Current Insights into Nutritional Management of Phenylketonuria: An Update for Children and Adolescents
Abstract
:1. Introduction
- -
- A low-Phe diet supplemented with Phe-free protein substitutes, which must be strictly observed;
- -
- Restriction of Phe intake and insurance of adequate nutrition from non-Phe l-amino acids and essential micronutrients;
- -
- Monotony due to the limited variety of foods available;
- -
- The abnormal taste that can diminish appetite for other essential foods, decreasing adherence to the diet;
- -
- Neophobia;
- -
Motivation
2. Literature Search
Search Strategy
3. Optimizing Nutrition in PKU: Key Strategies for Effective Management
3.1. General Overview
3.2. Feeding the Future: Essential Nutritional Strategies for Infants with PKU
- Difficulties in calculating protein content from various foods;
- Fussy eating behaviors;
- Refusal of certain foods;
- Mistakenly providing inappropriate foods;
- Allergies and intolerances;
- The need to carry specific foods while traveling;
- The necessity of preparing daily meals at home [42].
3.3. Tailoring Nutrition for Children and Adolescents with PKU: Strategies for Growth and Development
3.4. Uncovering Nutritional Gaps: Addressing Deficits in the PKU Diet
3.5. Navigating Lifelong Management of PKU
3.5.1. Gender Influence
3.5.2. The Age
3.5.3. The Moment of Initiation of Diet
3.5.4. Frequency of Monitoring
3.5.5. Compliance to Treatment
3.5.6. The Concentration of Phe
3.6. Impact of PKU Diet on Gut Microbiota: Unraveling the Effects of Special Dietary Management
3.7. Dietary Influence on Nutritional Status
3.8. Feeding Well-Being: How PKU Diets Shape the Quality of Life for Children and Their Caregivers
4. Synergy or Conflict? Exploring the Interaction Between Pharmacological Therapies and Diet in PKU Management
5. Discussion
- -
- The lifelong treatment for PAH deficiency for individuals with untreated Phe levels > 360 μmol/L;
- -
- Individuals with lifelong Phe levels ≤ 360 μmol/L have better intellectual outcomes than those who do not;
- -
- Achieving Phe levels ≤ 360 μmol/L before conception is strongly recommended to prevent pregnancy complications and negative outcomes for the offspring;
- -
- Genetic testing for PAH variants is recommended at birth to confirm diagnosis and guide therapy [155].
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AARP | CTT peptide-endostatin mimic-kringle 5, a specific fusion protein |
AD-SoS | Amplitude-dependent speed of sound |
BH4 | Tetrahydrobiopterin |
CNS | central nervous system (CNS) |
DHA | Docosahexaenoic acid |
GBA | Gut–brain axis |
GMP | Glycomacropeptide |
HPA | Hyperphenylalaninemia |
IQ | Intelligence quotient |
IGF-1 | Insulin-like Growth Factor 1 |
Kyn | (Trp) and kynurenine |
LNAA | Large neutral amino acids |
LPS | Lipopolysaccharides |
MPKUS | Maternal PKU syndrome |
PAL | Phe ammonia lyase |
Phe | Phenylalanine |
PKU | Phenylketonuria |
PUFAs | Polyunsaturated fatty acids |
QOL | Quality of life |
Trp | Tryptophan |
Tyr | Tyrosine |
References
- van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primer. 2021, 7, 36. [Google Scholar] [CrossRef]
- Yilmaz, O.; Cochrane, B.; Wildgoose, J.; Pinto, A.; Evans, S.; Daly, A.; Ashmore, C.; MacDonald, A. Phenylalanine free infant formula in the dietary management of phenylketonuria. Orphanet J. Rare Dis. 2023, 18, 16. [Google Scholar] [CrossRef]
- Lichter-Konecki, U.; Vockley, J. Phenylketonuria: Current Treatments and Future Developments. Drugs 2019, 79, 495–500. [Google Scholar] [CrossRef]
- Burlina, A.; Biasucci, G.; Carbone, M.T.; Cazzorla, C.; Paci, S.; Pochiero, F.; Spada, M.; Tummolo, A.; Zuvadelli, J.; Leuzzi, V. Italian national consensus statement on management and pharmacological treatment of phenylketonuria. Orphanet J. Rare Dis. 2021, 16, 476. [Google Scholar] [CrossRef]
- Tankeu, A.T.; Pavlidou, D.C.; Superti-Furga, A.; Gariani, K.; Tran, C. Overweight and obesity in adult patients with phenylketonuria: A systematic review. Orphanet J. Rare Dis. 2023, 18, 37. [Google Scholar] [CrossRef]
- Robertson, L.; Adam, S.; Ellerton, C.; Ford, S.; Hill, M.; Randles, G.; Woodall, A.; Young, C.; MacDonald, A. Dietetic Management of Adults with Phenylketonuria (PKU) in the UK: A Care Consensus Document. Nutrients 2022, 14, 576. [Google Scholar] [CrossRef]
- Gemperle-Britschgi, C.; Iorgulescu, D.; Mager, M.A.; Anton-Paduraru, D.; Vulturar, R.; Thöny, B. A novel common large genomic deletion and two new missense mutations identified in the Romanian phenylketonuria population. Gene 2016, 576 Pt 1, 182–188. [Google Scholar] [CrossRef]
- Ubaldi, F.; Frangella, C.; Volpini, V.; Fortugno, P.; Valeriani, F.; Romano Spica, V. Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria. Int. J. Mol. Sci. 2023, 24, 17428. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.N.; Sun, B.H.; Liu, Q.; Ma, J.; Zhang, Q.; Liu, Y.X.; Chen, N.; Chen, F. The role of genotype and diet in shaping gut microbiome in a genetic vitamin A deficient mouse model. JGG 2022, 49, 155–164. [Google Scholar] [CrossRef]
- Van Wegberg, A.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 1–56. [Google Scholar] [CrossRef]
- Yılmaz, B.K.; Baykan, A.; Kardaş, F.; Kendirci, M. Evaluation of the effect of obesity, dietary glycemic index and metabolic profiles on the cardiovascular risk in children with classical phenylketonuria. Mol. Genet. Metab. 2023, 140, 107677. [Google Scholar] [CrossRef]
- Balci, M.C.; Karaca, M.; Gunes, D.; Korbeyli, H.K.; Selamioglu, A.; Gokcay, G. Evaluation of Body Composition and Biochemical Parameters in Adult Phenylketonuria. Nutrients 2024, 16, 3355. [Google Scholar] [CrossRef]
- Rodrigues, C.; Pinto, A.; Faria, A.; Teixeira, D.; van Wegberg, A.M.J.; Ahring, K.; Feillet, F.; Calhau, C.; MacDonald, A.; Moreira-Rosário, A.; et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3443. [Google Scholar] [CrossRef]
- Trunzo, R. Molecular Analysis and Genotype-Phenotype Correlation in Patients Affected by Hyperphenylalaninemias in Southern Italy. 2016. Available online: https://fair.unifg.it/retrieve/de2a638f-f743-8577-e053-3705fe0aa5f3/Trunzo_phd_2016.pdf (accessed on 12 July 2024).
- Shakiba, M.; Saneifard, H.; Alaei, M.R.; Mosallanejad, A.; Lotfi, M.; Yasaei, M.; Alizade Naderi, E. Clinical and Paraclinical Characteristics of Non-Classic Phenylketonuria. Iran. J Child. Neurol. 2021, 15, 131–138. [Google Scholar] [CrossRef]
- Ugalde-Abiega, B.; Stanescu, S.; Belanger, A.; Martinez-Pardo, M.; Arrieta, F. New challenges in management of phenylketonuria in pregnancy: A case report. J. Med. Case Rep. 2023, 17, 465. [Google Scholar] [CrossRef]
- MacDonald, A.; Van Wegberg, A.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M. PKU dietary handbook to accompany PKU guidelines. Orphanet J. Rare Dis. 2020, 15, 230. [Google Scholar] [CrossRef]
- Blau, N.; van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef]
- MacDonald, A.; Ahring, K.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; Motzfeldt, K.; Robert, M.; Rocha, J.C.; van Rijn, M.; Bélanger-Quintana, A. Adjusting diet with sapropterin in phenylketonuria: What factors should be considered? Br. J. Nutr. 2011, 106, 175–182. [Google Scholar] [CrossRef]
- van Spronsen, F.J.; van Wegberg, A.M.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endo. 2017, 5, 743–756. [Google Scholar] [CrossRef]
- Rocha, J.C.; MacDonald, A. Dietary intervention in the management of phenylketonuria: Current perspectives. Pediatr. Health Med. Ther. 2016, 7, 155–163. [Google Scholar] [CrossRef]
- Rocha, J.C.; van Dam, E.; Ahring, K.; Almeida, M.F.; Bélanger-Quintana, A.; Dokoupil, K.; Gökmen-Özel, H.; Robert, M.; Heidenborg, C.; Harbage, E.; et al. A series of three case reports in patients with phenylketonuria performing regular exercise: First steps in dietary adjustment. J. Pediatr. Endocrinol. Metab. 2019, 32, 635–641. [Google Scholar] [CrossRef]
- Scriver, C.R. The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat. 2007, 28, 831–845. [Google Scholar] [CrossRef]
- Bickel, H.; Gerrard, J.; Hickmans, E.M. Influence of phenylalanine intake on phenylketonuria. Lancet 1953, 265, 812–813. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Aksoy, B.; Kuyum, P.; Tuncer, N.; Arslan, N.; Ozturk, Y. The Effects of Breastfeeding in Infants with Phenylketonuria. J. Pediatr. Nurs. 2018, 38, 27–32. [Google Scholar] [CrossRef]
- Robert, M.; Rocha, J.C.; van Rijn, M.; Ahring, K.; Bélanger-Quintana, A.; MacDonald, A.; Dokoupil, K.; Gokmen Ozel, H.; Lammardo, A.M.; Goyenset, P.; et al. Micronutrient status in phenylketonuria. Mol. Genet. Metab. 2013, 110, S6–S17. [Google Scholar] [CrossRef]
- Zuvadelli, J.; Paci, S.; Salvatici, E.; Giorgetti, F.; Cefalo, G.; Re Dionigi, A.; Rovelli, V.; Banderali, G. Breastfeeding in Phenylketonuria: Changing Modalities, Changing Perspectives. Nutrients 2022, 14, 4138. [Google Scholar] [CrossRef]
- Verduci, E.; Tosi, M.; Montanari, C.; Gambino, M.; Eletti, F.; Bosetti, A.; Di Costanzo, M.; Carbone, M.T.; Biasucci, G.; Fiori, L.G.; et al. Are Phe-Free Protein Substitutes Available in Italy for Infants with PKU All the Same? Nutrients 2023, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; MacDonald, A. Protein Substitutes in PKU; Their Historical Evolution. Nutrients 2021, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.S.; Naglak, M.C.; Nardella, M.; Plyler, A.; Rarback, S.; Yannicelli, S. Nutrient intakes of adolescents with phenylketonuria and infants and children with maple syrup urine disease on semisynthetic diets. J. Am. Coll. Nutr. 1993, 12, 108–114. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Evans, S.; Cochrane, B.; Wildgoose, J. Weaning infants with phenylketonuria: A review. J. Hum. Nutr. Diet. 2012, 25, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Vitoria-Miñana, I.; Couce, M.L.; González-Lamuño, D.; García-Peris, M.; Correcher-Medina, P. Breastfeeding and Inborn Errors of Amino Acid and Protein Metabolism: A Spreadsheet to Calculate Optimal Intake of Human Milk and Disease-Specific Formulas. Nutrients 2023, 15, 3566. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Nas, O.; Ashmore, C.; Evans, S.; Pinto, A.; Daly, A.; Yabancı Ayhan, N.; MacDonald, A. Phenylalanine-Free Infant Formula in Patients with Phenylketonuria: A Retrospective Study. Nutrients 2024, 16, 2204. [Google Scholar] [CrossRef]
- MacDonald, A.; Ahrens, W. Nutritional management of phenylketonuria: The role of breastfeeding. Nutr. Rev. 2008, 66, 203–210. [Google Scholar] [CrossRef]
- Cassidy, S.; Evans, S.; Pinto, A.; Daly, A.; Ashmore, C.; Ford, S.; Buckley, S.; MacDonald, A. Parent’s Perception of the Types of Support Given to Families with an Infant with Phenylketonuria. Nutrients 2023, 15, 2328. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.C.M.F.; Araújo, W.M.C.; Marquez, U.M.L.; Akutsu, R.; Nakano, E.Y. Table of Phenylalanine Content of Foods: Comparative Analysis of Data Compiled in Food Composition Tables. JIMD Rep. 2017, 34, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Dimina, L.; Rémond, D.; Huneau, J.F.; Mariotti, F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Various Nutritional Objectives-An Exploratory Analysis Using Linear Programming. Front. Nutr. 2022, 8, 809685. [Google Scholar] [CrossRef]
- Ruiz Pons, M.; Sanchez-Valverde Visus, F.; Dalmau Serra, J. Nutritional Treatment of Inborn Errors of Metabolism; ERGON Edita: Madrid, Spain, 2007; pp. 68–81. [Google Scholar]
- Fakiha, A.; Tul-Noor, Z.; Paoletti, A.; Pencharz, P.B.; Ball, R.O.; Levesque, C.L.; Elango, R.; Courtney-Martin, G. Bioavailable Lysine, Assessed in Healthy Young Men Using Indicator Amino Acid Oxidation, is Greater when Cooked Millet and Stewed Canadian Lentils are Combined. J. Nutr. 2020, 150, 2729–2737. [Google Scholar] [CrossRef]
- MacDonald, A.; Rylance, G.; Hall, S.K.; Asplin, D.; Booth, I.W. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch. Dis. Child. 1996, 74, 412–417. [Google Scholar] [CrossRef]
- Pinto, A.; Daly, A.; Rocha, J.C.; Ashmore, C.; Evans, S.; Ilgaz, F.; Hickson, M.; MacDonald, A. Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes. Nutrients 2023, 15, 4903. [Google Scholar] [CrossRef]
- Rice, J.; McNulty, J.; O’Shea, M.; Gudex, T.; Knerr, I. A Retrospective Chart Review and Infant Feeding Survey in the Irish Phenylketonuria (PKU) Population (2016–2020). Nutrients 2023, 15, 3380. [Google Scholar] [CrossRef]
- Evans, S.; Daly, A.; Chahal, S.; MacDonald, J.; MacDonald, A. Food acceptance and neophobia in children with phenylketonuria: A prospective controlled study. J. Hum. Nutr. Diet. 2015, 29, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Daly, A.; Chahal, S.; Ashmore, C.; MacDonald, J.; MacDonald, A. The influence of parental food preference and neophobia on children with phenylketonuria (PKU). Mol. Genet. Metab. Rep. 2017, 14, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kotara, K.; Nowak, B.; Markowski, J.; Rozmiarek, M.; Grajek, M. Food Neophobia in Children Aged 1–6 Years—Between Disorder and Autonomy: Assessment of Food Preferences and Eating Patterns. Nutrients 2024, 16, 3015. [Google Scholar] [CrossRef]
- Bugi, M.A.; Jugănaru, I.; Isac, R.; Simina, I.E.; Munteanu, A.I.; Mang, N.; Brad, G.F.; Nicoară, D.M.; Cîrnatu, D.; Mărginean, O. Factors Impacting the Reduction in Neophobia Prevalence in Phenylketonuria Patients. Nutrients 2024, 16, 768. [Google Scholar] [CrossRef]
- MacDonald, A.; Gokmen-Ozel, H.; vanRijn, M.; Burgard, P. The reality of dietary compliance in the management of phenylketonuria. J. Inherit. Metab. Dis. 2010, 33, 665–670. [Google Scholar] [CrossRef]
- van Rijn, M.; van der Meulen, A.; van der Linde, H. Breastfeeding in phenylketonuria: A review of the literature. J. Inherit. Metab. Dis. 2006, 29, 487–493. [Google Scholar]
- Yilmaz, O.; Pinto, A.; Daly, A.; Ashmore, C.; Evans, S.; Yabanci Ayhan, N.; MacDonald, A. Transitioning of protein substitutes in patients with phenylketonuria: Evaluation of current practice. Orphanet J. Rare Dis. 2022, 17, 395. [Google Scholar] [CrossRef]
- Ney, D.M.; Blank, R.D.; Hansen, K.E. Advances in the nutritional and pharmacological management of phenylketonuria. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Stroup, B.M.; Clayton, M.K.; Murali, S.G.; Rice, G.M.; Rohr, F.; Levy, H.L. Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2016, 104, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Etzel, M.R. Designing medical foods for inherited metabolic disorders: Why intact protein is superior to amino acids. Curr. Opin. Biotechnol. 2017, 44, 39–45. [Google Scholar] [CrossRef]
- Pena, M.J.; Pinto, A.; de Almeida, M.F.; de Sousa Barbosa, C.; Ramos, P.C.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; et al. Continuous use of glycomacropeptide in the nutritional management of patients with phenylketonuria: A clinical perspective. Orphanet J. Rare Dis. 2021, 16, 84. [Google Scholar] [CrossRef]
- Daly, A.; Ilgaz, F.; Pinto, A.; MacDonald, A. Casein glycomacropeptide in phenylketonuria: Does it bring clinical benefit? Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 31–39. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Jackson, R.; Gingell, C.; Rocha, J.; Van Spronsen, F.J.; MacDonald, A. Glycomacropeptide: Long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J. Rare Dis. 2019, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, E.L.; Clayton, M.K.; van Calcar, S.C.; Ney, D.M. Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria. Mol. Genet. Metab. 2010, 100, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.C.; MacDonald, A. The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria. Nutrients 2020, 12, 2704. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, R.; Och, U.; Beckmann, L.S.; Weglage, J.; Rutsch, F. Children and Adolescents with Early Treated Phenylketonuria: Cognitive Development and Fluctuations of Blood Phenylalanine Levels. Int. J. Environ. Res. Public Health 2024, 21, 431. [Google Scholar] [CrossRef] [PubMed]
- Tosi, M.; Fiori, L.; Tagi, V.M.; Gambino, M.; Montanari, C.; Bosetti, A.; Zuccotti, G.; Verduci, E. Glycomacropeptide-Based Protein Substitutes for Children with Phenylketonuria in Italy: A Nutritional Comparison. Nutrients 2024, 16, 956. [Google Scholar] [CrossRef]
- van Vliet, D.; van der Goot, E.; van Ginkel, W.G.; van Faassen, H.J.R.; de Blaauw, P.; Kema, I.P.; Heiner-Fokkema, M.R.; van der Zee, E.A.; van Spronsen, F.J. The increasing importance of LNAA supplementation in phenylketonuria at higher plasma phenylalanine concentrations. Mol. Genet. Metab. 2022, 135, 27–34. [Google Scholar] [CrossRef]
- Shyam, R.; Sekhar Panda, H.; Mishra, J.; Jyoti Panda, J.; Kour, A. Emerging biosensors in Phenylketonuria. Clin. Chim. Acta 2024, 559, 119725. [Google Scholar] [CrossRef]
- Burlina, A.P.; Cazzorla, C.; Massa, P.; Polo, G.; Loro, C.; Gueraldi, D.; Burlina, A.B. Large Neutral Amino Acid Therapy Increases Tyrosine Levels in Adult Patients with Phenylketonuria: A Long-Term Study. Nutrients 2019, 11, 2541. [Google Scholar] [CrossRef]
- Schindeler, S.; Ghosh-Jerath, S.; Thompson, S.; Rocca, A.; Joy, P.; Kemp, A.; Rae, C.; Green, K.; Wilcken, B.; Christodoulou, J. The effects of large neutral amino acid supplements in PKU: An MRS and neuropsychological study. Mol. Genet. Metab. 2007, 91, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Bollati, C.; Fiori, L.; Li, J.; Fanzaga, M.; Adduzio, L.; Tosi, M.; Burlina, A.; Zuccotti, G.; Verduci, E. Glycomacropeptide (GMP) rescued the oxidative and inflammatory activity of free L-aAs in human Caco-2 cells: New insights that support GMP as a valid and health-promoting product for the dietary management of phenylketonuria (PKU) patients. Food Res. Int. 2023, 173 Pt 1, 113258. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Beblo, S.; Demmelmair, H.; Hanebutt, F.L. Omega-3 LC-PUFA supply and neurological outcomes in children with phenylketonuria (PKU). J. Pediatr. Gastroenterol. Nutr. 2009, 48 (Suppl. 1), S2–S7. [Google Scholar] [CrossRef]
- Jans, J.J.; de Sain-van der Velden, M.G.; van Hasselt, P.M.; van den Hurk, D.T.; Vaz, F.M.; Visser, G.; Verhoeven-Duif, N.M. Supplementation with a powdered blend of PUFAs normalizes DHA and AA levels in patients with PKU. Mol. Genet. Metab. 2013, 109, 121–124. [Google Scholar] [CrossRef]
- Wang, C.; Guan, Y.; Lv, M.; Zhang, R.; Guo, Z.; Wei, X.; Du, X.; Yang, J.; Li, T.; Wan, Y.; et al. Manganese Increases the Sensitivity of the Cgas-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 2018, 48, 675–687.e7. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.Y.Y.; Turcato, M.d.F.; Ferreira, C.N.; Nonino, C.B.; Martins, L.D.; Iannetta, O.; Guerreiro, C.T.; Santos, G.G.; Marchini, J.S. Effects of short-term calcium supplementation in children and adolescents with phenylketonuria. J. Clin. Densitom. 2018, 21, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Acosta, P.B.; Stepnick-Gropper, S.; Clarke-Sheehan, N.; Wenz, E.; Cheng, M.; Anderson, K.; Koch, R. Trace Element Status of PKU Children Ingesting an Elemental Diet. JPEN 1987, 11, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Geiger, K.E.; Koeller, D.M.; Harding, C.O.; Huntington, K.L.; Gillingham, M.B. Normal vitamin D levels and bone mineral density among children with inborn errors of metabolism consuming medical food-based diets. Nutr. Res. 2016, 36, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Porta, F.; Roato, I.; Mussa, A.; Repici, M.; Gorassini, E.; Spada, M.; Ferracini, R. Increased spontaneous osteoclastogenesis from peripheral blood mononuclear cells in phenylketonuria. J. Inherit. Metab. Dis. 2008, 31 (Suppl. S2), S339–S342. [Google Scholar] [CrossRef] [PubMed]
- Hvas, A.M.; Nexo, E.; Nielsen, J.B. Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J. Inherit. Metab. Dis. 2006, 29, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Agurto, E.; Leal-Witt, M.J.; Arias, C.; Cabello, J.F.; Bunout, D.; Cornejo, V. Muscle and Bone Health in Young Chilean Adults with Phenylketonuria and Different Degrees of Compliance with the Phenylalanine Restricted Diet. Nutrients 2023, 15, 2939. [Google Scholar] [CrossRef]
- Keskin, F.N.; Şahin, T.Ö.; Capasso, R.; Ağagündüz, D. Protein substitutions as new-generation pharmanutrition approach to managing phenylketonuria. Clin. Exp. Pediatr. 2023, 66, 320–331. [Google Scholar] [CrossRef]
- Mendes, A.B.; Martins, F.F.; Cruz, W.M.; da Silva, L.E.; Abadesso, C.B.; Boaventura, G.T. Bone development in children and adolescents with PKU. J. Inherit. Metab. Dis. 2012, 35, 425–430. [Google Scholar] [CrossRef]
- Hargreaves, I.P. Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 2007, 7, S175–S180. [Google Scholar] [CrossRef]
- Sanayama, Y.; Hironori, N.; Masaki, T.; Toshihiro, O.; Osamu, S.; Tetsuya, I.; Mika, I.; Hiromi, U.; Makoto, Y.; Akira, O.; et al. Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol. Genet. Metab. 2011, 103, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Montero, R.; Yubero, D.; Salgado, M.; González, M.J.; Campistol, J.; del MarO’Callaghan, M.; Pineda, M.; Delgadillo, V.; Maynou, J.; Fernandez, G.; et al. Plasma coenzyme Q10 status is impaired in selected genetic conditions. Sci. Rep. 2019, 9, 793. [Google Scholar] [CrossRef]
- Wild, J.; Shanmuganathan, M.; Hayashi, M.; Potter, M.; Britz-McKibbin, P. Metabolomics for improved treatment monitoring of phenylketonuria: Urinary biomarkers for non-invasive assessment of dietary adherence and nutritional deficiencies. Analyst 2019, 22, 6595–6608. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Xiang, H.; Tagami, T.; Kasajima, R.; Kato, Y.; Karakawa, S.; Kikuchi, S.; Imaizumi, A.; Matsuo, N.; Ishii, H.; et al. Clinical significance of plasma-free amino acids and tryptophan metabolites in patients with non-small cell lung cancer receiving PD-1 inhibitor: A pilot cohort study for developing a prognostic multivariate model. J. Immuno. Ther. Cancer 2022, 10, e004420. [Google Scholar] [CrossRef]
- Manta-Vogli, P.D.; Schulpis, K.H. Phenylketonuria Dietary Management and an Emerging Development. J. Acad. Nutr. Diet. 2018, 118, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Snyderman, S.E.; Sansaricq, C.; Norton, P.M.; Castro, J.V. Plasma and cerebrospinal fluid amino acid concentrations in phenylketonuria during the newborn period. J. Pediatr. 1981, 99, 63–67. [Google Scholar] [CrossRef]
- Pena, M.J.; Pinto, A.; Daly, A.; MacDonald, A.; Azevedo, L.; Rocha, J.C.; Borges, N. The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1794. [Google Scholar] [CrossRef]
- Matuszewska, E.; Matysiak, J.; Kałużny, Ł.; Walkowiak, D.; Plewa, S.; Duś-Żuchowska, M.; Rzetecka, N.; Jamka, M.; Klupczyńska-Gabryszak, A.; Piorunek, M.; et al. Amino Acid Profile Alterations in Phenylketonuria: Implications for Clinical Practice. Metabolites 2024, 14, 397. [Google Scholar] [CrossRef]
- Acosta, P.B.; Yannicelli, S.; Singh, R.H.; Elsas, L.J.; Mofidi, D.; Steiner, R.D. Iron status of children with phenylketonuria undergoing nutrition therapy assessed by transferrin receptors. Genet. Med. 2004, 6, 96–101. [Google Scholar] [CrossRef]
- Lubina, O.; Gailite, L.; Borodulina, J.; Auzenbaha, M. Nutrient Status among Latvian Children with Phenylketonuria. Children 2023, 10, 936. [Google Scholar] [CrossRef]
- Bokayeva, K.; Jamka, M.; Walkowiak, D.; Du´s-Zuchowska, M.; Herzig, K.-H.; Walkowiak, J. Vitamin Status in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 5065. [Google Scholar] [CrossRef]
- Porta, F.; Mussa, A.; Zanin, A.; Greggio, N.A.; Burlina, A.; Spada, M. Impact of Metabolic Control on Bone Quality in Phenylketonuria and Mild Hyperphenylalaninemia. JPGN 2011, 52, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Koura, H.M.; Abdallah Ismail, N.; Kamel, A.F.; Ahmed, A.M.; Saad-Hussein, A.; Effat, L.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. AMS 2011, 3, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Doulgeraki, A.; Skarpalezou, A.; Theodosiadou, A.; Monopolis, I.; Schulpis, K. Body composition profile of young patients with phenylketonuria and mild hyperphenylalaninemia. Int. J. Endocrinol. Metab. 2014, 12, 160–161. [Google Scholar] [CrossRef]
- Crujeiras, V.; Aldámiz-Echevarría, L.; Dalmau, J.; Vitoria, I.; Andrade, F.; Roca, I.; Leis, R.; Fernandez-Marmiesse, A.; Couce, M.L. Vitamin and mineral status in patients with hyperphenylalaninemia. Mol. Genet. Metab. 2015, 115, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hanusch, B.; Falkenstein, M.; Volkenstein, S.; Dazert, S.; Lücke, T.; Sinningen, K. No Impairment in Bone Turnover or Executive Functions in Well-Treated Preschoolers with Phenylketonuria-A Pilot Study. Nutrients 2024, 16, 2072. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, O.; Filipecki, J.; Girod, I.; Guillemin, F. Development and validation of a French obesity-specific quality of life questionnaire: Quality of Life, Obesity and Dietetics (QOLOD) rating scale. Diabetes Metab. 2005, 31, 273–283. [Google Scholar] [CrossRef]
- Iqbal, S. Cultural factors influencing the eating behaviours of type 2 diabetes in the British South-Asian population: A scoping review of the literature. J. Glob. Health 2023, 7, e2023050. [Google Scholar] [CrossRef]
- Pinto, A.; Ahring, K.; Almeida, M.F.; Ashmore, C.; Bélanger-Quintana, A.; Burlina, A.; Coşkun, T.; Daly, A.; van Dam, E.; Dursun, A.; et al. Blood Phenylalanine Levels in Patients with Phenylketonuria from Europe between 2012 and 2018: Is It a Changing Landscape? Nutrients 2024, 16, 2064. [Google Scholar] [CrossRef]
- Riva, E.; Fiocchi, A.; Agostoni, C.; Biasucci, G.; Sala, M.; Banderali, G.; Luotti, D.; Giovannini, M. PKU-related dysgammaglobulinaemia: The effect of diet therapy on IgE and allergic sensitization. J. Inherit. Metab. Dis. 1994, 17, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, V.; Longo, N. Phenylketonuria and the brain. Mol. Genet. Metab. 2023, 139, 107583. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, A.; Oussalah, A.; Jeannesson, É.; Guéant, J.L.; Feillet, F. La phénylcétonurie—De la diététique à la thérapie génique [Phenylketonuria, from diet to gene therapy]. Med. Sci. 2020, 36, 725–734. [Google Scholar] [CrossRef]
- Szigetvari, P.D.; Patil, S.; Birkeland, E.; Kleppe, R.; Haavik, J. The effects of phenylalanine and tyrosine levels on dopamine production in rat PC12 cells. Implications for treatment of phenylketonuria and tyrosinemia type 1 and comorbid neurodevelopmental disorders. Neurochem. Int. 2023, 171, 105629. [Google Scholar] [CrossRef]
- Huijbregts, S.; de Sonneville, L.M.; Licht, R.; van Spronsen, F.J.; Verkerk, P.H.; Sergeant, J.A. Sustained attention and inhibition of cognitive interference in treated phenylketonuria: Associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia 2002, 40, 7–15. [Google Scholar] [CrossRef]
- Trepp, R.; Muri, R.; Maissen-Abgottspon, S.; Haynes, A.G.; Hochuli, M.; Everts, R. Cognition after a 4-week high phenylalanine intake in adults with phenylketonuria–- a randomized controlled trial. Am. J. Clin. Nutr. 2024, 119, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Olson, A.; Romani, C. The impact of metabolic control on cognition, neurophysiology, and well-being in PKU: A systematic review and meta-analysis of the within-participant literature. Mol. Genet. Metab. 2023, 138, 106969. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, A.; Nardecchia, F.; Romani, C.; Leuzzi, V. Metabolic control and clinical outcome in adolescents with phenylketonuria. Mol. Genet. Metab. 2023, 140, 107684. [Google Scholar] [CrossRef] [PubMed]
- Anastasoaie, V.; Kurzius, L.; Forbes, P.; Waisbren, S. Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Mol. Genet. Metab. 2008, 95, 17–20. [Google Scholar] [CrossRef]
- Teruya, K.I.; Remor, E.; Schwartz, I.V.D. Development of an inventory to assess perceived barriers related to PKU treatment. J. Patient Rep. Outcomes 2020, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Teruya, K.I.; Remor, E.; Schwartz, I.V.D. Factors that increase risk for poor adherence to phenylketonuria treatment in Brazilian patients. Am. J. Med. Genet. A 2021, 185, 1991–2002. [Google Scholar] [CrossRef]
- Firman, S.J.; Ramachandran, R.; Whelan, K. Knowledge, perceptions and behaviours regarding dietary management of adults living with phenylketonuria. J. Hum. Nutr. Diet. 2022, 35, 1016–1029. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, A.L.S.; Martins, A.M.; Ribeiro, E.M.; Specola, N.; Chiesa, A.; Vilela, D.; Jurecki, E.; Mesojedovas, D.; Schwartz, I.V.D. Burden of phenylketonuria in Latin American patients: A systematic review and meta-analysis of observational studies. Orphanet J. Rare Dis. 2022, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Yagudina, R.; Kulikov, A.; Serpik, V.; Protsenko, M.; Kopeyka, K. Factors Affecting Adherence to a Low Phenylalanine Diet in Patients with Phenylketonuria: A Systematic Review. Nutrients 2024, 16, 3119. [Google Scholar] [CrossRef] [PubMed]
- Beghini, M.; Pichler, M.; Tinnefeld, F.C.; Metz, M.; Möslinger, D.; Konstantopoulou, V.; Spenger, J.; Kautzky-Willer, A.; Frommlet, F.; Scherer, T.; et al. Poor adherence during adolescence is a risk factor for becoming lost-to-follow-up in patients with phenylketonuria. Mol. Genet. Metab. Rep. 2024, 39, 101087. [Google Scholar] [CrossRef]
- Parolisi, S.; Montanari, C.; Borghi, E.; Cazzorla, C.; Zuvadelli, J.; Tosi, M.; Barone, R.; Bensi, G.; Bonfanti, C.; Dionisi Vici, C.; et al. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria. Pharmacol. Res. 2023, 197, 106952. [Google Scholar] [CrossRef]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verduci, E.; Borghi, E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front. Cell. Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Ceccarani, C.; Corsello, A.; Zuvadelli, J.; Ottaviano, E.; Dei Cas, M.; Banderali, G.; Zuccotti, G.; Borghi, E.; Verduci, E. Glycomacropeptide Safety and Its Effect on Gut Microbiota in Patients with Phenylketonuria: A Pilot Study. Nutrients 2022, 14, 1883. [Google Scholar] [CrossRef]
- McWhorter, N.; Dhillon, J.; Hoffman, J. Preliminary Investigation of Microbiome and Dietary Differences in Patients with Phenylketonuria on Enzyme Substitution Therapy Compared to Traditional Therapies. JAND 2022, 122, 1283–1295.e3. [Google Scholar] [CrossRef]
- Ostrowska, M.; Nowosad, K.; Mikoluc, B.; Szczerba, H.; Komon-Janczara, E. Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study. Nutrients 2024, 16, 3915. [Google Scholar] [CrossRef]
- Mancilla, V.J.; Mann, A.E.; Zhang, Y.; Allen, M.S. The Adult Phenylketonuria (PKU) Gut Microbiome. Microorganisms 2021, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro de Oliveira, F.; Mendes, R.H.; Dobbler, P.T.; Mai, V.; Pylro, V.S.; Waugh, S.G.; Vairo, F.; Refosco, L.F.; Roesch, L.F.W.; Schwartz, I.V.D. Phenylketonuria and Gut Microbiota: A Controlled Study Based on Next-Generation Sequencing. PLoS ONE 2016, 11, e0157513. [Google Scholar] [CrossRef]
- Ramos Meyers, G.; Samouda, H.; Bohn, T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022, 14, 5361. [Google Scholar] [CrossRef]
- Di Profio, E.; Magenes, V.C.; Fiore, G.; Agostinelli, M.; La Mendola, A.; Acunzo, M.; Francavilla, R.; Indrio, F.; Bosetti, A.; D’Auria, E.; et al. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022, 14, 3198. [Google Scholar] [CrossRef] [PubMed]
- Manta-Vogli, P.D.; Schulpis, K.H.; Dotsikas, Y.; Loukas, Y.L. The significant role of amino acids during pregnancy: Nutritional support. J. Matern Fetal Neonatal Med. 2020, 33, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Couce, M.L.; Sánchez-Pintos, P.; Vitoria, I.; De Castro, M.J.; Aldámiz-Echevarría, L.; Correcher, P.; Fernández-Marmiesse, A.; Roca, I.; Hermida, A.; Martínez-Olmos, M.; et al. Carbohydrate status in patients with phenylketonuria. Orphanet J. Rare Dis. 2018, 13, 103. [Google Scholar] [CrossRef]
- Paterno, G.; Di Tullio, V.; Carella, R.; De Ruvo, G.; Furioso, F.; Skublewska-D’Elia, A.; De Giovanni, D.; Tummolo, A. Growth Parameters and Prevalence of Obesity in PKU Patients and Peers: Is This the Right Comparison? Pediatr. Rep. 2024, 16, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Bickel, H.; Gerhard, J.; Hickmans, E. The Influence of Phenylalanine Intake on the Chemistry and Behaviour of a Phenylketonuric Child. Acta Paediatr. 2001, 90, 1356. [Google Scholar] [CrossRef]
- Sena, B.D.S.; Andrade, M.I.S.; Silva, A.; Dourado, K.F.; Silva, A.L.F. Overweight and associated factors in children and adolescents with phenylketonuria: A systematic review. Rev. Paul. Pediatr. 2020, 38, e2018201. [Google Scholar] [CrossRef]
- Geuns, J.M.C. Stevioside. Phytochemistry 2003, 64, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Tummolo, A.; Carella, R.; Paterno, G.; Bartolomeo, N.; Giotta, M.; Dicintio, A.; De Giovanni, D.; Fischetto, R. Body Composition in Adolescent PKU Patients: Beyond Fat Mass. Children 2022, 9, 1353. [Google Scholar] [CrossRef] [PubMed]
- Acosta, P.B.; Yannicelli, S.; Marriage, B.; Mantia, C.; Gaffield, B.; Porterfield, M.; Hunt, M.; McMaster, N.; Bernstein, L.; Parton, P. Nutrient intake and growth of infants with phenylketonuria undergoing therapy. J. Pediatr. Gastroenterol. Nutr. 1998, 27, 287–291. [Google Scholar] [CrossRef]
- Singh, R.H.; Quirk, M.R.; Douglas, T.D.; Brauchla, M.C. BH4 therapy impacts the nutrition status and intake in children with phenylketonuria: 2-year follow-up. J. Inherit. Metab. Dis. 2010, 33, 689–695. [Google Scholar] [CrossRef]
- Kenneson, A.; Singh, R.H. Natural history of children and adults with phenylketonuria in the NBS-PKU Connect registry. Mol. Genet. Metab. 2021, 134, 243–249. [Google Scholar] [CrossRef]
- Haitjema, S.; Lubout, C.M.A.; Abeln, D.; Bruijn-van der Veen, M.; MacDonald, A.; Wolffenbuttel, B.H.R.; van Spronsen, F.J. Dietary treatment in Dutch children with phenylketonuria: An inventory of associated social restrictions and eating problems. Nutrition 2022, 97, 111576. [Google Scholar] [CrossRef] [PubMed]
- Albersen, M.; Bonthuis, M.; de Roos, N.M.; van den Hurk, D.A.; Carbasius Weber, E.; Hendriks, M.M.; de Sain-van der Velden, M.G.; de Koning, T.J.; Visser, G. Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage. J. Inherit. Metab. Dis. 2010, 33 (Suppl. 3), S283–S288. [Google Scholar] [CrossRef]
- Demirkol, M.; Giżewska, M.; Giovannini, M.; Walter, J. Follow up of phenylketonuria patients. Mol. Genet. Metab. 2011, 104, S31–S39. [Google Scholar] [CrossRef]
- Burrage, L.C.; McConnell, J.; Haesler, R.; ’’Riordan, M.A.; Sutton, V.R.; Kerr, D.S.; McCandless, S.E. High prevalence of overweight and obesity in females with phenylketonuria. Mol. Genet. Metab. 2012, 107, 43–48. [Google Scholar] [CrossRef]
- Trefz, F.K.; Belanger-Quintana, A. Sapropterin dihydrochloride: A new drug and a new concept in the management of phenylketonuria. Drugs Today 2010, 46, 589–600. [Google Scholar] [CrossRef]
- Rocha, J.C.; MacDonald, A.; Trefz, F. Is overweight an issue in phenylketonuria? Mol. Genet. Metab. 2013, 110, 18–24. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Gu, J. A multitarget angiogenesis inhibitor, CTT peptide-endostatin mimic-kringle 5, prevents diet-induced obesity. J. Mol. Med. 2020, 98, 1753–1765. [Google Scholar] [CrossRef]
- Dios-Fuentes, E.; Gonzalo Marin, M.; Remón-Ruiz, P.; Benitez Avila, R.; Bueno Delgado, M.A.; Blasco Alonso, J.; Doulatram Gamgaram, V.K.; Olveira, G.; Soto-Moreno, A.; Venegas-Moreno, E. Cardiometabolic and Nutritional Morbidities of a Large, Adult, PKU Cohort from Andalusia. Nutrients 2022, 14, 1311. [Google Scholar] [CrossRef]
- Gama, M.I.; Daly, A.; Ashmore, C.; Evans, S.; Moreira-Rosário, A.; Rocha, J.C.; MacDonald, A. Impact on Diet Quality and Burden of Care in Sapropterin Dihydrochloride Use in Children with Phenylketonuria: A 6 Month Follow-Up Report. Nutrients 2023, 15, 3603. [Google Scholar] [CrossRef]
- Bensi, G.; Carbone, M.T.; Schiaffino, M.C.; Parolisi, S.; Pozzoli, A.; Biasucci, G. Quality of life aspects of a low protein diet using GMP in patients with phenylketonuria. J. Int. Med. Res. 2022, 50, 3000605221125524. [Google Scholar] [CrossRef]
- Iakovou, K.; Madoglou, A.; Monopolis, I.; Schulpis, K. The effect of PKU diet on the maternal quality of life and social discrimination in relation to their educational status and place of living. J. Pediatr Endocrinol. Metab. 2019, 32, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Iakovou, K.K.; Schulpis, K. The beneficial effect of psychological support on mothers with PKU children who suffer from social discrimination and damage of quality of life. J. Pediatr. Endocrinol. Metab. 2020, 33, 95–98. [Google Scholar] [CrossRef]
- Weglage, J.; Grenzebach, M.; Pietsch, M.; Feldmann, R.; Linnenbank, R.; Denecke, J.; Koch, H.G. Behavioural and emotional problems in early-treated adolescents with phenylketonuria in comparison with diabetic patients and healthy controls. J. Inherit. Metab. Dis. 2000, 23, 487–496. [Google Scholar] [CrossRef]
- Waisbren, S.; White, D.A. Screening for cognitive and social–emotional problems in individuals with PKU: Tools for use in the metabolic clinic. Mol. Genet. Metab. 2010, 99, S96–S99. [Google Scholar] [CrossRef]
- Yildiz Celik, S.; Bebek, N.; Gurses, C.; Baykan, B.; Gokyigit, A. Clinical and electrophysiological findings in patients with phenylketonuria and epilepsy: Reflex features. Epilepsy Behav. 2018, 82, 46–51. [Google Scholar] [CrossRef]
- Cunningham, A.; Rohr, F.; Splett, P.; Mofidi, S.; Bausell, H.; Stembridge, A.; Kenneson, A.; Singh, R.H. Nutrition management of PKU with pegvaliase therapy: Update of the web-based PKU nutrition management guideline recommendations. Orphanet J. Rare Dis. 2023, 18, 155. [Google Scholar] [CrossRef]
- Feillet, F.; Bonnemains, C. La phénylcétonurie: Nouveaux traitements. Arch. Pédiatr. 2013, 20, 1165–1168. [Google Scholar] [CrossRef]
- Hollander, S.; Viau, K.; Sacharow, S. Pegvaliase dosing in adults with PKU: Requisite dose for efficacy decreases over time. Mol. Genet. Metab. 2022, 137, 104–106. [Google Scholar] [CrossRef]
- Rohr, F.; Burton, B.; Dee, A.; Harding, C.O.; Lilienstein, J.; Lindstrom, K.; MacLeod, E.; Rose, S.; Singh, R.; van Calcar, S.; et al. Evaluating change in diet with pegvaliase treatment in adults with phenylketonuria: Analysis of phase 3 clinical trial data. Mol. Genet. Metab. 2024, 141, 108122. [Google Scholar] [CrossRef]
- Krämer, J.; Baerwald, C.; Heimbold, C.; Kamrath, C.; Parhofer, K.G.; Reichert, A.; Rutsch, F.; Stolz, S.; Weinhold, N.; Muntau, A.C. Two years of pegvaliase in Germany: Experiences and best practice recommendations. Mol. Genet. Metab. 2023, 139, 107564. [Google Scholar] [CrossRef]
- PTC Therapeutics Announces APHENITY Trial Achieved Primary Endpoint with Sepiapterin in PKU Patients. News Release. 2023. Available online: https://www.prnewswire.com/news-releases/ptc-therapeutics-announces-aphenity-trial-achieved-primary-endpoint-with-sepiapterin-in-pku-patients-301827589.html (accessed on 18 August 2024).
- Bratkovic, D.; Margvelashvili, L.; Tchan, M.C.; Nisbet, J.; Smith, N. PTC923 (sepiapterin) lowers elevated blood phenylalanine in subjects with phenylketonuria: A phase 2 randomized, multi-center, three-period crossover, open-label, active controlled, all-comers study. Metabolism 2022, 128, 155116. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Kaushik, D.; Xia, Y.; Ingalls, K.; Milner, S.; Smith, N.; Kong, R. Relative Oral Bioavailability and Food Effects of Two Sepiapterin Formulations in Healthy Participants. Clin. Pharmacol. Drug Dev. 2024, 13, 506–516. [Google Scholar] [CrossRef]
- Tummolo, A.; Carella, R.; De Giovanni, D.; Paterno, G.; Simonetti, S.; Tolomeo, M.; Leone, P.; Barile, M. Micronutrient Deficiency in Inherited Metabolic Disorders Requiring Diet Regimen: A Brief Critical Review. Int. J. Mol. Sci. 2023, 24, 17024. [Google Scholar] [CrossRef]
- Smith, W.E.; Berry, S.A.; Bloom, K.; Brown, C.; Burton, B.K.; Demarest, O.M.; Jenkins, G.P.; Malinowski, J.; McBride, K.L.; Mroczkowski, H.J.; et al. Electronic address: Documents@acmg.net. Phenylalanine hydroxylase deficiency diagnosis and management: A 2023 evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2025, 27, 101289. [Google Scholar] [CrossRef] [PubMed]
- Akyilmaz, I.; Celebi-Birand, D.; Demir, N.Y.; Bas, D.; Elbuken, C.; Duman, M. An electrochemical sensor integrated lab-on-a-CD system for phenylketonuria diagnostics. Lab Chip 2025, 1–9. [Google Scholar] [CrossRef]
- Koch, R.; Moseley, K.; Ning, J.; Romstad, A.; Guldberg, P.; Guttler, F. Long-term beneficial effects of the phenylalanine-restricted diet in late-diagnosed individuals with phenylketonuria. Mol. Genet. Metab. 1999, 67, 148–155. [Google Scholar] [CrossRef]
- Hall, I.; Pinto, A.; Evans, S.; Daly, A.; Ashmore, C.; Ford, S.; Buckley, S.; MacDonald, A. The Challenges and Dilemmas of Interpreting Protein Labelling of Prepackaged Foods Encountered by the PKU Community. Nutrients 2022, 14, 1355. [Google Scholar] [CrossRef] [PubMed]
- Kirk, D.; Catal, C.; Tekinerdogan, B. Precision nutrition: A systematic literature review. Comput. Biol. Med. 2021, 133, 104365. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, F.; Orlando, R.; Iacovelli, L.; Colamartino, M.; Fiori, E.; Leuzzi, V.; Piccinin, S.; Nistico, R.; Puglisi-Allegra, S.; Di Menna, L.; et al. Targeting mGlu5 Metabotropic Glutamate Receptors in the Treatment of Cognitive Dysfunction in a Mouse Model of Phenylketonuria. Front. Neurosci. 2018, 12, 154. [Google Scholar] [CrossRef]
- Russo, G.L.; Puleo, S.; Cavella, S.; Scala, I.; Fidaleo, M.; Di Monaco, R. Advancements in food science for Phenylketonuria (PKU) management: A comprehensive review. Crit. Rev. Food. Sci. Nutr. 2024, 1–15. [Google Scholar] [CrossRef]
Authors, Year | Results |
---|---|
Ney et al. (2009) [34] Daly et al. (2019) [55] |
|
MacLeod et al. (2010) [56] |
|
Ney et al. (2016) [51] |
|
Singh et al. (2017) [57] |
|
Daly et al. (2020) [58] |
|
Pena et al. (2021) [53] |
|
Feldman et al. (2024) [59] Tosi et al. (2024) [60] |
|
LNAAs’ Role | |||
---|---|---|---|
Study | Lower Plasma and Brain Phe Levels | Alternative to the Traditionally Strict Phe-Restricted Diet | Increases Tyr Levels |
Ney et al. (2014) [50] | X | ||
van Vliet et al. (2022) [61] | X | ||
Shyam et al. (2024) [62] | X | ||
Burlina et al. (2019) [63] | X | ||
Schindeler et al. (2007) [64] | X | X |
Authors | Nutritional Gaps | Addressing Deficits | Post-Intervention Results | Follow-Up Outcomes |
---|---|---|---|---|
Koletzko et al. (2009) [66] | docosahexaenoic acid (DHA) | encapsulated fish oil |
|
|
Jans et al. (2013) [67] | long-chain polyunsaturated fatty acid (LC-PUFA) | fish oil |
|
|
KeyOmega (combination of DHA and arachidonic acid) |
| |||
Van Spronsen et al. (2017) [20] | DHA | DHA supplementation |
|
|
Wang et al. (2018) [68] | zinc | zinc supplementation |
|
|
Robert et al. (2013) [26] | iron | ferrous sulfate supplementation |
|
|
selenium | - | - |
| |
Tanaka et al. (2018) [69] | calcium | calcium supplementation | inadequate intake of phosphorus and vitamin D |
|
Acosta et al. (1987) [70] | magnesium, potassium, and zinc | formula with higher levels of magnesium, potassium, zinc, and selenium | no significant changes in the mean concentrations of trace metals in urine, blood, or serum |
|
selenium | increase in selenium intake | selenium concentrations in the subjects remained lower than those in children without PKU | ||
Geiger et al. (2016) [71] | vitamin D | - | - |
|
Porta et al. (2008) [72] | serum Phe | - | osteoclastogenesis correlated with blood Phe concentrations |
|
Hvas et al. (2006) [73] | vitamin B 12 |
|
| |
Rojas-Agurto et al. (2023) [74] |
|
|
| |
Keskin et al. (2023) [75] |
| Phe-Free Protein Substitutes | efficacy and safety of new generation protein substitutes |
|
Mendes et al. (2011) [76] | protein, calcium, phosphorus | Phe intake | affect bone age and mineral density |
|
Hargreaves et al. (2007) [77] | Coenzyme Q10 (CoQ10) | lowered CoQ10 level in PKU |
| |
Sanayama et al. (2011) [78] | serum Phe | correlation between oxidative stress markers and serum Phe |
| |
Montero et al. (2019) [79] | CoQ10 | an association between having low plasma CoQ values and being classic PKU patients |
|
Authors | Factors | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Teruya et al. (2020) [106] | X | X | X | X | X | X | X | ||
Burlina et al. (2021) [4] | X | X | |||||||
Teruya et al. (2021) [107] | X | X | |||||||
Firman et al. (2022) [108] | X | X | X | ||||||
Pessoa et al. (2022) [109] | X | X | |||||||
Pinto et al. (2023) [41] | X | X | X | X | |||||
Yagudina (2024) [110] | X | X | X | X | X | X | |||
Beghini et al. (2024) [111] | X | X | X | X |
Authors | Research Scope | Increase | Decrease | No Differences | Comments |
---|---|---|---|---|---|
Cox et al. (2013) [41] | Influence of diet high in plant proteins | Bacteroidetes | Firmicutes | ||
Zmora et al. (2019) [52] | Gut microbiota composition | Firmicutes | |||
Bassanini et al. (2019) [113] | Gut microbiota of children aged 4–18 years with PKU | Blautia Clostridium Lachnospiraceae | Faecalibacterium | Methanobrevibacter smithii |
|
Montanari et al. (2022) [114] | The effect of GMP supplementation on gut microbiota | Agathobacter spp. Subdoligranulum | Overall microbiota composition |
| |
McWhorter et al. (2022) [115] | PKU group vs. Palynziq treated group | Verrucomicrobia Lachnobacterium genus vs. Prevotella | |||
Garcia-Gil et al. (2022) [2] | Influence of supplementation with galacto- and fructo-oligosaccharides on gut microbiota | Bifidobacteria | |||
Ubaldi et al. (2023) [8] | Evaluation of taxonomic groups and prebiotic supplementation | Bifidobacterium Akkermansia | Firmicutes/Bacteroidetes ratio |
Author, Year | Adequate Growth | Malnutrition | Weigh Gain/Obesity | Z Score | Comments | |
---|---|---|---|---|---|---|
1 | Acosta et al. (1998) [128] | X |
| |||
2 | Yilmaz et al. (2023) [2] | X |
| |||
3 | Singh et al. (2010) [129] | X | increase |
| ||
4 | Kenneson and Singh (2021) [130] | X |
| |||
5 | Haitjema et al. (2022) [131] | X | ||||
6 | Bickel et al. 2001 [124] | X |
| |||
7 | Acosta et al. (2003) [86] | X | ||||
8 | van Rijn, M. et al. (2006) [48] | X | ||||
9 | Albersen et al. (2010) [132] | X |
| |||
10 | Demirkol et al. (2011) [133] | Normal | ||||
11 | Burrage et al. (2012) [134] | X | ||||
12 | Trefz et al. (2012) [135] | X |
| |||
13 | Rocha et al. (2013) [136] | X | ||||
14 | MacDonald et al. (2008) [34] |
| ||||
15 | Doulgeraki et al. (2014) [91] | X |
| |||
16 | Wang et al. (2020) [137] | X |
| |||
17 | Tummolo et al. (2022) [127] | X |
| |||
18 | Dios-Fuentes et al. (2022) [138] | X | X |
| ||
19 | Balci et al. (2024) [12] | X | Normal | |||
20 | Tosi et al. (2024) [60] | X |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anton-Păduraru, D.-T.; Trofin, F.; Chis, A.; Sur, L.M.; Streangă, V.; Mîndru, D.E.; Dorneanu, O.S.; Păduraru, D.; Nastase, E.V.; Vulturar, R. Current Insights into Nutritional Management of Phenylketonuria: An Update for Children and Adolescents. Children 2025, 12, 199. https://doi.org/10.3390/children12020199
Anton-Păduraru D-T, Trofin F, Chis A, Sur LM, Streangă V, Mîndru DE, Dorneanu OS, Păduraru D, Nastase EV, Vulturar R. Current Insights into Nutritional Management of Phenylketonuria: An Update for Children and Adolescents. Children. 2025; 12(2):199. https://doi.org/10.3390/children12020199
Chicago/Turabian StyleAnton-Păduraru, Dana-Teodora, Felicia Trofin, Adina Chis, Lucia Maria Sur, Violeta Streangă, Dana Elena Mîndru, Olivia Simona Dorneanu, Diana Păduraru, Eduard Vasile Nastase, and Romana Vulturar. 2025. "Current Insights into Nutritional Management of Phenylketonuria: An Update for Children and Adolescents" Children 12, no. 2: 199. https://doi.org/10.3390/children12020199
APA StyleAnton-Păduraru, D.-T., Trofin, F., Chis, A., Sur, L. M., Streangă, V., Mîndru, D. E., Dorneanu, O. S., Păduraru, D., Nastase, E. V., & Vulturar, R. (2025). Current Insights into Nutritional Management of Phenylketonuria: An Update for Children and Adolescents. Children, 12(2), 199. https://doi.org/10.3390/children12020199