-Jka 4096 | MCA Doppler ultrasounds, IVIG, NSTs, BPPs 8, antenatal corticosteroids, 5 IUTs | >1.90 26–27 weeks | 30 weeks | True knot in umbilical cord. Same mother as below. | Two subsequent pregnancies, one reported below resulting in fetal death, final pregnancy with antigen negative fetus. |
Fourth, 2019 | Anti-K, Anti-Fya, Anti-Jka >16,384 | MCA Doppler ultrasounds, IVIG, plasmapheresis, NSTs, BPPs | NR Not conducted | 15 weeks | Same mother as above. | See above. |
First, 2020 | Anti-D 1024 | MCA Doppler ultrasounds; 1 IUT | NR 22–23 weeks | 23 weeks | Never felt movement again after IUT and baby had passed away at MCA Doppler scan 2 days after IUT. | One subsequent antigen positive pregnancy receiving IVIG, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 30–31 weeks resulting in live birth. |
First, 2020 | Anti-E, Anti-K 256 | None | Not conducted Not conducted | 31 weeks | No monitoring or treatment. Incorrect antigen test ordered for father resulting in inaccurate determination of fetal antigen status. | No subsequent pregnancies. |
First, 2021 | Anti-K 2048 | MCA Doppler ultrasounds; 1 IUT | >1.90 18–19 weeks | 19 weeks | NR 9 | One subsequent antigen positive pregnancy receiving IVIG and plasmapheresis, MCA Dopplers beginning 16–18 weeks, IUTs beginning at 24–25 weeks resulting in live birth. |
Fetal Antigen Status Known (n = 175) | ||||
---|---|---|---|---|
Full Sample (n = 200) | Antigen Positive (n = 122) | Antigen Positive Receiving IUT 1 (n = 38) | Antigen Negative (n = 40) | |
n (%) | n (%) | n (%) | n (%) | |
Vaginal Delivery | 125 (66.1) | 85 (68.5) | 21 (56.8) | 21 (52.5) |
Vaginal induction due to alloimmunization | ||||
Induced Due to Alloimmunization | 74 (59.2) | 56 (65.9) | 19 (90.5) | 10 (47.6) |
Cesarean Delivery | 64 (33.9) | 39 (31.5) | 16 (43.2) | 19 (47.5) |
Reason for cesarean delivery | ||||
Prior Cesarean | 31 (48.4) | 15 (38.5) | 4 (25.0) | 13 (68.4) |
Baby Was Not Head Down | 12 (18.8) | 7 (17.9) | 4 (25.0) | 4 (21.1) |
Non-reassuring Fetal Wellbeing | 10 (15.6) | 9 (23.1) | 4 (25.0) | 1 (5.3) |
Vaginal Delivery Attempted but Unsuccessful | 5 (7.8) | 4 (10.3) | 0 (0.0) | 1 (5.3) |
Because of Alloimmunization | 14 (21.9) | 12 (30.8) | 5 (31.3) | 2 (10.5) |
Elective | 3 (4.7) | 2 (5.1) | 1 (6.3) | 1 (5.3) |
Other | 18 (28.1) | 9 (23.1) | 6 (37.5) | 7 (36.8) |
Emergency cesarean | ||||
Emergency Cesarean | 21 (10.5) | 17 (12.6) | 10 (23.3) | 4 (10.0) |
Gestational Age at Birth (Weeks) | ||||
≤33 Weeks | 14 (7.5) | 11 (9.0) | 8 (21.6) | 3 (7.5) |
34–36 Weeks | 46 (24.6) | 34 (27.9) | 20 (54.1) | 9 (22.5) |
37–38 Weeks | 88 (47.1) | 59 (48.4) | 9 (24.3) | 17 (42.5) |
39–40 Weeks | 34 (18.2) | 16 (13.1) | 0 (0.0) | 10 (25.0) |
41+ Weeks | 5 (2.7) | 2 (1.6) | 0 (0.0) | 1 (2.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherwood, M.R.; Weathersby, B.M.; Granger Howard, M.E.; Markham, K.B. Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn. Children 2025, 12, 822. https://doi.org/10.3390/children12070822
Sherwood MR, Weathersby BM, Granger Howard ME, Markham KB. Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn. Children. 2025; 12(7):822. https://doi.org/10.3390/children12070822
Chicago/Turabian StyleSherwood, Molly R., Bethany M. Weathersby, Marion E. Granger Howard, and Kara B. Markham. 2025. "Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn" Children 12, no. 7: 822. https://doi.org/10.3390/children12070822
APA StyleSherwood, M. R., Weathersby, B. M., Granger Howard, M. E., & Markham, K. B. (2025). Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn. Children, 12(7), 822. https://doi.org/10.3390/children12070822