Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPP | Biophysical profile |
DOAJ | Directory of open access journals |
HDFN | Hemolytic disease of the fetus and newborn |
IRB | Institutional review board |
IUT | Intrauterine blood transfusion |
IVIG | Intravenous immunoglobulin |
LD | Linear dichroism |
MCA | Middle cerebral artery |
MDPI | Multidisciplinary Digital Publishing Institute |
MoM | Multiples of the median |
NR | Not reported |
NST | Nonstress test |
RBC | Red blood cell |
TLA | Three letter acronym |
US | United States |
USA | United States of America |
References
- de Haas, M.; Thurik, F.F.; Koelewijn, J.M.; van der Schoot, C. Haemolytic disease of the fetus and newborn. Vox Sang. 2015, 109, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Zwiers, C.; van Kamp, I.; Oepkes, D.; Lopriore, E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn-review on current management and outcome. Expert Rev. Hematol. 2017, 10, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Geifman-Holtzman, O.; Wojtowycz, M.; Kosmas, E.; Artal, R. Female alloimmunization with antibodies known to cause hemolytic disease. Obstet. Gynecol. 1997, 89, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Moinuddin, I.; Fletcher, C.; Millward, P. Prevalence and specificity of clinically significant red cell alloantibodies in pregnant women-a study from a tertiary care hospital in Southeast Michigan. J. Blood Med. 2019, 10, 283–289. [Google Scholar] [CrossRef]
- Smith, H.M.; Shirey, R.S.; Thoman, S.K.; Jackson, J. Prevalence of clinically significant red blood cell alloantibodies in pregnant women at a large tertiary-care facility. Immunohematology 2013, 29, 127–130. [Google Scholar] [CrossRef]
- Brackney, K.; Labbad, G.; Hersh, A.; Rincon, M.; Bar-Shain, D.; Babb, R.; Gibson, K.S. Missed anti-D immune globulin administration to postpartum patients in 2 health systems: An unrecognized patient safety risk. AJOG Glob. Rep. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Bowman, J. Thirty-five years of Rh prophylaxis. Transfusion 2003, 43, 1661–1666. [Google Scholar] [CrossRef]
- Slootweg, Y.M.; Walg, C.; Koelewijn, J.M.; Van Kamp, I.L.; De Haas, M. Knowledge, attitude and practices of obstetric care providers towards maternal red-blood-cell immunization during pregnancy. Vox Sang. 2020, 115, 211–220. [Google Scholar] [CrossRef]
- Ruma, M.S.; Moise, K.J., Jr.; Kim, E.; Murtha, A.P.; Prutsman, W.J.; Hassan, S.S.; Lubarsky, S.L. Combined plasmapheresis and intravenous immune globulin for the treatment of severe maternal red cell alloimmunization. Am. J. Obstet. Gynecol. 2007, 196, 138.e1–138.e6. [Google Scholar] [CrossRef]
- Zwiers, C.; van der Bom, J.G.; van Kamp, I.L.; van Geloven, N.; Lopriore, E.; Smoleniec, J.; Devlieger, R.; Sim, P.E.; Ledingham, M.A.; Tiblad, E.; et al. Postponing Early intrauterine Transfusion with Intravenous immunoglobulin Treatment; the PETIT Study on Severe Hemolytic Disease of the Fetus and Newborn. Am. J. Obstet. Gynecol. 2018, 219, 291.e1–291.e9. [Google Scholar] [CrossRef]
- Smits-Wintjens, V.E.; Walther, F.J.; Lopriore, E. Rhesus haemolytic disease of the newborn: Postnatal management, associated morbidity and long-term outcome. Semin. Fetal Neonatal Med. 2008, 13, 265–271. [Google Scholar] [CrossRef]
- Yu, D.; Ling, L.E.; Krumme, A.A.; Tjoa, M.L.; Moise, K.J. Live birth prevalence of hemolytic disease of the fetus and newborn in the United States from 1996 to 2010. AJOG Glob. Rep. 2023, 3, 100203. [Google Scholar] [CrossRef]
- Houston, B.L.; Govia, R.; Abou-Setta, A.M.; Reid, G.J.; Hadfield, M.; Menard, C.; Noyd, J.; Main, S.; Zarychanski, R. Severe Rh alloimmunization and hemolytic disease of the fetus managed with plasmapheresis, intravenous immunoglobulin and intrauterine transfusion: A case report. Transfus. Apher. Sci. 2015, 53, 399–402. [Google Scholar] [CrossRef]
- Nwogu, L.C.; Moise, K.J., Jr.; Klein, K.L.; Tint, H.; Castillo, B.; Bai, Y. Successful management of severe red blood cell alloimmunization in pregnancy with a combination of therapeutic plasma exchange, intravenous immune globulin, and intrauterine transfusion. Transfusion 2018, 58, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.B.; Rossi, K.Q.; Nagaraja, H.N.; O’sHaughnessy, R.W. Hemolytic disease of the fetus and newborn due to multiple maternal antibodies. Am. J. Obstet. Gynecol. 2015, 213, 68.e1–68.e5. [Google Scholar] [CrossRef] [PubMed]
- de Winter, D.P.; Lopriore, E.; Thorup, E.; Petersen, O.B.; Dziegiel, M.H.; Sundberg, K.; Devlieger, R.; de Catte, L.; Lewi, L.; Debeer, A.; et al. Variations in antenatal management and outcomes in haemolytic disease of the fetus and newborn: An international, retrospective, observational cohort study. Lancet Haematol. 2024, 11, e927–e937. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ajne, G.; Wikman, A.; Lindqvist, C.; Reilly, M.; Tiblad, E. Management and clinical consequences of red blood cell antibodies in pregnancy: A population-based cohort study. Acta Obstet. Gynecol. Scand. 2021, 100, 2216–2225. [Google Scholar] [CrossRef]
- Sánchez-Durán, M.Á.; Higueras, M.T.; Halajdian-Madrid, C.; García, M.A.; Bernabeu-García, A.; Maiz, N.; Nogués, N.; Carreras, E. Management and outcome of pregnancies in women with red cell isoimmunization: A 15-year observational study from a tertiary care university hospital. BMC Pregnancy Childbirth 2019, 19, 356. [Google Scholar] [CrossRef]
- Zwiers, C.; Oepkes, D.; Lopriore, E.; Klumper, F.J.; de Haas, M.; van Kamp, I.L. The near disappearance of fetal hydrops in relation to current state-of-the-art management of red cell alloimmunization. Prenat. Diagn. 2018, 38, 943–950. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 75: Management of alloimmunization during pregnancy. Obstet. Gynecol. 2006, 108, 457–464. [Google Scholar] [CrossRef]
- Eysenbach, G. Improving the quality of Web surveys: The Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34, Erratum in J. Med. Internet Res. 2012, 14, e8. [Google Scholar] [CrossRef]
- Webb, J.; Delaney, M. Red Blood Cell Alloimmunization in the Pregnant Patient. Transfus. Med. Rev. 2018, 32, 213–219. [Google Scholar] [CrossRef]
- Lieberman, L.; Callum, J.; Cohen, R.; Cserti-Gazdewich, C.; Ladhani, N.N.N.; Buckstein, J.; Pendergrast, J.; Lin, Y. Impact of red blood cell alloimmunization on fetal and neonatal outcomes: A single center cohort study. Transfusion 2020, 60, 2537–2546. [Google Scholar] [CrossRef]
- Healsmith, S.; Savoia, H.; Kane, S.C. How clinically important are non-D Rh antibodies? Acta Obstet. Gynecol. Scand. 2019, 98, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Zwiers, C.; Lindenburg, I.T.M.; Klumper, F.J.; de Haas, M.; Oepkes, D.; Van Kamp, I.L. Complications of intrauterine intravascular blood transfusion: Lessons learned after 1678 procedures. Ultrasound Obstet. Gynecol. 2017, 50, 180–186. [Google Scholar] [CrossRef]
- Tiblad, E.; Kublickas, M.; Ajne, G.; Bui, T.H.; Ek, S.; Karlsson, A.; Wikman, A.; Westgren, M. Procedure-related complications and perinatal outcome after intrauterine transfusions in red cell alloimmunization in Stockholm. Fetal Diagn. Ther. 2011, 30, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Lindenburg, I.T.; Wolterbeek, R.; Oepkes, D.; Klumper, F.J.; Vandenbussche, F.P.; van Kamp, I.L. Quality control for intravascular intrauterine transfusion using cumulative sum (CUSUM) analysis for the monitoring of individual performance. Fetal Diagn. Ther. 2011, 29, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Moise, K.J., Jr.; Carpenter, R.J., Jr. Increased severity of fetal hemolytic disease with known rhesus alloimmunization after first-trimester transcervical chorionic villus biopsy. Fetal Diagn. Ther. 1990, 5, 76–78. [Google Scholar] [CrossRef]
- Moise, K.J., Jr. Diagnosing hemolytic disease of the fetus—Time to put the needles away? N. Engl. J. Med. 2006, 355, 192–194. [Google Scholar] [CrossRef]
- Klumper, F.J.; van Kamp, I.L.; Vandenbussche, F.P.; Meerman, R.H.; Oepkes, D.; Scherjon, S.A.; Eilers, P.H.; Kanhai, H.H. Benefits and risks of fetal red-cell transfusion after 32 weeks gestation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 91–96. [Google Scholar] [CrossRef]
- Markham, K.B.; Moise, K.J. 531: Anti-Rh (D) Alloimmunization: Outcomes at a single institution. Am. J. Obstet. Gynecol. 2018, 218, S318. [Google Scholar] [CrossRef]
- Mari, G.; Adrignolo, A.; Abuhamad, A.Z.; Pirhonen, J.; Jones, D.C.; Ludomirsky, A.; Copel, J.A. Diagnosis of fetal anemia with Doppler ultrasound in the pregnancy complicated by maternal blood group immunization. Ultrasound Obstet. Gynecol. 1995, 5, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.K.; Forestier-Zhang, L.; Watts, L.; Turner, A.; Ponte, C.; Teare, H.; Gray, D.; Gray, N.; Popert, R.; Hogg, J.; et al. The RUDY study platform - a novel approach to patient driven research in rare musculoskeletal diseases. Orphanet J. Rare Dis. 2016, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Iorio, A.; Meerpohl, J.; Taruscio, D.; Laricchiuta, P.; Mincarone, P.; Morciano, C.; Leo, C.G.; Sabina, S.; Akl, E.; et al. Developing methodology for the creation of clinical practice guidelines for rare diseases: A report from RARE-Bestpractices. Rare Dis. 2015, 3, e1058463. [Google Scholar] [CrossRef]
- Aymé, S.; Kole, A.; Groft, S. Empowerment of patients: Lessons from the rare diseases community. Lancet 2008, 371, 2048–2051. [Google Scholar] [CrossRef]
- Uhlenbusch, N.; Löwe, B.; Depping, M.K. Perceived burden in dealing with different rare diseases: A qualitative focus group study. BMJ Open 2019, 9, e033353. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Social Determinants of Health. Healthy People 2030. Published 2020. Available online: https://health.gov/healthypeople/priority-areas/social-determinants-health (accessed on 17 June 2025).
Demographic and Pregnancy Characteristics | Participants (N = 127) n (%) |
---|---|
Race and Ethnicity | |
Non-Hispanic White | 116 (91.3) |
Hispanic White | 5 (3.9) |
Non-Hispanic Black | 2 (1.6) |
Other | 4 (3.1) |
Education | |
High School or Equivalent | 12 (9.4) |
Some College | 17 (13.4) |
Associates Degree or Certificate Program | 20 (15.7) |
Bachelor’s Degree | 40 (31.5) |
Master’s Degree | 31 (24.4) |
Doctoral Degree | 7 (5.5) |
Insurance | |
Private | 82 (64.6) |
Government Provided | 26 (20.5) |
Private, Government Provided | 3 (2.4) |
Military | 10 (7.9) |
Other | 5 (3.9) |
None | 1 (0.8) |
Description of Region of Residence | |
Suburban | 59 (46.5) |
Urban | 41 (32.3) |
Rural | 27 (21.3) |
Number of Living Children | |
1 | 11 (8.7) |
2 | 54 (42.9) |
3 | 37 (29.4) |
4 | 12 (9.5) |
5+ | 12 (9.5) |
Number of Completed Alloimmunized Pregnancies That Progressed Beyond 12 Weeks Gestation | |
1 | 78 (61.4) |
2 | 33 (26.0) |
3 | 8 (6.3) |
4 | 5 (3.9) |
5+ | 3 (2.4) |
Characteristic | Alloimmunized Pregnancies with Specific Antibody Known (n = 192) | Fetal Antigen Status Known (n = 167) | |
---|---|---|---|
Antigen positive (n = 131) | Antigen negative (n = 36) | ||
n (%) | n (%) | n (%) | |
Single Antibody | 112 (56.6) | 71 (54.2) | 25 (69.4) |
Only Anti-D | 27 (24.1) | 23 (32.4) | 2 (8.0) |
Only Anti-E | 33 (29.5) | 22 (31.0) | 7 (28.0) |
Only Anti-K | 38 (33.9) | 18 (25.4) | 12 (48.0) |
Only Anti-c | 6 (5.4) | 6 (8.5) | 0 (0.0) |
Multiple Antibodies | 80 (41.7) | 58 (45.0) | 13 (34.2) |
Anti-D + Others | 41 (51.3) | 32 (55.2) | 5 (38.5) |
Anti-E + Others | 34 (42.5) | 24 (41.4) | 2 (15.4) |
Anti-K + Others | 15 (18.8) | 11 (19.0) | 3 (23.1) |
Anti-c + Others | 23 (28.8) | 17 (29.3) | 2 (15.4) |
Titer Status Known (n = 176) | (n = 120) | (n = 35) | |
Titers Reached Critical Levels | 125 (71.0) | 99 (82.5) | 18 (51.4) |
Highest Known Titer | |||
Anti-K Pregnancies | |||
<16 | 18 (34.0) | 7 (24.1) | 8 (53.3) |
16–256 | 21 (39.6) | 12 (41.4) | 6 (40.0) |
512+ | 14 (26.4) | 10 (34.5) | 1 (6.7) |
Non-Anti-K Pregnancies | |||
<16 | 60 (43.2) | 35 (35.0) | 13 (56.5) |
16–256 | 63 (45.3) | 51 (51.0) | 9 (39.1) |
512+ | 16 (11.5) | 14 (14.0) | 1 (4.3) |
Median Titer | 64.0 | 64.0 | 16.0 |
Fetal Antigen Status and Titer Levels Known (n = 166) | ||||
---|---|---|---|---|
Prenatal Treatments | Full Sample (n = 200) | Antigen Positive with Critical Titers (n = 106) | Antigen Positive with Non- Critical Titers (n = 20) | Antigen Negative (n = 40) |
n (%) | n (%) | n (%) | n (%) | |
MCA 1 Scan Conducted | ||||
None | 34 (17.1) | 6 (5.7) | 4 (20.0) | 11 (30.6) |
Once or Twice | 25 (12.5) | 7 (6.6) | 5 (25.0) | 7 (17.5) |
Once a Month | 18 (9.0) | 4 (3.8) | 6 (30.0) | 3 (7.5) |
Once Every Two Weeks | 42 (21.1) | 26 (24.5) | 3 (15.0) | 8 (20.0) |
Once a Week | 80 (40.0) | 63 (59.4) | 2 (10.0) | 10 (25.0) |
IVIG 2 | 19 (9.5) | 15 (14.2) | 0 (0.0) | 3 (7.5) |
Plasmapheresis | 7 (3.5) | 7 (6.6) | 0 (0.0 | 0 (0.0) |
Phenobarbital | 10 (5.0) | 9 (8.5) | 0 (0.0) | 0 (0.0) |
Corticosteroids | 71 (35.5) | 53 (50.0) | 1 (5.0) | 13 (32.5) |
NSTs 3 | 137 (68.5) | 82 (77.4) | 13 (65.0) | 27 (67.5) |
BPPs 4 | 99 (49.5) | 63 (59.4) | 10 (50.0) | 16 (40.0) |
IUT 5 | 45 (22.5) | 42 (39.6) | 0 (0.0) | 1 (2.5) |
Highest MoM 6 at First IUT | ||||
1.01–1.29 | 1 (2.6) | 1 (2.8) | 0 (0.0) | 0 (0.0) |
1.30–1.49 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
1.50–1.69 | 20 (52.6) | 19 (52.8) | 0 (0.0) | 0 (0.0) |
1.70–1.89 | 10 (26.3) | 9 (25.0) | 0 (0.0) | 1 (100.0) |
1.90 or Higher | 7 (18.4) | 7 (19.4) | 0 (0.0) | 0 (0.0) |
Number of IUTs | ||||
1 | 7 (16.3) | 7 (17.1) | 0 (0.0) | 0 (0.0) |
2 | 12 (27.9) | 11 (26.8) | 0 (0.0) | 1 (100.0) |
3 | 10 (23.3) | 10 (24.4) | 0 (0.0) | 0 (0.0) |
4 | 6 (14.0) | 5 (12.2) | 0 (0.0) | 0 (0.0) |
5 | 5 (11.6) | 5 (12.2) | 0 (0.0) | 0 (0.0) |
6+ | 3 (7.0) | 3 (7.3) | 0 (0.0) | 0 (0.0) |
IUT Complication | 17 (38.6) | 17 (40.5) | 0 (0.0) | 0 (0.0) |
Fetal Complications | ||||
Anemia on ultrasound | 58 (29.0) | 52 (49.1) | 1 (5.0) | 1 (2.5) |
Ascites | 10 (5.0) | 10 (9.4) | 0 (0.0) | 0 (0.0) |
Hydrops | 4 (2.1) | 4 (4.2) | 0 (0.0) | 0 (0.0) |
Death in Utero | 11 (5.5) | 10 (9.3) | 1 (5.0) | 0 (0.0) |
Death in Utero Due to HDFN | 10 (5.0) | 10 (9.4) | 0 (0.0) | 0 (0.0) |
Alloimmunized Pregnancy Number; Pregnancy Year | Antibody; Highest Known Titer | Monitoring/Treatments Received | MCA 1 Doppler MoM 2 at Time of First Transfusion; Gestational Age at First Transfusion | Gestational Age at Death | Patient-Reported Case Description | Subsequent Pregnancy History |
---|---|---|---|---|---|---|
First, 2012 | Anti-K 1024 | MCA Doppler ultrasounds; 1 IUT 3 | >1.90 18–19 weeks | 19 weeks | Patient request for referral, early MCA Dopplers and plasmapheresis and IVIG 4 denied. Donor blood added to ascites, baby injected with Lasix, baby showed more heart damage and worse anemia after the IUT, never moved again, died a week later. | Three subsequent antigen positive pregnancies receiving IVIG, plasmapheresis, phenobarbital, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 24–28 weeks all resulting in live birth. |
First, 2014 | Anti-D 2048 | None | Not conducted Not conducted | 24 weeks | Despite patient request, provider did not refer to MFM 5 prior to 24 weeks. First MFM appointment 2 days after fetal death in utero. | One subsequent antigen positive pregnancy, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 16–17 weeks resulting in live birth. |
Sixth, 2016 | NR 64 | MCA Doppler ultrasounds, 1 IUT | 1.50–1.69 20–21 weeks | 20 weeks | Baby’s MCA Doppler MoM fluctuating for previous 2.5 weeks before ending at 1.69. IUT conducted 48 h later. Upon admission for IUT baby had passed. Autopsy confirmed HDFN 6. | One subsequent pregnancy receiving IVIG and plasmapheresis, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 22–23 weeks resulting in live birth. |
Second, 2017 | Anti-D 64 | MCA Doppler ultrasounds, NSTs 7, antenatal corticosteroids, 1 IUT | NR 28–29 weeks | 28 weeks | Developed antibodies after missed Rh immune globulin. Patient reports failed IUT due to provider inexperience and hesitancy to refer for procedure. | One subsequent antigen positive pregnancy, IUTs beginning at 30–31 weeks, MCA dopplers beginning prior to 16 weeks, resulting in live birth. |
Second, 2018 | Anti-D, Anti-C 1024 | MCA Doppler ultrasounds; IVIG; 3 IUTs | >1.90 16–17 weeks | 20 weeks | IVIG initiated after MCA Doppler MoMs reading over 2.0. Chorioamnionitis following IUT, preterm labor. | No subsequent pregnancies. |
Third, 2018 | Anti-K, Anti-Fya, Anti-Jka 4096 | MCA Doppler ultrasounds, IVIG, NSTs, BPPs 8, antenatal corticosteroids, 5 IUTs | >1.90 26–27 weeks | 30 weeks | True knot in umbilical cord. Same mother as below. | Two subsequent pregnancies, one reported below resulting in fetal death, final pregnancy with antigen negative fetus. |
Fourth, 2019 | Anti-K, Anti-Fya, Anti-Jka >16,384 | MCA Doppler ultrasounds, IVIG, plasmapheresis, NSTs, BPPs | NR Not conducted | 15 weeks | Same mother as above. | See above. |
First, 2020 | Anti-D 1024 | MCA Doppler ultrasounds; 1 IUT | NR 22–23 weeks | 23 weeks | Never felt movement again after IUT and baby had passed away at MCA Doppler scan 2 days after IUT. | One subsequent antigen positive pregnancy receiving IVIG, MCA Dopplers beginning prior to 16 weeks, IUTs beginning at 30–31 weeks resulting in live birth. |
First, 2020 | Anti-E, Anti-K 256 | None | Not conducted Not conducted | 31 weeks | No monitoring or treatment. Incorrect antigen test ordered for father resulting in inaccurate determination of fetal antigen status. | No subsequent pregnancies. |
First, 2021 | Anti-K 2048 | MCA Doppler ultrasounds; 1 IUT | >1.90 18–19 weeks | 19 weeks | NR 9 | One subsequent antigen positive pregnancy receiving IVIG and plasmapheresis, MCA Dopplers beginning 16–18 weeks, IUTs beginning at 24–25 weeks resulting in live birth. |
Fetal Antigen Status Known (n = 175) | ||||
---|---|---|---|---|
Full Sample (n = 200) | Antigen Positive (n = 122) | Antigen Positive Receiving IUT 1 (n = 38) | Antigen Negative (n = 40) | |
n (%) | n (%) | n (%) | n (%) | |
Vaginal Delivery | 125 (66.1) | 85 (68.5) | 21 (56.8) | 21 (52.5) |
Vaginal induction due to alloimmunization | ||||
Induced Due to Alloimmunization | 74 (59.2) | 56 (65.9) | 19 (90.5) | 10 (47.6) |
Cesarean Delivery | 64 (33.9) | 39 (31.5) | 16 (43.2) | 19 (47.5) |
Reason for cesarean delivery | ||||
Prior Cesarean | 31 (48.4) | 15 (38.5) | 4 (25.0) | 13 (68.4) |
Baby Was Not Head Down | 12 (18.8) | 7 (17.9) | 4 (25.0) | 4 (21.1) |
Non-reassuring Fetal Wellbeing | 10 (15.6) | 9 (23.1) | 4 (25.0) | 1 (5.3) |
Vaginal Delivery Attempted but Unsuccessful | 5 (7.8) | 4 (10.3) | 0 (0.0) | 1 (5.3) |
Because of Alloimmunization | 14 (21.9) | 12 (30.8) | 5 (31.3) | 2 (10.5) |
Elective | 3 (4.7) | 2 (5.1) | 1 (6.3) | 1 (5.3) |
Other | 18 (28.1) | 9 (23.1) | 6 (37.5) | 7 (36.8) |
Emergency cesarean | ||||
Emergency Cesarean | 21 (10.5) | 17 (12.6) | 10 (23.3) | 4 (10.0) |
Gestational Age at Birth (Weeks) | ||||
≤33 Weeks | 14 (7.5) | 11 (9.0) | 8 (21.6) | 3 (7.5) |
34–36 Weeks | 46 (24.6) | 34 (27.9) | 20 (54.1) | 9 (22.5) |
37–38 Weeks | 88 (47.1) | 59 (48.4) | 9 (24.3) | 17 (42.5) |
39–40 Weeks | 34 (18.2) | 16 (13.1) | 0 (0.0) | 10 (25.0) |
41+ Weeks | 5 (2.7) | 2 (1.6) | 0 (0.0) | 1 (2.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherwood, M.R.; Weathersby, B.M.; Granger Howard, M.E.; Markham, K.B. Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn. Children 2025, 12, 822. https://doi.org/10.3390/children12070822
Sherwood MR, Weathersby BM, Granger Howard ME, Markham KB. Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn. Children. 2025; 12(7):822. https://doi.org/10.3390/children12070822
Chicago/Turabian StyleSherwood, Molly R., Bethany M. Weathersby, Marion E. Granger Howard, and Kara B. Markham. 2025. "Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn" Children 12, no. 7: 822. https://doi.org/10.3390/children12070822
APA StyleSherwood, M. R., Weathersby, B. M., Granger Howard, M. E., & Markham, K. B. (2025). Patient-Reported Disease Presentation, Interventions, and Outcomes in United States Pregnancies Affected by Alloimmunization at Risk of Hemolytic Disease of the Fetus and Newborn. Children, 12(7), 822. https://doi.org/10.3390/children12070822