Neonatal Shock: Current Dilemmas and Future Research Avenues
Abstract
:1. Introduction
2. The Validity of Clinical and Laboratory Parameters for Diagnosis and Management of Neonatal Shock
2.1. Capillary Refilling Time
2.2. Urine Output Assessment
2.3. Heart Rate
2.4. Temperature Difference
2.5. Serum Lactate Assessment
2.6. Blood Pressure
2.6.1. Normative BP Centiles
2.6.2. Oscillometric BP Measurement
2.6.3. Role of Diastolic and Systolic BP
2.7. Other Modalities to Diagnose Shock and Guide Therapy: Gaps in Knowledge
2.7.1. Near Infrared Spectroscopy
2.7.2. Functional Echocardiography
3. Treating Neonatal Shock: The Dilemmas
3.1. Should We Treat Isolated Hypotension in the Initial Days?
Does Hypotension Lead to Adverse Outcomes?
3.2. Does Normal Saline Bolus Improve Outcomes in Extreme Preterm Neonates with Hypotension in the Initial Days of Life?
What Are Management Strategies for Transitional Circulatory Instability?
3.3. How to Manage Cardiogenic Shock Secondary to Perinatal Asphyxia?
3.4. Inotrope of Choice in Patent Ductus Arteriosus and PPHN with Shock
3.5. Inotrope of Choice in Septic Shock
3.6. Other Commonly Used Adjunctive Therapies in Septic Shock
3.6.1. When to Initiate Hydrocortisone in Neonates with Septic Shock?
Study/Year | Dose |
---|---|
Ng et al. [136] 2016 | 1 mg/kg Q4h for 5 d of hydrocortisone or 0.5 mg/kg of dexamethasone |
Seri et al. [125] 2001 | 2–6 mg/kg/d for 1–3 days |
Ng et al. [134] 2006 | 1 mg/kg Q8h for 5 days |
Noori et al. [135] 2006 | Loading 2 mg/kg, maintenance 1 mg/kg Q12h for 2 days |
3.6.2. Role of Sodium Bicarbonate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
BP | Blood pressure |
CI | Confidence interval |
CPT | Core-peripheral temperature |
CRIB | Clinical Risk Index for Babies |
CRT | Capillary refill time |
GA | Gestational age |
IQR | Interquartile range |
IVC | Inferior vena cava |
IVH | Intraventricular hemorrhage |
MBI | Major brain injury |
NICU | Neonatal Intensive Care Unit |
NIRS | Near-infrared spectroscopy |
PDA | Patent ductus arteriosus |
MAP | Mean arterial blood pressure |
PPHN | Persistent pulmonary hypertension of the newborn |
RCT | Randomized controlled trial |
SVC | Superior vena cava |
TCI | Transient circulatory instability |
TnECHO | functional echocardiography |
References
- Agakidou, E.; Chatziioannidis, I.; Kontou, A.; Stathopoulou, T.; Chotas, W.; Sarafidis, K. An Update on Pharmacologic Management of Neonatal Hypotension: When, Why, and Which Medication. Children 2024, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Jovicic, M.; Milosavljevic, M.N.; Folic, M.; Pavlovic, R.; Jankovic, S.M. Predictors of Mortality in Early Neonatal Sepsis: A Single-Center Experience. Medicina 2023, 59, 604. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; Healy, D.B.; Chioma, R.; Dempsey, E.M. Evaluation of the Hypotensive Preterm Infant: Evidence-Based Practice at the Bedside? Children 2023, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Eskandar-Afshari, F.; Weiner, Y.; Billman, E.; McMillin, A.; Sella, N.; Roxlo, T.; Liu, J.; Leong, W.; Helfenbein, E.; et al. Clinical Study of Continuous Non-Invasive Blood Pressure Monitoring in Neonates. Sensors 2023, 23, 3690. [Google Scholar] [CrossRef]
- Das, R.; Nagpal, R.; Deshpande, S.; Kumar, G.; Singh, A.; Kallimath, A.; Suryawanshi, P. A survey on management practices of hypotension in preterm neonates: An Indian perspective. Front. Pediatr. 2024, 12, 1411719. [Google Scholar] [CrossRef]
- Davis, A.L.; Carcillo, J.A.; Aneja, R.K.; Deymann, A.J.; Lin, J.C.; Nguyen, T.C.; Okhuysen-Cawley, R.S.; Relvas, M.S.; Rozenfeld, R.A.; Skippen, P.W.; et al. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit. Care Med. 2017, 45, 1061–1093. [Google Scholar] [CrossRef]
- Lalin, O.; Gaga, S.; Hascoet, J.M. Management Practices for Hemodynamic Impairment in Neonates Born Prematurely: A Quality Improvement Project. J. Clin. Med. 2024, 13, 6848. [Google Scholar] [CrossRef]
- Chao, H.; Acosta, S.; Rusin, C.; Rhee, C. Comparison of Near-Infrared Spectroscopy-Based Cerebral Autoregulatory Indices in Extremely Low Birth Weight Infants. Children 2023, 10, 1361. [Google Scholar] [CrossRef]
- LeFlore, J.L.; Engle, W.D. Capillary refill time is an unreliable indicator of cardiovascular status in term neonates. Adv. Neonatal Care 2005, 5, 147–154. [Google Scholar] [CrossRef]
- Raichur, D.V.; Aralihond, A.P.; Kasturi, A.V.; Patil, D.H. Capillary refill time in term neonates: Bedside assessment. Indian J. Pediatr. 2001, 68, 613–615. [Google Scholar] [CrossRef]
- Gandhi, D.B.; Thakkar, P.A.; Parmar, N. Should We Consider Revising the Cutoff Value of Capillary Refill Time in Healthy Neonates? Perinatology 2024, 25, 77–83. [Google Scholar]
- Osborn, D.A.; Evans, N.; Kluckow, M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F168–F173. [Google Scholar] [CrossRef] [PubMed]
- Miletin, J.; Pichova, K.; Dempsey, E.M. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur. J. Pediatr. 2008, 168, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Wodey, E.; Pladys, P.; Bétrémieux, P.; Kerebel, C.; Ecoffey, C. Capillary refilling time and hemodynamics in neonates: A Doppler echocardiographic evaluation. Crit. Care Med. 1998, 26, 1437–1440. [Google Scholar] [CrossRef]
- Jetton, J.G.; Boohaker, L.J.; Sethi, S.K.; Wazir, S.; Rohatgi, S.; Soranno, D.E.; Chishti, A.S.; Woroniecki, R.; Mammen, C.; Swanson, J.R.; et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 2017, 1, 184–194. [Google Scholar] [CrossRef]
- Bidiwala, K.S.; Lorenz, J.M.; Kleinman, L.I. Renal Function Correlates of Postnatal Diuresis in Preterm Infants. Pediatrics 1988, 82, 50–58. [Google Scholar] [CrossRef]
- Junior, L.K.O.; Carmona, F.; Aragon, D.C.; Gonçalves-Ferri, W.A. Evaluation of urine output, lactate levels and lactate clearance in the transitional period in very low birth weight preterm infants. Eur. J. Pediatr. 2021, 180, 91–97. [Google Scholar] [CrossRef]
- Washio, Y.; Uchiyama, A.; Nakanishi, H.; Totsu, S.; Masumoto, K.; Kusuda, S. Hemodynamic analysis in infants with late-onset circulatory collapse. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2013, 55, 582–588. [Google Scholar] [CrossRef]
- Lambert, H.J.; Baylis, P.H.; Coulthard, M.G. Central–peripheral temperature difference, blood pressure, and arginine vasopressin in preterm neonates undergoing volume expansion. Arch. Dis. Child.-Fetal Neonatal Ed. 1998, 78, F43. [Google Scholar] [CrossRef]
- Surak, A.; Bischoff, A. Should SVC flow be a routine measure when performing targeted neonatal echocardiography? A narrative review. Pediatr. Neonatol. 2024, 65, 323–327. [Google Scholar] [CrossRef]
- Stranak, Z.; Semberova, J.; Barrington, K.J.; O’Donnell, C.P.F.; Marlow, N.; Naulaers, G.; Dempsey, E.M. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur. J. Pediatr. 2014, 173, 793–798. [Google Scholar] [CrossRef]
- Nadeem, M.; Clarke, A.; Dempsey, E.M. Day 1 serum lactate values in preterm infants less than 32 weeks gestation. Eur. J. Pediatr. 2009, 169, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.A.; Dewhurst, C.; Yoxall, C.W. The prognostic value of initial blood lactate concentration measurements in very low birthweight infants and their use in development of a new disease severity scoring system. Arch. Dis. Child. Fetal Neonatal Ed. 2010, 96, F275–F280. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Gilshenan, K.; Gray, P.H. Does lactate level in the first 12 hours of life predict mortality in extremely premature infants. J. Paediatr. Child Health 2009, 45, 263–267. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.H.; Yang, X.F.; Li, S.X.; Guo, J.Y. Predictive value of lactate concentration combined with lactate clearance rate in the prognosis of neonatal septic shock. Zhonghua Er Ke Za Zhi 2021, 59, 489–494. [Google Scholar] [CrossRef]
- Sharma, S.S.; Kumar, N.C.; Shanmugasundaram, C.; Kumar, V.H.; Kumar, G. Correlation of Serum Lactate Levels, Perfusion Index and Plethysmography Variability Index with Invasive Blood Pressure in Late Preterm and Term Infants with Shock. Indian Pediatr. 2023, 60, 364–368. [Google Scholar] [CrossRef]
- Pellicer, A.; Valverde, E.; Elorza, M.D.; Madero, R.; Gayá, F.; Quero, J.M.; Cabañas, F. Cardiovascular support for low birth weight infants and cerebral hemodynamics: A randomized, blinded, clinical trial. Pediatrics 2005, 115, 1501–1512. [Google Scholar] [CrossRef]
- Valverde, E.; Pellicer, A.; Madero, R.; Elorza, D.; Quero, J.; Cabañas, F. Dopamine versus epinephrine for cardiovascular support in low birth weight infants: Analysis of systemic effects and neonatal clinical outcomes. Pediatrics 2006, 117, e1213–e1222. [Google Scholar] [CrossRef]
- Batton, B.; Batton, D.G.; Riggs, T.W. Blood pressure during the first 7 days in premature infants born at postmenstrual age 23 to 25 weeks. Am. J. Perinatol. 2007, 24, 107–115. [Google Scholar] [CrossRef]
- Dempsey, E.M.; Barrington, K.J.; Marlow, N.; O’Donnell, C.P.F.; Miletin, J.; Naulaers, G.; Cheung, P.-Y.; Corcoran, J.D.; El-Khuffash, A.; Boylan, G.B.; et al. Hypotension in Preterm Infants (HIP) randomised trial. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 398–403. [Google Scholar] [CrossRef]
- Batton, B.; Li, L.; Newman, N.S.; Das, A.; Watterberg, K.L.; Yoder, B.A.; Faix, R.G.; Laughon, M.M.; Van Meurs, K.P.; Carlo, W.A.; et al. Feasibility study of early blood pressure management in extremely preterm infants. J. Pediatr. 2012, 161, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.S.; Sinha, A.K.; Morris, J.K.; Wertheim, D.; Shah, D.K.; Kempley, S.T. Blood pressure intervention levels in preterm infants: Pilot randomised trial. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 104, F298–F305. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.; Ahmed, F. Blood pressure normative values in preterm infants during postnatal transition. Pediatr. Res. 2024, 95, 698–704. [Google Scholar] [CrossRef]
- Kiss, J.K.; Gajda, A.; Mari, J.; Nemeth, J.; Bereczki, C. Oscillometric arterial blood pressure in haemodynamically stable neonates in the first 2 weeks of life. Pediatr Nephrol 2023, 38, 3369–3378. [Google Scholar] [CrossRef]
- Cordero, L.; Timan, C.J.; Waters, H.H.; Sachs, L.A. Mean arterial pressures during the first 24 hours of life in < or = 600-gram birth weight infants. J. Perinatol. 2002, 22, 348–353. [Google Scholar] [CrossRef]
- Dore, R.; Barnes, K.; Bremner, S.; Iwami, H.I.; Apele-Freimane, D.; Batton, B.; Dempsey, E.; Ergenekon, E.; Klein, A.; Pesco-Koplowitz, L.; et al. Neonatal blood pressure by birth weight, gestational age, and postnatal age: A systematic review. Matern. Health Neonatol. Perinatol. 2024, 10, 9. [Google Scholar] [CrossRef]
- Bruckner, M.; Schneider, M.; Reiterer, F.; Mileder, L.P.; Baik-Schneditz, N.; Pichler, G.; Urlesberger, B.; Schwaberger, B. Peripheral arterial catheters in extremely preterm infants born at less than 28 weeks of gestation-a single-center experience. Eur. J. Pediatr. 2024, 183, 4345–4350. [Google Scholar] [CrossRef]
- Ramasethu, J. Complications of vascular catheters in the neonatal intensive care unit. Clin. Perinatol. 2008, 35, 199–222. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Palatini, P.; Asmar, R.; Ioannidis, J.P.A.; Kollias, A.; Lacy, P.S.; McManus, R.J.; Myers, M.G.; Parati, G.; Shennan, A.; et al. Recommendations and Practical Guidance for performing and reporting validation studies according to the Universal Standard for the validation of blood pressure measuring devices by the Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO). J. Hypertens. 2019, 37, 459–466. [Google Scholar] [CrossRef]
- Dionne, J.M.; Bremner, S.; Baygani, S.K.; Batton, B.; Ergenekon, E.; Bhatt-Mehta, V.; Dempsey, E.M.; Kluckow, M.; Koplowitz, L.P.; Apele-Freimane, D.; et al. Method of Blood Pressure Measurement in Neonates and Infants: A Systematic Review and Analysis. J. Pediatr. 2020, 221, 23–31.e25. [Google Scholar] [CrossRef]
- Baker, M.D.; Maisels, M.J.; Marks, K.H. Indirect BP Monitoring in the Newborn: Evaluation of a New Oscillometer and Comparison of Upper- and Lower-Limb Measurements. Am. J. Dis. Child. 1984, 138, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Yiallourou, S.; Walker, A.M.; Horne, R.S.C. Validation of a new noninvasive method to measure blood pressure and assess baroreflex sensitivity in preterm infants during sleep. Sleep 2006, 29, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Takci, S.; Yigit, S.; Korkmaz, A.; Yurdakök, M. Comparison between oscillometric and invasive blood pressure measurements in critically ill premature infants. Acta Paediatr. 2011, 101, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Diprose, G.K.; Evans, D.H.; Archer, L.N.; Levene, M.I. Dinamap fails to detect hypotension in very low birthweight infants. Arch. Dis. Child. 1986, 61, 771–773. [Google Scholar] [CrossRef]
- Chia, F.; Ang, A.T.; Wong, T.W.; Tan, K.W.; Fung, K.P.; Lee, J.; Khin, K. Reliability of the Dinamap Non-invasive Monitor in the Measurement of Blood Pressure of III Asian Newborns. Clin. Pediatr. 1990, 29, 262–267. [Google Scholar] [CrossRef]
- Mullaly, R.; El-Khuffash, A.F. Haemodynamic assessment and management of hypotension in the preterm. Arch. Dis. Child.-Fetal Neonatal Ed. 2024, 109, 120. [Google Scholar] [CrossRef]
- Martini, S.; Thewissen, L.; Austin, T.; da Costa, C.S.; de Boode, W.P.; Dempsey, E.; Kooi, E.; Pellicer, A.; Rhee, C.J.; Riera, J.; et al. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: Where are we now? Pediatr. Res. 2024, 96, 884–895. [Google Scholar] [CrossRef]
- Pfurtscheller, D.; Wolfsberger, C.H.; Höller, N.; Schwaberger, B.; Mileder, L.; Baik-Schneditz, N.; Urlesberger, B.; Pichler, G. Correlation between arterial blood pressures and regional cerebral oxygen saturation in preterm neonates during postnatal transition-an observational study. Front. Pediatr. 2022, 10, 952703. [Google Scholar] [CrossRef]
- Baik, N.; Urlesberger, B.; Schwaberger, B.; Avian, A.; Mileder, L.P.; Schmölzer, G.M.; Pichler, G. Blood Pressure during the Immediate Neonatal Transition: Is the Mean Arterial Blood Pressure Relevant for the Cerebral Regional Oxygenation? Neonatology 2017, 112, 97–102. [Google Scholar] [CrossRef]
- Lemmers, P.M.A.; Toet, M.C.; van Schelven, L.J.; van Bel, F. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: The impact of respiratory distress syndrome. Exp. Brain Res. 2006, 173, 458–467. [Google Scholar] [CrossRef]
- Hahn, G.H.; Maroun, L.L.; Larsen, N.; Hougaard, D.M.; Sorensen, L.C.; Lou, H.C.; Greisen, G. Cerebral autoregulation in the first day after preterm birth: No evidence of association with systemic inflammation. Pediatr. Res. 2012, 71, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Vesoulis, Z.A.; Liao, S.M.; Mathur, A.M. Gestational age-dependent relationship between cerebral oxygen extraction and blood pressure. Pediatr. Res. 2017, 82, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Baik-Schneditz, N.; Pichler, G.; Schwaberger, B.; Binder-Heschl, C.; Mileder, L.P.; Reiss, I.; Avian, A.; Greimel, P.; Klaritsch, P.; Urlesberger, B. Effect of Intrauterine Growth Restriction on Cerebral Regional Oxygen Saturation in Preterm and Term Neonates during Immediate Postnatal Transition. Neonatology 2020, 117, 324–330. [Google Scholar] [CrossRef]
- Alderliesten, T.; Lemmers, P.M.A.; Smarius, J.J.M.; van de Vosse, R.E.; Baerts, W.; van Bel, F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J. Pediatr. 2012, 162, 698–704. [Google Scholar] [CrossRef]
- O’Leary, H.M.; Gregas, M.; Limperopoulos, C.; Zaretskaya, I.; Bassan, H.; Soul, J.S.; Di Salvo, D.N.; du Plessis, A.J. Elevated Cerebral Pressure Passivity Is Associated with Prematurity-Related Intracranial Hemorrhage. Pediatrics 2009, 124, 302–309. [Google Scholar] [CrossRef]
- Stammwitz, A.; von Siebenthal, K.; Bucher, H.U.; Wolf, M. Can the Assessment of Spontaneous Oscillations by near Infrared Spectrophotometry Predict Neurological Outcome of Preterm Infants. Adv. Exp. Med. Biol. 2016, 876, 521–531. [Google Scholar] [CrossRef]
- Binder-Heschl, C.; Urlesberger, B.; Schwaberger, B.; Koestenberger, M.; Pichler, G. Borderline hypotension: How does it influence cerebral regional tissue oxygenation in preterm infants? J. Matern.-Fetal Neonatal Med. 2015, 29, 2341–2346. [Google Scholar] [CrossRef]
- Bonestroo, H.J.C.; Lemmers, P.; Baerts, W.; van Bel, F. Effect of antihypotensive treatment on cerebral oxygenation of preterm infants without PDA. Pediatrics 2011, 128, e1502–e1510. [Google Scholar] [CrossRef]
- Kooi, E.M.W.; van der Laan, M.E.; Verhagen, E.A.; Van Braeckel, K.N.J.A.; Bos, A.F. Volume expansion does not alter cerebral tissue oxygen extraction in preterm infants with clinical signs of poor perfusion. Neonatology 2013, 103, 308–314. [Google Scholar] [CrossRef]
- Eriksen, V.R.; Hahn, G.H.; Greisen, G. Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants. Acta Paediatr. 2014, 103, 1221–1226. [Google Scholar] [CrossRef]
- da Costa, C.S.; Cardim, D.; Molnár, Z.; Kelsall, W.; Ng, I.H.X.; Czosnyka, M.; Smielewski, P.; Austin, T. Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatr. Res. 2019, 86, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Höller, N.; Baik-Schneditz, N.; Schwaberger, B.; Mileder, L.P.; Stadler, J.; Avian, A.; Pansy, J.; Urlesberger, B. Avoiding Arterial Hypotension in Preterm Neonates (AHIP)-A Single Center Randomised Controlled Study Investigating Simultaneous near Infrared Spectroscopy Measurements of Cerebral and Peripheral Regional Tissue Oxygenation and Dedicated Interventions. Front. Pediatr. 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Hoeller, N.; Wolfsberger, C.H.; Pfurtscheller, D.; Binder-Heschl, C.; Schwaberger, B.; Urlesberger, B.; Pichler, G. pFOE or pFTOE as an Early Marker for Impaired Peripheral Microcirculation in Neonates. Children 2022, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Raschetti, R.; Torchin, H.; Marchand-Martin, L.; Gascoin, G.; Cambonie, G.; Brissaud, O.; Rozé, J.-C.; Storme, L.; Ancel, P.-Y.; Mekontso-Dessap, A.; et al. In-hospital Outcomes and Early Hemodynamic Management According to Echocardiography Use in Hypotensive Preterm Infants: A National Propensity-Matched Cohort Study. Front. Cardiovasc. Med. 2022, 9, 852666. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Katheria, A.; Vora, F. Advances in Diagnosis and Management of Hemodynamic Instability in Neonatal Shock. Front. Pediatr. 2018, 6, 2. [Google Scholar] [CrossRef]
- de Boode, W.P.; Singh, Y.; Gupta, S.; Austin, T.; Bohlin, K.; Dempsey, E.; Groves, A.; Eriksen, B.H.; van Laere, D.; Molnar, Z.; et al. Recommendations for neonatologist performed echocardiography in Europe: Consensus Statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN). Pediatr. Res. 2016, 80, 465–471. [Google Scholar] [CrossRef]
- McNamara, P.J.; Jain, A.; El-Khuffash, A.; Giesinger, R.; Weisz, D.; Freud, L.; Levy, P.T.; Bhombal, S.; de Boode, W.; Leone, T.; et al. Guidelines and Recommendations for Targeted Neonatal Echocardiography and Cardiac Point-of-Care Ultrasound in the Neonatal Intensive Care Unit: An Update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2024, 37, 171–215. [Google Scholar] [CrossRef]
- Saini, S.S.; Sundaram, V.; Kumar, P.; Rohit, M.K. Functional echocardiographic preload markers in neonatal septic shock. J. Matern. Fetal Neonatal Med. 2022, 35, 6815–6822. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Saili, A.; Yadav, D.K.; Kumar, A. Correlation of functional echocardiography and clinical parameters in term neonates with shock. J. Neonatal Perinat. Med. 2020, 13, 167–173. [Google Scholar] [CrossRef]
- Gunjan, K.; Modi, M.; Thakur, A.; Soni, A.; Saluja, S. Echocardiographic characteristics in neonates with septic shock. Eur. J. Pediatr. 2024, 183, 1849–1855. [Google Scholar] [CrossRef]
- Rowan, K.M.; Angus, D.C.; Bailey, M.; Barnato, A.E.; Bellomo, R.; Canter, R.R.; Coats, T.J.; Delaney, A.; Gimbel, E.; Grieve, R.D.; et al. Early, Goal-Directed Therapy for Septic Shock—A Patient-Level Meta-Analysis. N. Engl. J. Med. 2017, 376, 2223–2234. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.; Symon, A.G.; Elton, R.A.; Zhu, C.; McIntosh, N. Intra-arterial blood pressure reference ranges, death and morbidity in very low birthweight infants during the first seven days of life. Early Hum. Dev. 1999, 56, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Moon, C.J.; Sung, I.K.; Youn, Y.A. Hypotension within 1 week of life associated with poor short- and long-term outcomes in very low birth weight infants. Cardiol. Young 2018, 28, 1037–1041. [Google Scholar] [CrossRef]
- Carrapato, M.R.G.; Andrade, T.; Caldeira, T. Hypotension in small preterms: What does it mean? J. Matern. Fetal Neonatal Med. 2019, 32, 4016–4021. [Google Scholar] [CrossRef]
- Durrmeyer, X.; Marchand-Martin, L.; Porcher, R.; Gascoin, G.; Roze, J.C.; Storme, L.; Favrais, G.; Ancel, P.Y.; Cambonie, G. Abstention or intervention for isolated hypotension in the first 3 days of life in extremely preterm infants: Association with short-term outcomes in the EPIPAGE 2 cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, 490–496. [Google Scholar] [CrossRef]
- Aladangady, N.; Sinha, A.; Banerjee, J.; Asamoah, F.; Mathew, A.; Chisholm, P.; Kempley, S.; Morris, J. Comparison of clinical outcomes between active and permissive blood pressure management in extremely preterm infants. NIHR Open Res. 2023, 3, 7. [Google Scholar] [CrossRef]
- Batton, B.; Li, L.; Newman, N.S.; Das, A.; Watterberg, K.L.; Yoder, B.A.; Faix, R.G.; Laughon, M.M.; Stoll, B.J.; Van Meurs, K.P.; et al. Use of Antihypotensive Therapies in Extremely Preterm Infants. Pediatrics 2013, 131, e1865–e1873. [Google Scholar] [CrossRef]
- Batton, B.; Li, L.; Newman, N.S.; Das, A.; Watterberg, K.L.; Yoder, B.A.; Faix, R.G.; Laughon, M.M.; Stoll, B.J.; Higgins, R.D.; et al. Early blood pressure, antihypotensive therapy and outcomes at 18–22 months’ corrected age in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 101, 201–206. [Google Scholar] [CrossRef]
- Dempsey, E.M. Challenges in Treating Low Blood Pressure in Preterm Infants. Children 2015, 2, 272–288. [Google Scholar] [CrossRef]
- Faust, K.; Härtel, C.; Preuß, M.; Rabe, H.; Roll, C.; Emeis, M.; Wieg, C.; Szabo, M.; Herting, E.; Göpel, W. Short-term outcome of very-low-birthweight infants with arterial hypotension in the first 24 h of life. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F388–F392. [Google Scholar] [CrossRef]
- Gogcu, S.; Washburn, L.; O’Shea, T.M. Treatment for hypotension in the first 24 postnatal hours and the risk of hearing loss among extremely low birth weight infants. J. Perinatol. 2020, 40, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Kim, E.S.; Kim, J.K.; Shin, J.H.; Sung, S.I.; Jung, J.M.; Chang, Y.S.; Park, W.S. Permissive hypotension in extremely low birth weight infants (≤1000 gm). Yonsei Med. J. 2012, 53, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Kuint, J.; Barak, M.; Morag, I.; Maayan-Metzger, A. Early treated hypotension and outcome in very low birth weight infants. Neonatology 2009, 95, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Miall-Allen, V.M.; de Vries, L.S.; Whitelaw, A.G. Mean arterial blood pressure and neonatal cerebral lesions. Arch. Dis. Child. 1987, 62, 1068–1069. [Google Scholar] [CrossRef]
- Watkins, A.M.C.; West, C.R.; Cooke, R.W.I. Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. Early Hum. Dev. 1989, 19, 103–110. [Google Scholar] [CrossRef]
- Bada, H.S.; Korones, S.B.; Perry, E.H.; Arheart, K.L.; Ray, J.D.; Pourcyrous, M.; Magill, H.L.; Runyan, W., 3rd; Somes, G.W.; Clark, F.C.; et al. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J. Pediatr. 1990, 117, 607–614. [Google Scholar] [CrossRef]
- D’Souza, S.W.; Janakova, H.; Minors, D.; Suri, R.; Waterhouse, J.; Appleton, G.; Ramesh, C.; Sims, D.G.; Chiswick, M.L. Blood pressure, heart rate, and skin temperature in preterm infants: Associations with periventricular haemorrhage. Arch. Dis. Child. Fetal Neonatal Ed. 1995, 72, F162–F167. [Google Scholar] [CrossRef]
- Limperopoulos, C.; Bassan, H.; Kalish, L.A.; Ringer, S.A.; Eichenwald, E.C.; Walter, G.; Moore, M.; Vanasse, M.; DiSalvo, D.N.; Soul, J.S.; et al. Current Definitions of Hypotension Do Not Predict Abnormal Cranial Ultrasound Findings in Preterm Infants. Pediatrics 2007, 120, 966–977. [Google Scholar] [CrossRef]
- Logan, J.W.; O’Shea, T.M.; Allred, E.N.; Laughon, M.M.; Bose, C.L.; Dammann, O.; Batton, D.G.; Kuban, K.C.; Paneth, N.; Leviton, A. Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns. J. Perinatol. 2011, 31, 524–534. [Google Scholar] [CrossRef]
- Trounce, J.Q.; Shaw, D.E.; Levene, M.I.; Rutter, N. Clinical risk factors and periventricular leucomalacia. Arch. Dis. Child. 1988, 63, 17–22. [Google Scholar] [CrossRef]
- Keir, A.K.; Karam, O.; Hodyl, N.; Stark, M.J.; Liley, H.G.; Shah, P.S.; Stanworth, S.J.; NeoBolus Study Group. International, multicentre, observational study of fluid bolus therapy in neonates. J. Paediatr. Child Health 2019, 55, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, E.M.; Barrington, K.J. Diagnostic criteria and therapeutic interventions for the hypotensive very low birth weight infant. J. Perinatol. 2006, 26, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.A.; Evans, N. Early volume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syst. Rev. 2004, 2004, CD002055. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, J.; Brandsma, E.; Kushnir, A. Effect of Administration of Normal Saline Bolus on Intraventricular Hemorrhage in Preterm Neonates. Pediatrics 2018, 141, 517. [Google Scholar] [CrossRef]
- Bakshi, S.; Koerner, T.; Knee, A.; Singh, R.; Vaidya, R. Effect of Fluid Bolus on Clinical Outcomes in Very Low Birth Weight Infants. J. Pediatr. Pharmacol. Ther. 2020, 25, 437–444. [Google Scholar] [CrossRef]
- Sehgal, A.; Gauli, B. Changes in respiratory mechanics in response to crystalloid infusions in extremely premature infants. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 325, L819–L825. [Google Scholar] [CrossRef]
- Ewer, A.K.; Tyler, W.; Francis, A.; Drinkall, D.; Gardosi, J.O. Excessive volume expansion and neonatal death in preterm infants born at 27-28 weeks gestation. Paediatr. Perinat. Epidemiol. 2003, 17, 180–186. [Google Scholar] [CrossRef]
- Ramaswamy, V.V.; Kumar, G.; Abdul Kareem, P.; Somasekhara Aradhya, A.; Suryawanshi, P.; Sahni, M.; Khurana, S.; Sharma, D.; More, K. Comparative efficacy of volume expansion, inotropes and vasopressors in preterm neonates with probable transitional circulatory instability in the first week of life: A systematic review and network meta-analysis. BMJ Paediatr. Open 2024, 8, e002500. [Google Scholar] [CrossRef]
- Krishnan, V.; Kumar, V.; Variane, G.F.T.; Carlo, W.A.; Bhutta, Z.A.; Sizonenko, S.; Hansen, A.; Shankaran, S.; Thayyil, S.; Guidelines, N.B.S. Need for more evidence in the prevention and management of perinatal asphyxia and neonatal encephalopathy in low and middle-income countries: A call for action. Semin. Fetal Neonatal Med. 2021, 26, 101271. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Garcia, D.; Margraf, L.R.; Perlman, J.M.; Laptook, R. Randomized Trial of Volume Infusion During Resuscitation of Asphyxiated Neonatal Piglets. Pediatr. Res. 2007, 61, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Mendler, M.R.; Schwarz, S.; Hechenrieder, L.; Kurth, S.; Weber, B.; Höfler, S.; Kalbitz, M.; Mayer, B.; Hummler, H. Successful Resuscitation in a Model of Asphyxia and Hemorrhage to Test Different Volume Resuscitation Strategies. A Study in Newborn Piglets After Transition. Front. Pediatr. 2018, 6, 192. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Perlman, J.M.; Laptook, R. Use of Volume Expansion During Delivery Room Resuscitation in Near-Term and Term Infants. Pediatrics 2005, 115, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Giesinger, R.E.; El Shahed, A.I.; Castaldo, M.P.; Breatnach, C.R.; Chau, V.; Whyte, H.E.; El-Khuffash, A.F.; Mertens, L.; McNamara, P.J. Impaired Right Ventricular Performance Is Associated with Adverse Outcome after Hypoxic Ischemic Encephalopathy. Am. J. Respir. Crit. Care Med. 2019, 200, 1294–1305. [Google Scholar] [CrossRef]
- Al Balushi, A.; Barbosa Vargas, S.; Maluorni, J.; Sanon, P.-N.; Rampakakis, E.; Saint-Martin, C.; Wintermark, P. Hypotension and Brain Injury in Asphyxiated Newborns Treated with Hypothermia. Am. J. Perinatol. 2018, 35, 31–38. [Google Scholar] [CrossRef]
- Osborn, D.; Evans, N.; Kluckow, M. Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. J. Pediatr. 2002, 140, 183–191. [Google Scholar] [CrossRef]
- Kumagai, T.; Higuchi, R.; Higa, A.; Tsuno, Y.; Hiramatsu, C.; Sugimoto, T.; Booka, M.; Okutani, T.; Yoshikawa, N. Correlation between echocardiographic superior vena cava flow and short-term outcome in infants with asphyxia. Early Hum. Dev. 2013, 89, 307–310. [Google Scholar] [CrossRef]
- Montaldo, P.; Cuccaro, P.; Caredda, E.; Pugliese, U.; De Vivo, M.; Orbinato, F.; Magri, D.; Rojo, S.; Rosso, R.; Santantonio, A.; et al. Electrocardiographic and echocardiographic changes during therapeutic hypothermia in encephalopathic infants with long-term adverse outcome. Resuscitation 2018, 130, 99–104. [Google Scholar] [CrossRef]
- DiSessa, T.G.; Leitner, M.; Ti, C.C.; Gluck, L.; Coen, R.; Friedman, W.F. The cardiovascular effects of dopamine in the severely asphyxiated neonate. J. Pediatr. 1981, 99, 772–776. [Google Scholar] [CrossRef]
- Abiodun, M.; Oluwafemi, O.; Badejoko, B. A randomized controlled trial of the impact of dopamine on outcome of asphyxiated neonates. Niger. J. Paediatr. 2018, 45, 86–90. [Google Scholar]
- Pazandak, C.; McPherson, C.; Abubakar, M.; Zanelli, S.; Fairchild, K.; Vesoulis, Z. Blood Pressure Profiles in Infants with Hypoxic Ischemic Encephalopathy (HIE), Response to Dopamine, and Association with Brain Injury. Front. Pediatr. 2020, 8, 512. [Google Scholar] [CrossRef] [PubMed]
- Walther, F.J.; Siassi, B.; Ramadan, N.A.; Wu, P.Y. Cardiac output in newborn infants with transient myocardial dysfunction. J. Pediatr. 1985, 107, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, K.; Szakmar, E.; Meder, U.; Cseko, A.; Szabo, A.J.; Szabo, M.; Jermendy, A. Serum cortisol levels in asphyxiated infants with hypotension. Early Hum. Dev. 2018, 120, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, K.; Szakmar, E.; Meder, U.; Szakacs, L.; Cseko, A.; Vatai, B.; Szabo, A.J.; McNamara, P.J.; Szabo, M.; Jermendy, A. A Randomized Controlled Study of Low-Dose Hydrocortisone Versus Placebo in Dopamine-Treated Hypotensive Neonates Undergoing Hypothermia Treatment for Hypoxic-Ischemic Encephalopathy. J. Pediatr. 2019, 211, 13–19.e13. [Google Scholar] [CrossRef] [PubMed]
- Gillam-Krakauer, M.; Mahajan, K. Patent Ductus Arteriosus. [Updated 8 August 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430758/ (accessed on 22 January 2025).
- Bagheri, M.M.; Niknafs, P.; Sabsevari, F.; Torabi, M.H.; Bahman Bijari, B.; Noroozi, E.; Mossavi, H. Comparison of Oral Acetaminophen Versus Ibuprofen in Premature Infants with Patent Ductus Arteriosus. Iran J. Pediatr. 2016, 26, e3975. [Google Scholar] [CrossRef]
- Tharakan, J.; Venkateshwaran, S. Large patent ductus arteriosus: To close or not to close. Ann. Pediatr. Cardiol. 2012, 5, 141–144. [Google Scholar] [CrossRef]
- Giesinger, R.E.; Bischoff, A.R.; McNamara, P.J. Anticipatory perioperative management for patent ductus arteriosus surgery: Understanding postligation cardiac syndrome. Congenit. Heart Dis. 2019, 14, 311–316. [Google Scholar] [CrossRef]
- Bouissou, A.; Rakza, T.; Klosowski, S.; Tourneux, P.; Vanderborght, M.; Storme, L. Hypotension in preterm infants with significant patent ductus arteriosus: Effects of dopamine. J. Pediatr. 2008, 153, 790–794. [Google Scholar] [CrossRef]
- Liet, J.M.; Boscher, C.; Gras-Leguen, C.; Gournay, V.; Debillon, T.; Rozé, J.C. Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J. Pediatr. 2002, 140, 373–375. [Google Scholar] [CrossRef]
- Hwang, S.J.; Lee, K.H.; Hwang, J.H.; Choi, C.W.; Shim, J.W.; Chang, Y.S.; Park, W.S. Factors affecting the response to inhaled nitric oxide therapy in persistent pulmonary hypertension of the newborn infants. Yonsei Med. J. 2004, 45, 49–55. [Google Scholar] [CrossRef]
- Ni, M.; Kaiser, J.R.; Moffett, B.S.; Rhee, C.J.; Placencia, J.; Dinh, K.L.; Hagan, J.L.; Rios, D.R. Use of Vasopressin in Neonatal Intensive Care Unit Patients with Hypotension. J. Pediatr. Pharmacol. Ther. 2017, 22, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Tourneux, P.; Rakza, T.; Bouissou, A.; Krim, G.; Storme, L. Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension. J. Pediatr. 2008, 153, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Wong, H.R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 2010, 37, 439–479. [Google Scholar] [CrossRef]
- Seri, I. Circulatory support of the sick preterm infant. Semin. Neonatol. 2001, 6, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Seri, I.; Noori, S. Diagnosis and treatment of neonatal hypotension outside the transitional period. Early Hum. Dev. 2005, 81, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.A.; Paradisis, M.; Evans, N. The effect of inotropes on morbidity and mortality in preterm infants with low systemic or organ blood flow. Cochrane Database Syst. Rev. 2007, 2007, CD005090. [Google Scholar] [CrossRef]
- Ismail, R.; Awad, H.; Allam, R.; Youssef, O.; Ibrahim, M.; Shehata, B. Methylene blue versus vasopressin analog for refractory septic shock in the preterm neonate: A randomized controlled trial. J. Neonatal Perinat. Med. 2022, 15, 265–273. [Google Scholar] [CrossRef]
- Ng, P.C. Is there a “normal” range of serum cortisol concentration for preterm infants? Pediatrics 2008, 122, 873–875. [Google Scholar] [CrossRef]
- Aucott, S.W. The challenge of defining relative adrenal insufficiency. J. Perinatol. 2012, 32, 397–398. [Google Scholar] [CrossRef]
- Altit, G.; Vigny-Pau, M.; Barrington, K.; Dorval, V.G.; Lapointe, A. Corticosteroid Therapy in Neonatal Septic Shock-Do We Prevent Death? Am. J. Perinatol. 2018, 35, 146–151. [Google Scholar] [CrossRef]
- Reynolds, J.W.; Hanna, C.E. Glucocorticoid-responsive hypotension in extremely low birth weight newborns. Pediatrics 1994, 94, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Seri, I.; Tan, R.; Evans, J. Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics 2001, 107, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Lee, C.H.; Bnur, F.L.; Chan, I.H.; Lee, A.W.; Wong, E.; Chan, H.B.; Lam, C.W.; Lee, B.S.; Fok, T.F. A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 2006, 117, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Friedlich, P.; Wong, P.; Ebrahimi, M.; Siassi, B.; Seri, I. Hemodynamic changes after low-dosage hydrocortisone administration in vasopressor-treated preterm and term neonates. Pediatrics 2006, 118, 1456–1466. [Google Scholar] [CrossRef]
- Ng, P.C. Adrenocortical insufficiency and refractory hypotension in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F571–F576. [Google Scholar] [CrossRef]
- Watterberg, K.L. Hydrocortisone Dosing for Hypotension in Newborn Infants: Less Is More. J. Pediatr. 2016, 174, 23–26.e21. [Google Scholar] [CrossRef]
- Nakanishi, T.; Okuda, H.; Nakazawa, M.; Takao, A. Effect of acidosis on contractile function in the newborn rabbit heart. Pediatr. Res. 1985, 19, 482–488. [Google Scholar] [CrossRef]
- Collins, A.; Sahni, R. Uses and misuses of sodium bicarbonate in the neonatal intensive care unit. Semin. Fetal Neonatal Med. 2017, 22, 336–341. [Google Scholar] [CrossRef]
- Al-Shehri, H.; Alqahtani, R.; Alromih, A.M.; Altamimi, A.; Alshehri, K.; Almehaideb, L.; Jabari, M.; Alzayed, A. The practices of intravenous sodium bicarbonate therapy in neonatal intensive care units: A multi-country survey. Medicine 2023, 102, e34337. [Google Scholar] [CrossRef]
- Aschner, J.L.; Poland, R.L. Sodium bicarbonate: Basically useless therapy. Pediatrics 2008, 122, 831–835. [Google Scholar] [CrossRef]
- Beveridge, C.J.; Wilkinson, A.R. Sodium bicarbonate infusion during resuscitation of infants at birth. Cochrane Database Syst. Rev. 2006, 2006, CD004864. [Google Scholar] [CrossRef]
- Lawn, C.J.; Weir, F.J.; McGuire, W. Base administration or fluid bolus for preventing morbidity and mortality in preterm infants with metabolic acidosis. Cochrane Database Syst. Rev. 2005, 2005, CD003215. [Google Scholar] [CrossRef] [PubMed]
Study Year Design | GA/ BW | PNA | n | Method | Definition | Outcome | Mortality | IVH/PVL | NEC | ROP | ND |
---|---|---|---|---|---|---|---|---|---|---|---|
Batton [31] 2012 RCT | 23–27 wks | <24 h | 10 T: 4 P: 6 | IABP | 1–6 h—24 mm Hg 7–12 h—25 mm Hg 13–18 h—26 mm Hg 19–24 h—27 mm Hg | Feasibility study, study was not feasible | No differences T: 0/4 (0%) P: 2/6 (33%) | No differences T: 0/4 (0%) P: 2/6 (33%) | No differences T: 0/4 (0%) P: 0/6 (0%) | NS | NS |
Pereira [32] 2017 RCT | <29 wks | <72 h | 60 T: 39 P: 21 | Both | T: <30 mm Hg, <GA P: signs of poor perfusion or <19 mm Hg | No differences in mortality or MBI | No differences T: 7/39 (18%) P: 2/21 (9.5%) | No differences IVH T: 6/39 (15.3%) P: 1/21 (4.7%) cPVL T: 0/39 (0%) P: 0/21 (0%) | No differences T: 9/39 (23%) P: 6/21 (28%) | No differences T: 3/39 (7.6%) P: 2/21 (9.5%) | NS |
Dempsey [30] 2021 RCT | <28 wks | <72 h | 58 T: 29 P: 29 | IABP | <GA for 15 min | No differences in mortality or MBI | No differences T: 6/29 (21%) P: 7/29 (24%) | No differences IVH: T: 5/29 (17%) P: 2/29 (7%) PVL T: 2/29 (7%) P: 2/29 (7%) | No differences T: 1/29 (3%) P: 4/29 (14%) | NS | NS |
Aladangady [76] 2023 Retrospective | 23–29 wks | <72 h | 671 T: 263 P: 408 | Both | <30 mm Hg | Death and IVH was similar; P: NEC was higher | No differences T: 56/263 (21.3%) P: 104/408 (25.5%) | No differences T: 21/263 (8%) P: 51/408 (12.5%) | P: Increased T: 37/263 (14.1%) P: 85/408 (20.8%) | NS | NS |
Batton [77] 2013 Prospective | 23–27 wks | <24 h | 367 T: 203 P: 164 | Both | 15 definitions of low BP based on GA, <5th percentile and <25 mm Hg | T: Increased mortality, increased IVH grade 3/4 or any IVH, increased ROP | T: Increase T: 66/203 (33%) P: 36/164 (22%) | T: IVH increased T: 44/203 (22%) P: 18/164 (11%) cPVL: no differences T: 11/203 (5%) P: 7/164 (4%) | No differences T: 16/203 (8%) P: 11/164 (7%) | T: Increase T: 31/203 (15%) P: 13/164 (8%) | NS |
Batton [78] 2015 Prospective | 23–27 wks | <24 h | 356 T: 198 P: 158 | Both | Need for treatment, BP < GA | T: Increased Death or any NDI at 18–22 months | T: Increased T: 57/198 (28%) P: 27/158 (17%) | T: Increase IVH/PVL T: 49/198 (25%) P: 19/158 (12%) | No differences T: 8/198 (4%) P: 6/158 (3.7%) | NS | No differences T: 30/198 (15.1%) P:15/158 (9.4%) |
Batton [29] 2009 Retrospective | 23–25 wks | <72 h | 101 T: 70 P: 31 | Both | ≥3 MAP ≤25 mm Hg | neonates with low BP (± treatment) had worse ND | No difference T: 45/70 (64%) P: 23/31 (74%) | No difference T: 16/70 (23%) P: 9/31 (29%) | No difference T: 3/70 (4%) P: 4/31 (13%) | No difference T: 28/70 (40%) P: 13/31 (43%) | No difference T: 48/70 (68%) P: 19/31 (61%) |
Durrmeyer [75] 2017 Prospective | <29 wks | <72 h | 238 T: 119 P: 119 | Both | <GA in weeks | T: Increased survival without severe morbidity T: Low MBI | T decrease T: 20/119 (16.8%) P: 27/119 (22.6%) | T decrease T: 12/119 (10.1%) P: 31/117 (26.5%) | No differences T: 4/119 (3.4%) P: 6/118 (5.1%) | No differences T: 1/99 (1%) P: 2/92 (2.2%) | NS |
Dempsey [79] 2009 Retrospective | <1000 gm | <72 h | 104 T: 18 P: 34 N: 52 | Both | P: BP < GA with good perfusion T: BP < GA but poor perfusion | T: increased [OR 9.7, 95% CI: 2.6–36] T: Increase mortality or MBI, surgical NEC, or GI perforation | T increase T: 13/18 (72%) P: 4/34 (12.5%) N: 10/52 (19%) | T increase IVH T: 5/18 (27.7%) P: 4/34 (12%) N: 2/52 (3.8%) | No differences T: 2/18 (11%) P: 3/34 (9%) N: 4/52 (8%) | No differences | No differences |
Faust [80] 2015 Retrospective | <32 wks | <24 h | 4907 | Both | <median as per GA | Lowest MAP associate with mortality 67/1064 (6.3%), IVH 255/1064 (24%) and BPD 227/1064 (21.3%) | T: No differences [OR 1.48, 95% CI 0.92, 2.38] | T: Increase [OR 1.86, 95% CI: 1.43, 2.42] | NS | No differences | NS |
Gogcu [81] 2020 Case-control study | <1000 gm | <24 h | 100 T: 34 P: 66 | Both | <GA in weeks | Hypotension requiring treatment associated with increased SNHL risk | NS | T: 9/34 (27%) P: 9/66 (14%) | NS | NS | 15/25 (60%) Hearing impairment required treatment; 19/75 (25%) no hearing impairment group required treatment |
Ahn [82] 2012 Retrospective | <1000 gm | <72 h | 261 T: 47 P: 104 N: 110 | Both | <GA in weeks | T: Increase in mortality, IVH, BPD | T increase T: 24/47 (51%), P: 17/104 (16%) N: 13/110 (12%) | T increase IVH >3 T: 18/40 (45%) P: 18/104 (17%) N: 9/110 (8%) | T increase T: 6/34 (18%) P: 10/99 (10%) N: 7/109 (6%) | T increase T: 13/33 (39%) P: 26/97 (27%) N: 23/104 (22%) | MDI < 75 P: 3/36 (8%) N: 3/30 (10%) CPP: 15/83 (18%) N: 14/89 (16%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar Krishnegowda, V.; Prasath, A.; Vadakkencherry Ramaswamy, V.; Trevisanuto, D. Neonatal Shock: Current Dilemmas and Future Research Avenues. Children 2025, 12, 128. https://doi.org/10.3390/children12020128
Kumar Krishnegowda V, Prasath A, Vadakkencherry Ramaswamy V, Trevisanuto D. Neonatal Shock: Current Dilemmas and Future Research Avenues. Children. 2025; 12(2):128. https://doi.org/10.3390/children12020128
Chicago/Turabian StyleKumar Krishnegowda, Vijay, Arun Prasath, Viraraghavan Vadakkencherry Ramaswamy, and Daniele Trevisanuto. 2025. "Neonatal Shock: Current Dilemmas and Future Research Avenues" Children 12, no. 2: 128. https://doi.org/10.3390/children12020128
APA StyleKumar Krishnegowda, V., Prasath, A., Vadakkencherry Ramaswamy, V., & Trevisanuto, D. (2025). Neonatal Shock: Current Dilemmas and Future Research Avenues. Children, 12(2), 128. https://doi.org/10.3390/children12020128