Hemodynamic Response to Tracheal Intubation Using Indirect and Direct Laryngoscopes in Pediatric Patients: A Systematic Review and Network Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Study Selection and Data Collection
2.4. Intubation Time
2.5. Risk of Bias Within Individual Studies
2.6. Certainty of Evidence
2.7. Publication Bias
2.8. Statistical Analysis
3. Results
3.1. Risk of Bias and Quality of Evidence
3.2. Overall Analysis
3.2.1. Heart Rate During Tracheal Intubation
3.2.2. Mean Blood Pressure During Tracheal Intubation
3.2.3. Intubation Time
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Takki, S.; Tammisto, T.; Nikki, P.; Jaattela, A. Effect of laryngoscopy and intubation on plasma catecholamine levels during intravenous induction of anaesthesia. Br. J. Anaesth. 1972, 44, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Shribman, A.J.; Smith, G.; Achola, K.J. Cardiovascular and catecholamine responses to laryngoscopy with and without tracheal intubation. Br. J. Anaesth. 1987, 59, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, M.; Fanti, L.; Gemma, M.; Pasculli, N.; Beretta, L.; Testoni, P.A. Adverse events during monitored anesthesia care for GI endoscopy: An 8-year experience. Gastrointest. Endosc. 2011, 74, 266–275. [Google Scholar] [CrossRef]
- Redhu, S.; Jalwal, G.K.; Saxena, M.; Shrivastava, O.P. A Comparative Study of Induction, Maintenance and Recovery Characteristics of Sevoflurane and Halothane Anaesthesia in Pediatric Patients (6 months to 6 years). J. Anaesthesiol. Clin. Pharmacol. 2010, 26, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.T.; Cafferkey, M.; Tarling, M.; Hancock, P.; Yate, P.M.; Flynn, P.J. Comparison of sevoflurane and halothane for outpatient dental anaesthesia in children. Br. J. Anaesth. 1997, 79, 280–284. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.; Vajifdar, H. A comparison of Truview infant EVO2 laryngoscope with the Miller blade in neonates and infants. Paediatr. Anaesth. 2009, 19, 338–342. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.T.; Kim, H.S.; Kim, C.S. A comparison of GlideScope videolaryngoscopy with direct laryngoscopy for nasotracheal intubation in children. Paediatr. Anaesth. 2011, 21, 1165–1166. [Google Scholar] [CrossRef]
- Das, B.; Samanta, A.; Mitra, S.; Jamil, S.N. Comparative evaluation of Airtraq optical Laryngoscope and Miller’s blade in paediatric patients undergoing elective surgery requiring tracheal intubation: A randomized, controlled trial. Indian J. Anaesth. 2017, 61, 326–331. [Google Scholar] [CrossRef]
- Giraudon, A.; Bordes-Demolis, M.; Blondeau, B.; Sibai de Panthou, N.; Ferrand, N.; Bello, M.; Dahlet, V.; Semjen, F.; Biais, M.; Nouette-Gaulain, K. Comparison of the McGrath((R)) MAC video laryngoscope with direct Macintosh laryngoscopy for novice laryngoscopists in children without difficult intubation: A randomised controlled trial. Anaesth. Crit. Care Pain Med. 2017, 36, 261–265. [Google Scholar] [CrossRef]
- Orozco, J.A.; Rojas, J.L.; Medina-Vera, A.J. Haemodynamic response and effectiveness of tracheal intubation with Airtraq(R) versus Macintosh laryngoscope in paediatric patient undergoing elective surgery: Prospective, randomised and blind clinical trial. Rev. Esp. Anestesiol. Reanim. 2018, 65, 24–30. [Google Scholar] [CrossRef]
- Hoshijima, H.; Maruyama, K.; Mihara, T.; Mieda, T.; Shiga, T.; Nagasaka, H. Airtraq(R) reduces the hemodynamic response to tracheal intubation using single-lumen tubes in adults compared with the Macintosh laryngoscope: A systematic review and meta-analysis of randomized control trials. J. Clin. Anesth. 2018, 47, 86–94. [Google Scholar] [CrossRef]
- Nagumo, T.; Hoshijima, H.; Maruyama, K.; Mihara, T.; Mieda, T.; Sato Boku, A.; Shiga, T.; Nagasaka, H. Hemodynamic response related to the Airway Scope versus the Macintosh laryngoscope: A systematic review and meta-analysis with trial sequential analysis. Medicine 2023, 102, e33047. [Google Scholar] [CrossRef] [PubMed]
- Riad, W.; Moussa, A.; Wong, D.T. Airtraq versus Macintoch laryngoscope in intubation performance in the pediatric population. Saudi J. Anaesth. 2012, 6, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Javaherforooshzadeh, F.; Gharacheh, L. The Comparison of Direct Laryngoscopy and Video Laryngoscopy in Pediatric Airways Management for Congenital Heart Surgery: A Randomized Clinical Trial. Anesth. Pain Med. 2020, 10, e99827. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.V.; Subramanya, B.H.; Kiranchand, N.; Bhaskar, S.B.; Dammur, S. Does C-MAC((R)) video laryngoscope improve the nasotracheal intubating conditions compared to Macintosh direct laryngoscope in paediatric patients posted for tonsillectomy surgeries? Indian J. Anaesth. 2016, 60, 732–736. [Google Scholar] [CrossRef]
- Inal, M.T.; Memis, D.; Kargi, M.; Oktay, Z.; Sut, N. Comparison of TruView EVO2 with Miller laryngoscope in paediatric patients. Eur. J. Anaesthesiol. 2010, 27, 950–954. [Google Scholar] [CrossRef]
- Hutton, B.; Moher, D.; Cameron, C. The PRISMA Extension Statement. Ann. Intern. Med. 2015, 163, 566–567. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. Available online: https://methods.cochrane.org/risk-bias-2 (accessed on 11 June 2025).
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; Group, G.W. GRADE- an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Nikolakopoulou, A.; Higgins, J.P.T.; Papakonstantinou, T.; Chaimani, A.; Del Giovane, C.; Egger, M.; Salanti, G. CINeMA: An approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020, 17, e1003082. [Google Scholar] [CrossRef]
- Krahn, U.; Binder, H.; Konig, J. A graphical tool for locating inconsistency in network meta-analyses. BMC Med. Res. Methodol. 2013, 13, 35. [Google Scholar] [CrossRef]
- Soltani, A.E.; Maleki, A.; Espahbodi, E.; Goudarzi, M.; Ariana, P.; Takzare, A. Comparison of the Laryngoscopic View using Macintosh and Miller Blades in Children Less than Four Years Old. J. Med. Life 2020, 13, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Yi, I.K.; Kwak, H.J.; Kim, K.M.; Ahn, S.H.; Lee, S.Y.; Kim, J.Y. Comparison of Pentax Airway Scope and Macintosh laryngoscope for orotracheal intubation in children: A randomised non-inferiority trial. Acta Anaesthesiol. Scand. 2019, 63, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Shayeghi, S.; Ghasemi, M.; Sadeghi, A.; Razavi, S.S. Hemodynamic responses to orotracheal intubation with a video laryngoscope in infants: A comparison study. J. Res. Med. Sci. 2007, 12, 251–256. [Google Scholar]
- RajsiShah; Lalchandani, K.; Chaudhary, R.; Patel, J. Comparison of the Airtraq video laryngoscope versus Macintosh laryngoscope for tracheal intubation in the pediatric patients: A prospective randomized controlled trial. Int. J. Health Sci. 2022, 6, 1544–1553. [Google Scholar] [CrossRef]
- Hur, M.; Kim, J.Y.; Min, S.K.; Lee, K.; Won, Y.J.; Kim, J.E. Comparison of McGrath Videolaryngoscope and Macintosh Laryngoscope in Children with Torticollis: Randomized Controlled Trial. Children 2021, 8, 1171. [Google Scholar] [CrossRef]
- Elattar, H.; Abdel-Rahman, I.; Ibrahim, M.; Kocz, R.; Raczka, M.; Kumar, A.; Senbruna, B.; Gensler, T.; Lerman, J. A randomized trial of the glottic views with the classic Miller, Wis-Hipple and C-MAC (videolaryngoscope and direct views) straight size 1 blades in young children. J. Clin. Anesth. 2020, 60, 57–61. [Google Scholar] [CrossRef]
- Pangasa, N.; Dali, J.S.; Sharma, K.R.; Arya, M.; Pachisia, A.V. Comparative evaluation of Truview evo2 and Macintosh laryngoscope for ease of orotracheal intubation in children—A prospective randomized controlled trial. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 25–29. [Google Scholar] [CrossRef]
- Yadav, P.; Kundu, S.B.; Bhattacharjee, D.P. Comparison between Macintosh, Miller and McCoy laryngoscope blade size 2 in paediatric patients—A randomised controlled trial. Indian J. Anaesth. 2019, 63, 15–20. [Google Scholar] [CrossRef]
- Hazarika, R.; Rajkhowa, T.; Nath, M.P.; Parua, S.; Kundu, R. Airtraq® Optical Laryngoscope versus Coopdech® Video Laryngoscope for Intubation Performance in the Pediatric Patients: A Randomized Single Hospital Study. Int. J. Sci. Study 2016, 4, 78–80. [Google Scholar]
- Iohom, G.; Franklin, R.; Casey, W.; Lyons, B. The McCoy straight blade does not improve laryngoscopy and intubation in normal infants. Can. J. Anaesth. 2004, 51, 155–159. [Google Scholar] [CrossRef]
- Edwards, N.D.; Alford, A.M.; Dobson, P.M.; Peacock, J.E.; Reilly, C.S. Myocardial ischaemia during tracheal intubation and extubation. Br. J. Anaesth. 1994, 73, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Prys-Roberts, C.; Greene, L.T.; Meloche, R.; Foex, P. Studies of anaesthesia in relation to hypertension. II. Haemodynamic consequences of induction and endotracheal intubation. Br. J. Anaesth. 1971, 43, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Hindman, B.J.; Santoni, B.G.; Puttlitz, C.M.; From, R.P.; Todd, M.M. Intubation biomechanics: Laryngoscope force and cervical spine motion during intubation with Macintosh and Airtraq laryngoscopes. Anesthesiology 2014, 121, 260–271. [Google Scholar] [CrossRef]
- Goto, T.; Koyama, Y.; Kondo, T.; Tsugawa, Y.; Hasegawa, K. A comparison of the force applied on oral structures during intubation attempts between the Pentax-AWS airwayscope and the Macintosh laryngoscope: A high-fidelity simulator-based study. BMJ Open 2014, 4, e006416. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.; Vaughan, R.S.; Hall, J.E.; Mecklenburgh, J.; Wilkes, A.R. A comparison of the forces exerted during laryngoscopy using disposable and non-disposable laryngoscope blades. Anaesthesia 2003, 58, 869–873. [Google Scholar] [CrossRef]
- Bucx, M.J.; Scheck, P.A.; Van Geel, R.T.; Den Ouden, A.H.; Niesing, R. Measurement of forces during laryngoscopy. Anaesthesia 1992, 47, 348–351. [Google Scholar] [CrossRef]
- Pieters, B.; Maassen, R.; Van Eig, E.; Maathuis, B.; Van Den Dobbelsteen, J.; Van Zundert, A. Indirect videolaryngoscopy using Macintosh blades in patients with non-anticipated difficult airways results in significantly lower forces exerted on teeth relative to classic direct laryngoscopy: A randomized crossover trial. Minerva Anestesiol. 2015, 81, 846–854. [Google Scholar]
- Suzuki, A.; Abe, N.; Sasakawa, T.; Kunisawa, T.; Takahata, O.; Iwasaki, H. Pentax-AWS (Airway Scope) and Airtraq: Big difference between two similar devices. J. Anesth. 2008, 22, 191–192. [Google Scholar] [CrossRef]
Author | Year | Type of Laryngoscope | Patient Age or Body Weight | ASA Status | Airway Condition | Type of Surgery | Methods of Induction Anesthesia |
---|---|---|---|---|---|---|---|
RajsiShah R [25] | 2022 | Macintosh (40) Airtraq (40) | 3–12 y | I-II | Normal | Elective surgery | Premedication: glycopyrrolate 5 μg/kg, midazolam 0.5 mg. Anesthesia induction: propofol 2 mg/kg, suxamethonium 2 mg/kg. |
Hur M [26] | 2021 | Macintosh (15) McGrath (15) | 1–10 y | I-II | Difficult (Torticollis) | Torticollis surgery | Anesthesia induction: propofol 2.5–3.0 mg/kg, fentanyl 1 mcg/kg, rocuronium 1 mg/kg. |
Soltani AE [22] | 2020 | Macintosh (30) Miller (32) | 0–4 y | I-II | Normal | Elective surgery | Premedication: midazolam 0.5 mg/kg and ketamine 2.5 mg/kg. Anesthesia induction: sevoflurane 8%, fentanyl 1 μg/kg |
Elattar H [27] | 2020 | Miller (29) C-MAC (36) Wis-Hipple (31) | <18 y | I-II | Normal | Elective surgery | Anesthesia induction: sevoflurane 8%, nitrous oxide (66%, and oxygen 33%, (propofol 2–3 mg/kg). |
Yi IK [23] | 2019 | Macintosh (68) AirwayScope (68) | 1–10 y | I-II | Normal | Elective surgery | No premedication. Anesthesia induction: sevoflurane 5–8%, oxygen 100%, (propofol 2.5–3 mg/kg), rocuronium 0.6 mg/kg. |
Pangasa N [28] | 2019 | Macintosh (25) Truview EVO2 (25) | 2–8 y | I-II | Normal | Elective surgery | Premedication: oral midazolam 0.5 mg/kg. Anesthesia induction: sevoflurane 8%, oxygen, rocuronium 0.6 mg/kg, fentanyl 2 μgm/kg. |
Yadav P [29] | 2019 | Macintosh (25) Miller (25) McCoy (25) | 2–6 y | I-II | Normal | Elective surgery | Anesthesia induction: halothane and oxygen, fentanyl 2 μg/kg, atracurium 0.5 mg/kg, glycopyrrolate 0.01 mg/kg. |
Orozco JA [10] | 2018 | Macintosh (40) Airtraq (40) | 2–8 y | I-II | Normal | laparoscopic cholecystectomy | Premedication: clonidine 0.5 g/kg. Anesthesia induction: propofol 2.5 mg/kg, rocuronium 0.6 mg/kg, fentanyl 1.5 g/kg, 1% lidocaine. |
Giraudon A [9] | 2017 | Macintosh (67) McGrath (65) | 10–20 kg | I-II | Normal | Elective surgery | Anesthesia induction: sevoflurane (end tidal concentration of 4.5%), (unknown neuromuscular blockade), sufentanil 0.3 mcg/kg, or alfentanil 20 mg/kg. |
Das B [8] | 2017 | Miller (30) Airtraq (30) | 2–10 y | I-II | Normal | Elective surgery | Premedication: oral midazolam 0.3 mg/kg. Anesthesia induction: sevoflurane, oxygen, rocuronium 0.6 mg/kg. |
Patil VV [15] | 2016 | Macintosh (30) C-MAC (30) | 8–18 y | I-II | Normal | Tonsillectomy surgeries | Premedication: glycopyrrolate 10 μg/kg, fentanyl 2 μg/kg, midazolam 10 μg/kg intravenous. Anesthesia induction: propofol 2 mg/kg, vecuronium 0.1 mg/kg. |
Riad W [13] | 2012 | Macintosh (25) Airtraq (25) | 2–10 y | I | Normal | Elective surgery | Premedication: oral midazolam 0.5 mg/kg. Anesthesia induction: sevoflurane, oxygen, fentanyl 2 μg/kg, atracurium 0.5 mg/kg, glycopyrrolate 0.04 μg/kg. |
Inal MT [16] | 2010 | Miller (25) Truview EVO2 (25) | 2–8 y | N/A | N/A | N/A | Anesthesia induction: sevoflurane, oxygen, nitrous oxide 60%, rocuronium 0.8 mg/kg. |
Shayeghi S [24] | 2007 | Macintosh (32) GlideScope (30) | Infant (2.56 y ± 2.19, 3.21 y ± 1.77) | N/A | Normal | Elective surgery | Anesthesia induction: thiopental sodium 6 mg/kg, atracurium 0.5 mg/kg. |
Hazarika R [30] | 2006 | Airtraq (50) Coopdech video laryngoscope (50) | 6–36 m | I-II | Normal | Elective surgery | Premedication: midazolam 0.3 mg/kg, Anesthesia induction: sevoflurane 8%, nitrous oxide (66% nitrous oxide and oxygen 33%), fentanyl 2 μg/kg, atracurium 0.5 mg/kg. |
Iohom G [31] | 2004 | Miller (20) McCoy (20) | 0–6 m | I-II | Normal | Elective surgery | Anesthesia induction: sevoflurane 8%, nitrous oxide (66% nitrous oxide and oxygen 33%). |
American Society of Anesthesiologists-Physical Status classification (ASA-PS) |
Patients: pediatric patients who received tracheal intubation | ||||
Interventions: indirect laryngoscope, miller laryngoscope | ||||
Comparator (reference): macintosh laryngoscope | ||||
Outcome: heart rate | ||||
Setting: elective surgery | ||||
Total studies: 15 RCT Total Participants: 1101 | Mean difference (95%CI) | Certainty of evidence | Reasons for downgrading | P score |
Airtraq (4 RCT; 145 participants) | −16.7 (−22.5 to −10.9) | ⨁⨁◯◯ Low | Within-study bias and reporting bias | 0.96 |
Airway scope (1 RCT; 68 participants) | −1.00 (−13.3 to 11.3) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, and imprecision | 0.47 |
C-MAC (2 RCT; 96 participants) | −2.45 (−10.8 to 5.86) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, and heterogeneity | 0.54 |
Coopdech video laryngoscope (1 RCT; 50 participants) | −13.7 (−26.9 to −0.55) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, and heterogeneity | 0.87 |
Glidescope (1 RCT; 30 participants) | 2.20 (−12.1 to 17.1) | ⨁⨁◯◯ Low | Within-study bias and reporting bias | 0.34 |
Macintosh (11 RCT; 397 participants) | Not estimable | Reference comparator | Not estimable | 0.41 |
McCoy (1 RCT; 45 participants) | 6.00 (−10.6 to 22.6) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, and heterogeneity | 0.46 |
McGrath (2 RCT; 80 participants) | −3.47 (−10.8 to −3.39) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, and imprecision | 0.23 |
Miller (6 RCT; 158 participants) | −3.13 (−12.4 to 6.13) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, and heterogeneity | 0.57 |
Truview EVO2 (2 RCT; 50 participants) | 7.12 (−2.59 to 16.8) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, and heterogeneity | 0.14 |
Wis-Hipple (1 RCT; 31 participants) | −2.21 (−19.5 to 15.1) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, and imprecision | 0.51 |
Patients: pediatric patients who received tracheal intubation | ||||
Interventions: indirect laryngoscope, miller laryngoscope | ||||
Comparator (reference): macintosh laryngoscope | ||||
Outcome: mean blood pressure | ||||
Setting: elective surgery | ||||
Total studies: 9 RCT Total Participants: 680 | Mean diffence (95%CI) | Certainty of evidence | Reasons for downgrading | P score |
Airtraq (3 RCT; 110 participants) | −8.57 (−10.9 to −6.27) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, heterogeneity, and incoherence | 0.99 |
Airway scope (1 RCT; 68 participants) | 5.00 (−1.80 to 11.8) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, heterogeneity, and incoherence | 0.32 |
C-MAC (2 RCT; 95 participants) | 3.74 (−0.12 to 7.06) | ⨁◯◯◯ Very low | Within-study bias, imprecision, heterogeneity, and incoherence | 0.39 |
Macintosh (9 RCT; 335 participants) | Not estimable | Reference comparator | Not estimable | 0.72 |
McGrath (1 RCT; 15 participants) | 6.00 (−2.26 to 14.26) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, heterogeneity, and incoherence | 0.27 |
Miller (1 RCT; 32 participants) | 9.50 (−0.67 to 19.7) | ⨁◯◯◯ Very low | Within-study bias, reporting bias, imprecision, heterogeneity, and incoherence | 0.13 |
Truview EVO2 (1 RCT; 25 participants) | 0.30 (−4.25 to 4.85) | ⨁◯◯◯ Very low | Within-study bias, imprecision, heterogeneity, and incoherence | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeuchi, R.; Hoshijima, H.; Tsukamoto, M.; Kokubu, S.; Mihara, T.; Shiga, T. Hemodynamic Response to Tracheal Intubation Using Indirect and Direct Laryngoscopes in Pediatric Patients: A Systematic Review and Network Meta-Analysis. Children 2025, 12, 786. https://doi.org/10.3390/children12060786
Takeuchi R, Hoshijima H, Tsukamoto M, Kokubu S, Mihara T, Shiga T. Hemodynamic Response to Tracheal Intubation Using Indirect and Direct Laryngoscopes in Pediatric Patients: A Systematic Review and Network Meta-Analysis. Children. 2025; 12(6):786. https://doi.org/10.3390/children12060786
Chicago/Turabian StyleTakeuchi, Risa, Hiroshi Hoshijima, Masanori Tsukamoto, Shinichi Kokubu, Takahiro Mihara, and Toshiya Shiga. 2025. "Hemodynamic Response to Tracheal Intubation Using Indirect and Direct Laryngoscopes in Pediatric Patients: A Systematic Review and Network Meta-Analysis" Children 12, no. 6: 786. https://doi.org/10.3390/children12060786
APA StyleTakeuchi, R., Hoshijima, H., Tsukamoto, M., Kokubu, S., Mihara, T., & Shiga, T. (2025). Hemodynamic Response to Tracheal Intubation Using Indirect and Direct Laryngoscopes in Pediatric Patients: A Systematic Review and Network Meta-Analysis. Children, 12(6), 786. https://doi.org/10.3390/children12060786