Protocols for Prone Positioning in Pediatric Patients with Hypoxemia: Impact on Oxygenation, Lung Function, and Clinical Safety
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Question
- -
- P (Population): Pediatric patients with artificial airways and hypoxemia.
- -
- I (Intervention): Prone positioning during invasive mechanical ventilation.
- -
- C (Comparison): Not applicable.
- -
- O (Outcome): Prone positioning protocols, effects on oxygenation, reduction in lung injury, and associated complications.
2.2. Search Strategy
Search Terms
2.3. Eligibility Criteria
2.4. Selection of Sources of Evidence
2.5. Data Extraction
2.6. Data Synthesis
2.7. Quality Assessment
3. Results
3.1. Methodological Quality Assessment
3.2. Effect of Prone Positioning on Pulmonary Function and Oxygenation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
V/Q | Ventilation–perfusion ratio |
ARDS | Acute respiratory distress syndrome |
PICUs | Pediatric intensive care units |
VOAF-PP | High-frequency oscillatory ventilation combined with prone position |
SpO2 | Oxygen saturation |
PaO2 | Arterial oxygen pressure |
PVAm | Mean airway pressure |
FiO2 | Inspired fraction of oxygen |
FRC | Functional residual capacity |
Appendix A
Database | Search Date | Search Equation | Articles Found |
Scopus | 7 January 2025 | ((((((Pediatric)) OR (Infant)) OR (Child)) AND (Prone)) AND (Protocol)) AND (Respiration, Artificial) | 542 |
PubMed | 7 January 2025 | ((((((Pediatric)) OR (Infant)) OR (Child)) AND (Prone)) AND (Protocol)) AND (Respiration, Artificial) | 23 |
Web of Science | 8 January 2025 | ((((((Pediatric)) OR (Infant)) OR (Child)) AND (Prone)) AND (Protocol)) AND (Respiration, Artificial) | 5 |
ScienceDirect | 8 January 2025 | ((((((Pediatric)) OR (Infant)) OR (Child)) AND (Prone)) AND (Protocol)) AND (Respiration, Artificial) | 1463 |
References
- Miller, A.G.; Curley, M.A.; Destrampe, C.; Flori, H.; Khemani, R.; Ohmer, A.; Thomas, N.J.; Yehya, N.; Ward, S.; West, L.; et al. A Master Protocol Template for Pediatric ARDS Studies. Respir. Care 2024, 69, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.D.S.; Diaper, J.; Balogh, A.L.; Marti, C.; Grosgurin, O.; Habre, W.; Peták, F.; Südy, R. Effect of body position on the redistribution of regional lung aeration during invasive and non-invasive ventilation of COVID-19 patients. Sci. Rep. 2022, 12, 11085. [Google Scholar] [CrossRef]
- Alibrahim, O.; Rehder, K.J.; Miller, A.G.; Rotta, A.T. Mechanical Ventilation and Respiratory Support in the Pediatric Intensive Care Unit. Pediatr. Clin. N. Am. 2022, 69, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Consenso para el Manejo Inicial del Síndrome de Dificultad Respiratoria en Recién Nacidos de Muy Bajo Peso. Available online: https://www.sarda.org.ar/images/2020/8_Guias.pdf (accessed on 8 June 2023).
- Leroue, M.K.; Maddux, A.B.; Mourani, P.M. Prone positioning in children with respiratory failure because of coronavirus disease 2019. Curr. Opin. Pediatr. 2019, 33, 319–324. [Google Scholar] [CrossRef]
- Wong, J.J.M.; Dang, H.; Gan, C.S.; Phan, P.H.; Kurosawa, H.; Aoki, K.; Lee, S.W.; Ong, J.S.M.; Fan, L.J.; Tai, C.W.; et al. Lung-Protective Ventilation for Pediatric Acute Respiratory Distress Syndrome: A Nonrandomized Controlled Trial. Crit. Care Med. 2024, 52, 1602–1611. [Google Scholar] [CrossRef]
- Bhandari, A.P.; Nnate, D.A.; Vasanthan, L.; Konstantinidis, M.; Thompson, J. Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst. Rev. 2022, 6, CD003645. [Google Scholar] [CrossRef]
- Tavazzi, G. Mechanical ventilation in cardiogenic shock. Curr. Opin. Crit. Care 2021, 27, 447–453. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.-C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Jozwiak, M.; Teboul, J.-L.; Anguel, N.; Persichini, R.; Silva, S.; Chemla, D.; Richard, C.; Monnet, X. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2013, 188, 1428–1433. [Google Scholar] [CrossRef]
- Rivas Fernández, M.; Roqué IFiguls, M.; Diez Izquierdo, A.; Escribano, J.; Balaguer, A. Infant position in neonates receiving mechanical ventilation. Cochrane Database Syst. Rev. 2016, 11, CD003668. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Liu, F.; Zhao, B.; Wang, P.; Wang, Y. Application of Ventilator-Assisted Breathing in the Rescue of Neonatal Respiratory Distress Syndrome. Matern. Child. Health Care China 2015, 30, 1293–1294. [Google Scholar]
- Jiang, H.; Zhou, J.; Hai, L.V. Effect of Prone Mechanical Ventilation on Oxygenation Index in Neonates with Respiratory Failure. Med. J. Qilu 2009, 24, 143–144. [Google Scholar]
- Coronado Muñoz, Á.; Escalante Kanashiro, R. Pediatric acute respiratory distress syndrome: How to protect the lungs during mechanical ventilation? Bol. Med. Hosp. Infant. Mex. 2021, 78, 181–190. [Google Scholar] [CrossRef]
- Scholten, E.L.; Beitler, J.R.; Prisk, G.K.; Malhotra, A. Treatment of ARDS with Prone Positioning. Chest 2017, 151, 215–224. [Google Scholar] [CrossRef]
- Kneyber, M.C.; Cheifetz, I.M.; Asaro, L.A.; Graves, T.L.; Viele, K.; Natarajan, A.; Wypij, D.; Curley, M.A.; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Protocol for the Prone and Oscillation Pediatric Clinical Trial (PROSpect). Pediatr Crit Care Med. 2024, 25, e385–e396. [Google Scholar] [CrossRef]
- Egbuta, C.; Easley, R.B. Update on ventilation management in the Pediatric Intensive Care Unit. Paediatr. Anaesth. 2022, 32, 354–362. [Google Scholar] [CrossRef]
- Gattinoni, L.; Carlesso, E.; Taccone, P.; Polli, F.; Guérin, C.; Mancebo, J. Prone Positioning Improves Survival in Severe ARDS: A Pathophysiologic Review and Individual Patient Meta-Analysis. Minerva Anestesiol. 2010, 76, 448–454. [Google Scholar] [PubMed]
- Guérin, C.; Albert, R.K.; Beitler, J.; Gattinoni, L.; Jaber, S.; Marini, J.J.; Munshi, L.; Papazian, L.; Pesenti, A.; Vieillard-Baron, A.; et al. Prone position in ARDS patients: Why, when, how and for whom. Intensive Care Med. 2020, 46, 2385–2396. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef]
- Curley, M.A.; Arnold, J.H.; Thompson, J.E.; Fackler, J.C.; Grant, M.J.; Fineman, L.D.; Cvijanovich, N.; Barr, F.E.; Molitor-Kirsch, S.; Steinhorn, D.M.; et al. Clinical trial design—Effect of prone positioning on clinical outcomes in infants and children with acute respiratory distress syndrome. J. Crit. Care 2006, 21, 23–32; discussion 32–37. [Google Scholar] [CrossRef] [PubMed]
- Bruno, F.; Piva, J.P.; García, P.C.; Einloft, P.; Fiori, R.; Barreto, S.M. Efeito a curto prazo da posição prona na oxigenação de crianças em ventilação mecânica. J. Pediatr. 2001, 77, 361–368. [Google Scholar] [CrossRef]
- Sawhney, A.; Kumar, N.; Sreenivas, V.; Gupta, S.; Tyagi, V.; Puliyel, J.M. Prone versus supine position in mechanically ventilated children: A pilot study. Med. Sci. Monit. 2005, 11, CR235–CR240. [Google Scholar] [PubMed]
- Zheng, Y.R.; Chen, Y.K.; Lin, S.H.; Cao, H.; Chen, Q. Effect of High-Frequency Oscillatory Ventilation, Combined with Prone Positioning, in Infants with Acute Respiratory Distress Syndrome After Congenital Heart Surgery: A Prospective Randomized Controlled Trial. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3847–3854. [Google Scholar] [CrossRef]
- Jang, Y.E.; Ji, S.H.; Kim, E.H.; Lee, J.H.; Kim, J.T.; Kim, H.S. Effect of regular alveolar recruitment on intraoperative atelectasis in paediatric patients ventilated in the prone position: A randomised controlled trial. Br. J. Anaesth. 2020, 124, 648–655. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Mi, Y.-P.; Zhu, M.-X.; Ren, Y.-H.; Gong, W.-J.; Fu, W.-J.; Wang, H.-M.; Ye, L.; Wang, Y.; Zhou, X.-Y.; et al. Feasibility and effectiveness of prone position ventilation technique for postoperative acute lung injury in infants with congenital heart disease: Study protocol for a prospective randomized study. Trials 2021, 22, 929. [Google Scholar] [CrossRef]
- Fineman, L.D.; LaBrecque, M.A.; Shih, M.C.; Curley, M.A. Prone positioning can be safely performed in critically ill infants and children. Pediatr. Crit. Care Med. 2006, 7, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Diwate, A.; Khatri, S.; Mhaske, S. The effectiveness of cardiopulmonary physiotherapy versus prone positioning on respiratory functions in ventilated neonates: A randomized controlled pilot study. Int. J. Physiother. 2018, 5, 18–22. [Google Scholar] [CrossRef]
- Sanclemente-Cardoza, V.; Estela-Zape, J.L. Adaptaciones mitocondriales en el síndrome de dificultad respiratoria aguda. Rev. Med. Inst. Mex. Seguro Soc. 2024, 62, e5450. (In Spanish) [Google Scholar] [CrossRef]
- Munshi, L.; Del Sorbo, L.; Adhikari, N.K.J.; Hodgson, C.L.; Wunsch, H.; Meade, M.O.; Uleryk, E.; Mancebo, J.; Pesenti, A.; Ranieri, V.M.; et al. Prone Position for Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S4), S280–S288. [Google Scholar] [CrossRef]
- Rampon, G.L.; Simpson, S.Q.; Agrawal, R. Prone Positioning for Acute Hypoxemic Respiratory Failure and ARDS: A Review. Chest 2023, 163, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Yehya, N.; Smith, L.; Thomas, N.J.; Steffen, K.M.; Zimmerman, J.; Lee, J.H.; Erickson, S.J.; Shein, S.L. Definition, Incidence, and Epidemiology of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2023, 24 (Suppl. S2), S87–S98. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Mao, L.; Shen, Y.; Zhao, L. Prone position in the mechanical ventilation of acute respiratory distress syndrome children: A systematic review and meta-analysis. Front. Pediatr. 2024, 12, 1293453. [Google Scholar] [CrossRef] [PubMed]
- Noreña-Buitrón, L.D.; Sanclemente-Cardoza, V.; Espinosa-Cifuentes, M.A.; Payán-Salcedo, H.A.; Estela-Zape, J.L. Early Mobilization Protocols in Critically Ill Pediatric Patients: A Scoping Review of Strategies, Tools and Perceived Barriers. Children 2025, 12, 633. [Google Scholar] [CrossRef]
- Schouten, L.R.A.; Veltkamp, F.; Bos, A.P.; van Woensel, J.B.M.; Neto, A.S.; Schultz, M.J.; Asperen, R.M.W. Incidence and Mortality of Acute Respiratory Distress Syndrome in Children: A Systematic Review and Meta-Analysis. Crit. Care Med. 2016, 44, 819–829. [Google Scholar] [CrossRef]
First Author | 1 * | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total | Methodological Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Curley et al., 2006 [22] | - | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 8 | High |
Bruno et al., 2001 [23] | - | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 8 | High |
Sawhney et al., 2005 [24] | - | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 6 | Intermediate |
Zheng et al., 2022 [25] | - | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | Intermediate |
Jang et al., 2020 [26] | - | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 8 | High |
Author and Year | Country | Sample Size | Age Range | Control Group | Study Design | Cause of PICU Admission | Intervention Protocol | Effects on Oxygenation | Complications | Conclusion |
---|---|---|---|---|---|---|---|---|---|---|
Curley et al., 2006 [22] | USA | 102 children | Infants < 3 years | Group 1: Supine position Group 2: Prone position (7 days) | Controlled, randomized, multicenter, non-crossover trial | Patients with acute lung injury | Prone position with individual support (20 h/day, maximum 7 days, transitioning every 20 h) | The incidence of atelectasis was 39.1% lower | Not reported | Prone mechanical ventilation for 7 days supports a multidisciplinary approach in pediatric patients. |
Bruno et al., 2001 [23] | Brazil | 18 children | Mean age: 11 months | Not applicable | Prospective, non-randomized study | Infants diagnosed with acute respiratory failure | Prone position (6 h ventilation, 2 h prone) | Decreased FiO2 requirement. | Increased airway resistance in bronchiolitis patients. | Prone position for at least one hour improves oxygenation in pediatric patients with severe hypoxemia. |
Sawhney et al., 2005 [24] | India | 42 children | Not reported | Group 1: 21 children treated with mechanical ventilation in prone position Group 2: 21 children treated with mechanical ventilation in supine position | Prospective, randomized, controlled trial | Various pathologies | Transition to prone (4 h in each position, with 2–4 people, securing catheters) | Significant improvement in SpO2 and oxygenation index after 5 h. | Not reported | Early prone positioning improves oxygenation and reduces mortality and PVAm. |
Zheng et al., 2022 [25] | Not reported | 65 children | Infants | Group 1: 33 patients ventilated in supine position Group 2: 32 patients ventilated in prone position | Single-center, prospective, randomized, controlled study | Infants with acute respiratory distress syndrome | Prone position (12 h for 1 day) | Increased PaO2/FiO2 ratio and reduced duration of invasive mechanical ventilation. | No cardiovascular or pulmonary complications. | HFOV with prone positioning significantly improves oxygenation in infants with ARDS after cardiac surgery. |
Jang et al., 2020 [26] | Korea | 73 children | <3 years | Experimental group: 37 children ventilated in prone position with recruitment Control group: 36 patients receiving conventional treatment | Prospective, randomized clinical trial | Infants scheduled for elective non-cardiac surgery | Prone position with hourly alveolar recruitment. Control group received conventional treatment. | Significant reduction in atelectasis incidence (22% to 10%). | Not reported | Regular alveolar recruitment reduces atelectasis in children under 3 years undergoing general anesthesia in the prone position. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estela-Zape, J.L.; Sanclemente-Cardoza, V.; Ordoñez-Mora, L.T. Protocols for Prone Positioning in Pediatric Patients with Hypoxemia: Impact on Oxygenation, Lung Function, and Clinical Safety. Children 2025, 12, 743. https://doi.org/10.3390/children12060743
Estela-Zape JL, Sanclemente-Cardoza V, Ordoñez-Mora LT. Protocols for Prone Positioning in Pediatric Patients with Hypoxemia: Impact on Oxygenation, Lung Function, and Clinical Safety. Children. 2025; 12(6):743. https://doi.org/10.3390/children12060743
Chicago/Turabian StyleEstela-Zape, Jose Luis, Valeria Sanclemente-Cardoza, and Leidy Tatiana Ordoñez-Mora. 2025. "Protocols for Prone Positioning in Pediatric Patients with Hypoxemia: Impact on Oxygenation, Lung Function, and Clinical Safety" Children 12, no. 6: 743. https://doi.org/10.3390/children12060743
APA StyleEstela-Zape, J. L., Sanclemente-Cardoza, V., & Ordoñez-Mora, L. T. (2025). Protocols for Prone Positioning in Pediatric Patients with Hypoxemia: Impact on Oxygenation, Lung Function, and Clinical Safety. Children, 12(6), 743. https://doi.org/10.3390/children12060743