The Association Between Perinatal Pharmacologic Treatments and Spontaneous Intestinal Perforation in Extremely Preterm Infants: A Propensity Score Matching Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. SIP Cases
2.2. Propensity Score Matching
2.3. Risk Factors
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SIP | spontaneous intestinal perforation |
ELBW | extremely low birthweight |
PSM | propensity score matching |
ANS | antenatal steroids |
References
- Elgendy, M.M.; Othman, H.F.; Heis, F.; Qattea, I.; Aly, H. Spontaneous intestinal perforation in premature infants: A national study. J. Perinatol. 2021, 41, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.R.; Hair, A.; Clark, R.H.; Gordon, P.V. Spontaneous intestinal perforation (SIP) will soon become the most common form of surgical bowel disease in the extremely low birth weight (ELBW) infant. J. Perinatol. 2022, 42, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Paquette, L.; Friedlich, P.; Ramanathan, R.; Seri, I. Concurrent use of indomethacin and dexamethasone increases the risk of spontaneous intestinal perforation in very low birth weight neonates. J. Perinatol. 2006, 26, 486–492. [Google Scholar] [CrossRef]
- Attridge, J.T.; Clark, R.; Walker, M.W.; Gordon, P.V. New insights into spontaneous intestinal perforation using a national data set: (1) SIP is associated with early indomethacin exposure. J. Perinatol. 2006, 26, 93–99. [Google Scholar] [CrossRef]
- Ahmad, I.; Davis, K.F.; Emi, S.; Uy, C.; Sills, J. Risk Factors for Spontaneous Intestinal Perforation in Extremely Low Birth Weight Infants. Open Pediatr. Med. J. 2008, 2, 11–15. [Google Scholar]
- Wadhawan, R.; Oh, W.; Vohr, B.R.; Saha, S.; Das, A.; Bell, E.F.; Laptook, A.; Shankaran, S.; Stoll, B.J.; Walsh, M.C.; et al. Spontaneous intestinal perforation in extremely low birth weight infants: Association with indomethacin therapy and effects on neurodevelopmental outcomes at 18–22 months corrected age. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F127. [Google Scholar] [CrossRef] [PubMed]
- Rattray, B.N.; Kraus, D.M.; Drinker, L.R.; Goldberg, R.N.; Tanaka, D.T.; Cotten, C.M. Antenatal magnesium sulfate and spontaneous intestinal perforation in infants less than 25 weeks gestation. J. Perinatol. 2014, 34, 819–822. [Google Scholar] [CrossRef]
- Shah, J.; Singhal, N.; Da Silva, O.; Rouvinez-Bouali, N.; Seshia, M.; Lee, S.K.; Shah, P.S. Intestinal perforation in very preterm neonates: Risk factors and outcomes. J. Perinatol. 2015, 35, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, M.; Mohamed, A.; Lemyre, B.; Aziz, K.; Faucher, D.; Shah, P.S.; for the Canadian Neonatal Network Investigators. Antenatal Exposure to Magnesium Sulfate and Spontaneous Intestinal Perforation and Necrotizing Enterocolitis in Extremely Preterm Neonates. Am. J. Perinatol. 2017, 34, 1227–1233. [Google Scholar] [CrossRef]
- Stavel, M.; Wong, J.; Cieslak, Z.; Sherlock, R.; Claveau, M.; Shah, P.S.; for the Canadian Neonatal Network Investigators. Effect of prophylactic indomethacin administration and early feeding on spontaneous intestinal perforation in extremely low-birth-weight infants. J. Perinatol. 2017, 37, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Rayyan, M.; Myatchin, I.; Naulaers, G.; Ali Said, Y.; Allegaert, K.; Miserez, M. Risk factors for spontaneous localized intestinal perforation in the preterm infant. J. Matern. Fetal Neonatal Med. 2018, 31, 2617–2623. [Google Scholar] [CrossRef] [PubMed]
- Arnautovic, T.I.; Longo, J.L.; Trail-Burns, E.J.; Tucker, R.; Keszler, M.; Laptook, A.R. Antenatal Risk Factors Associated with Spontaneous Intestinal Perforation in Preterm Infants Receiving Postnatal Indomethacin. J. Pediatr. 2021, 232, 59–64.e1. [Google Scholar] [CrossRef]
- Kandraju, H.; Kanungo, J.; Lee, K.-S.; Daspal, S.; Adie, M.A.; Dorling, J.; Ye, X.Y.; Lee, S.K.; Shah, P.S.; Beltempo, M.; et al. Association of Co-Exposure of Antenatal Steroid and Prophylactic Indomethacin with Spontaneous Intestinal Perforation. J. Pediatr. 2021, 235, 34–41.e1. [Google Scholar] [CrossRef] [PubMed]
- Laptook, A.R.; Weydig, H.; Brion, L.P.; Wyckoff, M.H.; Arnautovic, T.I.; Younge, N.; Oh, W.; Chowdhury, D.; Keszler, M.; Das, A. Antenatal Steroids, Prophylactic Indomethacin, and the Risk of Spontaneous Intestinal Perforation. J. Pediatr. 2023, 259, 113457. [Google Scholar] [CrossRef]
- Mantle, A.; Yang, M.J.; Judkins, A.; Chanthavong, I.; Yoder, B.A.; Chan, B. Association of Intrapartum Drugs with Spontaneous Intestinal Perforation: A Single-Center Retrospective Review. Am. J. Perinatol. 2021, 41, 174–179. [Google Scholar] [CrossRef]
- Thakkar, P.V.; Sutton, K.F.; Detwiler, C.A.; Henegar, J.G.; Narayan, J.R.; Perez-Romero, M.; Strausser, C.M.; Clark, R.H.; Benjamin, D.K., Jr.; Zimmerman, K.O.; et al. Risk factors and epidemiology of spontaneous intestinal perforation among infants born at 22–24 weeks’ gestational age. J. Perinatol. 2024, 44, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Haukoos, J.S.; Lewis, R.J. The Propensity Score. JAMA 2015, 314, 1637–1638. [Google Scholar] [CrossRef] [PubMed]
- Attridge, J.T.; Clark, R.; Walker, M.W.; Gordon, P.V. New insights into spontaneous intestinal perforation using a national data set: (2) two populations of patients with perforations. J. Perinatol. 2006, 26, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Watterberg, K.L.; Gerdes, J.S.; Cole, C.H.; Aucott, S.W.; Thilo, E.H.; Mammel, M.C.; Couser, R.J.; Garland, J.S.; Rozycki, H.J.; Leach, C.L.; et al. Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: A multicenter trial. Pediatrics 2004, 114, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, M.L.; Baud, O.; Lacaze-Masmonteil, T.; Peltoniemi, O.M.; Bonsante, F.; Watterberg, K.L. Effect of Prophylaxis for Early Adrenal Insufficiency Using Low-Dose Hydrocortisone in Very Preterm Infants: An Individual Patient Data Meta-Analysis. J. Pediatr. 2019, 207, 136–142.e5. [Google Scholar] [CrossRef]
- Morris, I.P.; Goel, N.; Chakraborty, M. Efficacy and safety of systemic hydrocortisone for the prevention of bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. Eur. J. Pediatr. 2019, 178, 1171–1184. [Google Scholar] [CrossRef]
- Gordon, P.V.; Herman, A.C.; Marcinkiewicz, M.; Gaston, B.M.; Laubach, V.E.; Aschner, J.L. A neonatal mouse model of intestinal perforation: Investigating the harmful synergism between glucocorticoids and indomethacin. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.V. Understanding Intestinal Vulnerability to Perforation in the Extremely Low Birth Weight Infant. Pediatr. Res. 2009, 65, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Krejci, V.; Hiltebrand, L.B.; Sigurdsson, G.H. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit. Care Med. 2006, 34, 1456–1463. [Google Scholar] [CrossRef]
- Ohlsson, A.; Shah, S.S. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst. Rev. 2020, 1, CD004213. [Google Scholar] [CrossRef] [PubMed]
- Jasani, B.; Mitra, S.; Shah, P.S. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst. Rev. 2022, 12, CD010061. [Google Scholar] [PubMed]
Studies [Ref.] | Years | Methods | Population | SIP (n) § | ANS | Mg | IND | SUR | HC | DEX | IND | IBU | ACE | CAF | MIL | DOP | DBU | EPI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paquette [3] | 2006 | Matched C-C | BW <1500 g | 16 | Antenatal | Postnatal | ||||||||||||||
Attridge [4] | 2006 | Matched C-C | BW <1000 g | 633 | ||||||||||||||||
Ahmad [5] | 2008 | Retro. cohort | BW <1000 g | 13 | ||||||||||||||||
Wadhawan [6] | 2013 | Retro. cohort | BW <1000 g | 280 | ||||||||||||||||
Rattray [7] | 2014 | Retro. cohort | BW <1000 g | 24 | ||||||||||||||||
Shah [8] | 2015 | Retro. cohort | GA <32 week | 178 | ||||||||||||||||
Shalabi [9] | 2017 | Retro. cohort | GA <28 week | 148 | ||||||||||||||||
Stavel [10] | 2017 | Retro. cohort | BW <1000 g | 101 | ||||||||||||||||
Rayyan [11] | 2018 | Matched C-C | GA <32 week | 62 | ||||||||||||||||
Arnautovic [12] | 2021 | Matched C-C | GA <29 week | 57 | ||||||||||||||||
Kandraju [13] | 2021 | Retro. cohort | BW <750 g | 199 | ||||||||||||||||
Laptook [14] | 2023 | Retro. cohort | BW <1000 g | 243 | ||||||||||||||||
Mantle [15] | 2024 | Retro. cohort | GA <30 week | 23 | ||||||||||||||||
Thakkar [16] | 2024 | Retro. cohort | GA ≤24 week | 379 | ||||||||||||||||
Our Study | 2024 | PSM C-C | BW <1000 g | 28 |
SIP (n = 28) | Cohort (n = 829) | PSM-Controls (n = 84) | ASMD Before PSM | ASMD After PSM * | |
---|---|---|---|---|---|
GA (weeks) | 25.3 ± 2.1 | 26.2 ± 2.2 | 25.5 ± 1.7 | 0.4121 | 0.0735 |
Birthweight (g) | 735 ± 167 | 771 ± 146 | 727 ± 167 | 0.2295 | 0.0479 |
Male (n (%)) | 19 (68%) | 499 (60%) | 55 (65%) | 0.0097 | 0.0030 |
Birth year | 2019.2 ± 2.6 | 2018.0 ± 2.8 | 2018.8 ± 2.3 | 0.4367 | 0.1549 |
SIP Cases (n = 28) | PSM-Controls (n = 84) | p Value | |
---|---|---|---|
Demographics | |||
Gestational age (weeks) | 25.3 ± 2.1 | 25.5 ± 1.7 | 0.720 |
Birthweight (g) | 735 ± 167 | 727 ± 167 | 0.829 |
Male | 19 (67.9%) | 55 (65.5%) | 0.835 |
Year of birth | 2019.2 ± 2.6 | 2018.8 ± 2.3 | 0.464 |
Vaginal delivery | 11 (39.3%) | 30 (35.7%) | 0.734 |
Apgar scores at 1 min | 6 (5–7) | 6 (5–7) | 0.924 |
Apgar scores at 5 min | 8 (8–9) | 8 (8–9) | 0.931 |
Apgar scores at 5 min <7 | 4 (14.3%) | 19 (22.6%) | 0.427 |
Maternal age (years) | 32.6 ± 5.3 | 32.9 ± 5.2 | 0.827 |
Multiple birth | 11 (39.3%) | 21 (25.0%) | 0.147 |
Maternal hypertension | 5 (17.9%) | 10 (11.9%) | 0.423 |
Maternal diabetes | 1 (3.6%) | 6 (7.1%) | 0.678 |
Chorioamnionitis | 3 (10.7%) | 13 (15.5%) | 0.757 |
Maternal use of antibiotics | 25 (89.3%) | 70 (83.3%) | 0.555 |
Conditions related to neonatal stress | |||
Chest compression | 3 (10.7%) | 8 (9.5%) | 1.000 |
Mechanical ventilation | 22 (78.6%) | 70 (83.3%) | 0.569 |
PPHN requiring iNO | 1 (3.6%) | 8 (9.5%) | 0.446 |
IVH any grade | 14 (50.0%) | 33 (39.3%) | 0.320 |
IVH grade ≥ 3 | 6 (21.4%) | 11 (13.1%) | 0.287 |
Initiation of feeding | 7 (25.0%) | 52 (61.9%) | 0.001 * |
Hypo-/hyperglycemia † | 6 (21.4%) | 27 (32.1%) | 0.281 |
Sepsis culture-proven | 4 (14.3%) | 5 (5.9%) | 0.224 |
Pharmacologic regimens | |||
Antenatal steroid any | 24 (85.7%) | 79 (94.1%) | 0.224 |
Betamethasone | 21 (75.0%) | 61 (72.6%) | 0.805 |
Dexamethasone | 4 (14.3%) | 19 (22.6%) | 0.427 |
Antenatal MgSO4 | 28 (100.0%) | 77 (91.7%) | 0.189 |
Antenatal indomethacin | 22 (78.6%) | 61 (72.6%) | 0.533 |
Surfactant | 19 (67.9%) | 41 (48.8%) | 0.090 |
Postnatal steroid any | 7 (25.5%) | 10 (11.9%) | 0.940 |
Hydrocortisone | 7 (25.0%) | 8 (9.5%) | 0.037 * |
Dexamethasone | 1 (3.6%) | 3 (3.6%) | 1.000 |
Ibuprofen any | 12 (42.9%) | 27 (32.1%) | 0.303 |
Ibuprofen IV | 9 (31.4%) | 24 (28.6%) | 0.720 |
Ibuprofen oral | 3 (10.7%) | 6 (7.1%) | 0.688 |
Acetaminophen oral | 3 (10.7%) | 3 (3.6%) | 0.164 |
Caffeine | 2 (7.1%) | 11 (13.1%) | 0.512 |
Milrinone | 6 (21.4%) | 22 (26.2%) | 0.614 |
Inotropic agents | |||
Dopamine | 16 (57.1%) | 37 (44.0%) | 0.229 |
Dobutamine | 11 (39.3%) | 18 (21.4%) | 0.081 |
Epinephrine | 7 (25.0%) | 6 (7.1%) | 0.011 * |
In combination | 0.023 * | ||
None | 10 (35.7%) | 43 (51.2%) | 0.156 |
1 agent | 7 (25.0%) | 25 (29.8%) | 0.629 |
2 agents | 6 (21.4%) | 14 (16.7%) | 0.569 |
3 agents | 5 (17.9%) | 2 (2.4%) | 0.020 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.-H.; Tu, L.-H.; Chiang, M.-C.; Chen, Y.-N.; Wu, W.-H.; Hsu, K.-H. The Association Between Perinatal Pharmacologic Treatments and Spontaneous Intestinal Perforation in Extremely Preterm Infants: A Propensity Score Matching Study. Children 2025, 12, 142. https://doi.org/10.3390/children12020142
Cheng W-H, Tu L-H, Chiang M-C, Chen Y-N, Wu W-H, Hsu K-H. The Association Between Perinatal Pharmacologic Treatments and Spontaneous Intestinal Perforation in Extremely Preterm Infants: A Propensity Score Matching Study. Children. 2025; 12(2):142. https://doi.org/10.3390/children12020142
Chicago/Turabian StyleCheng, Wei-Hsin, Lo-Hsuan Tu, Ming-Chou Chiang, Yu-Ning Chen, Wei-Hung Wu, and Kai-Hsiang Hsu. 2025. "The Association Between Perinatal Pharmacologic Treatments and Spontaneous Intestinal Perforation in Extremely Preterm Infants: A Propensity Score Matching Study" Children 12, no. 2: 142. https://doi.org/10.3390/children12020142
APA StyleCheng, W.-H., Tu, L.-H., Chiang, M.-C., Chen, Y.-N., Wu, W.-H., & Hsu, K.-H. (2025). The Association Between Perinatal Pharmacologic Treatments and Spontaneous Intestinal Perforation in Extremely Preterm Infants: A Propensity Score Matching Study. Children, 12(2), 142. https://doi.org/10.3390/children12020142