Infant Viability in Severe Preeclampsia: Management Strategies and the Potential Role of Calprotectin—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Short Definition and Monitoring of Preeclampsia
- -
- Thrombocytopenia (Tr,100,000 3 109/L);
- -
- Impaired liver function;
- -
- Severe epigastric pain;
- -
- Renal insufficiency in the absence of other renal disease;
- -
- Pulmonary edema;
- -
- Headaches;
- -
- Visual symptoms [1].
Monitoring the Onset of PE and IUGR
4. Placental Malperfusion and Related Biomarkers
5. Perinatal Outcomes and Infant Viability
6. Calprotectin as a Potential Biomarker in PE and Its Relationship with Neonatal Viability
7. Current Issues and Future Perspectives
7.1. Neonatal Morbidity/Mortality
Prolonging Gestation
7.2. Antioxidant Therapy
7.3. Proton Pump Inhibitors
7.4. Pravastatin
7.5. Metformin
7.6. Plasma Apheresis to Reduce sFLT-1 Levels
7.7. Progesterone
7.8. Monoclonal Antibody
7.9. Calprotectin Inhibitors
Strength and Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PE | preeclampsia |
IUGR | intrauterine growth restriction |
ISUOG | International Society of Ultrasound in Obstetrics and Gynecology |
FGR | fetal growth restriction |
TAS | systolic blood pressure |
TAD | diastolic blood pressure |
CTG | cardiotocography |
PAPPA | plasma protein-A |
sFlt-1 | soluble fms-like tyrosine kinase-1 |
PlGF | placental growth factor |
VEGF | vascular endothelial growth factor receptor-1 |
SMFM | Society for Maternal–Fetal Medicine |
HELLP syndrome | hemolysis, elevated liver enzymes, low platelets |
NICA | neonatal intensive care |
MVM | maternal vascular malperfusion |
FVM | fetal vascular malperfusion |
ACA | Acute Chorioamnionitis |
VUE | Villitis of Unknown Etiology |
IL-6 | interleukin 6 |
NETs | neutrophil extracellular traps |
SLE | systemic lupus erythematosus |
RA | rheumatoid arthritis |
APS | antiphospholipid syndrome |
aPLs | antiphospholipid antibodies |
TTP | thrombotic thrombocytopenic purpura |
ROS | radical oxygen species |
EVs | extracellular vesicles |
References
- American College of Obstetricians and Gynecologists. ACOG practice bulletin: Clinical management guidelines for obstetrician-gynecologists number 76, October 2006: Postpartum hemorrhage. Obstet. Gynecol. 2006, 108, 1039–1047. [Google Scholar]
- Williamson, R. Pre-Clinical Characterisation of Mitochondrial Antioxidants as Novel Therapeutics for Pre-Eclampsia. Ph.D. Thesis, University College Cork, Cork, Ireland, 2019. [Google Scholar]
- Black, K.D.; Horowitz, J.A. Inflammatory markers and preeclampsia: A systematic review. Nurs. Res. 2018, 67, 242–251. [Google Scholar]
- Roten, L.T. Genetic Predisposition for Development of Preeclampsia: Candidate Gene Studies in the HUNT (Nord-Trøndelag Health Study) Population. Ph.D.Thesis, Norwegian University of Science and Technology Faculty of Medicine Department of Cancer Research and Molecular Medicine, Trondheim, Norway, 2009. [Google Scholar]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 204: Fetal growth restriction. Obstet. Gynecol. 2019, 133, e97–e109. [Google Scholar] [CrossRef]
- Lees, C.C.; Stampalija, T.; Baschat, A.; da Silva Costa, F.; Ferrazzi, E.; Figueras, F.; Unterscheider, J. ISUOG Practice Guidelines: Diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020, 56, 298–312. [Google Scholar] [CrossRef]
- Rodriguez-Sibaja, M.J.; Lopez-Diaz, A.J.; Valdespino-Vazquez, M.Y.; Acevedo-Gallegos, S.; Amaya-Guel, Y.; Camarena-Cabrera, D.M.; Lumbreras-Marquez, M.I. Placental pathology lesions: International Society for Ultrasound in Obstetrics and Gynecology vs Society for Maternal-Fetal Medicine fetal growth restriction definitions. Am. J. Obstet. Gynecol. MFM 2024, 6, 101422. [Google Scholar] [CrossRef]
- Kvehaugen, A.S.; Dechend, R.; Ramstad, H.B.; Troisi, R.; Fugelseth, D.; Staff, A.C. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension 2011, 58, 63–69. [Google Scholar] [CrossRef]
- Mitranovici, M.I.; Chiorean, D.M.; Moraru, R.; Moraru, L.; Caravia, L.; Tiron, A.T.; Cotoi, O.S. Understanding the pathophysiology of preeclampsia: Exploring the role of antiphospholipid antibodies and future directions. J. Clin. Med. 2024, 13, 2668. [Google Scholar] [CrossRef]
- Buicu, C.F.; Mitranovici, M.I.; Voidazan, S.; Craina, M. Metoprolol Use in Hypertensive Pregnancy Disorder—A Single-center Study. J. Cardiovasc. Emergencies 2025, 11, 20–25. [Google Scholar] [CrossRef]
- Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; Delgado, J.L.; Vojtassakova, D.; Nicolaides, K.H. Aspirin for Evidence-Based Preeclampsia Prevention trial: Influence of compliance on beneficial effect of aspirin in prevention of preterm preeclampsia. Am. J. Obstet. Gynecol. 2017, 217, 685.e1–685.e5. [Google Scholar] [CrossRef]
- Holthe, M.R.; Staff, A.C.; Berge, L.N.; Fagerhol, M.K.; Lyberg, T. Calprotectin plasma level is elevated in preeclampsia. Acta Obstet. Gynecol. Scand. 2005, 84, 151–154. [Google Scholar] [CrossRef]
- Singh, P.; Ali, S.A. Multifunctional role of S100 protein family in the immune system: An update. Cells 2022, 11, 2274. [Google Scholar] [CrossRef]
- Pergialiotis, V.; Prodromidou, A.; Pappa, E.; Vlachos, G.D.; Perrea, D.N.; Papantoniou, N. An evaluation of calprotectin as serum marker of preeclampsia: A systematic review of observational studies. Inflamm. Res. 2016, 65, 95–102. [Google Scholar] [CrossRef]
- Bouter, A.R.; Duvekot, J.J. Evaluation of the clinical impact of the revised ISSHP and ACOG definitions on preeclampsia. Pregnancy Hypertens 2020, 19, 206–211. [Google Scholar] [CrossRef]
- Dymara-Konopka, W.; Laskowska, M.; Oleszczuk, J. Preeclampsia-current management and future approach. Curr. Pharm. Biotechnol. 2018, 19, 786–796. [Google Scholar] [CrossRef]
- Stampalija, T.; Lees, C.; Ghi, T.; Cornette, J.; Gyselaers, W.; Ferrazzi, E.; Mousa, T.; Spaanderman, M.; Thilaganathan, B.; Valensise, H.; et al. ISUOG Consensus Statement on maternal hemodynamic assessment in hypertensive disorders of pregnancy and fetal growth restriction. Ultrasound Obstet. Gynecol. 2025. early view. [Google Scholar] [CrossRef]
- Alnaes-Katjavivi, P.; Roald, B.; Staff, A.C. Uteroplacental acute atherosis in preeclamptic pregnancies: Rates and clinical outcomes differ by tissue collection methods. Pregnancy Hypertens 2020, 19, 11–17. [Google Scholar] [CrossRef]
- Chiorean, D.M.; Cobankent Aytekin, E.; Mitranovici, M.I.; Turdean, S.G.; Moharer, M.S.; Cotoi, O.S.; Toru, H.S. Human placenta and evolving insights into pathological changes of preeclampsia: A comprehensive review of the last decade. Fetal Pediatr. Pathol. 2024, 43, 33–46. [Google Scholar] [CrossRef]
- Schiopu, A.; Cotoi, O.S. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediat. Inflamm. 2013, 2013, 828354. [Google Scholar] [CrossRef]
- Than, N.G.; Romero, R.; Goodman, M.; Weckle, A.; Xing, J.; Dong, Z.; Xu, Y.; Tarquini, F.; Szilagyi, A.; Gal, P.; et al. A primate subfamily of galectins expressed at the maternal–fetal interface that promote immune cell death. Proc. Natl. Acad. Sci. USA 2009, 106, 9731–9736. [Google Scholar] [CrossRef]
- Vince, G.S.; Starkey, P.M.; Austgulen, R.; Kwiatkowski, D.; Redman, C.W.G. Interleukin-6, turnour necrosis factor and soluble turnour necrosis factor receptors in women with pre-eclampsia. BJOG Int. J. Obstet. Gynaecol. 1995, 102, 20–25. [Google Scholar] [CrossRef]
- Berkane, N.; Liere, P.; Oudinet, J.P.; Hertig, A.; Lefèvre, G.; Pluchino, N.; Schumacher, M.; Chabbert-Buffet, N. From pregnancy to preeclampsia: A key role for estrogens. Endocr. Rev. 2017, 38, 123–144. [Google Scholar] [CrossRef]
- Sibai, B.M.; Publications Committee; Society for Maternal-Fetal Medicine. Evaluation and management of severe preeclampsia before 34 weeks’ gestation. Am. J. Obstet. Gynecol. 2011, 205, 191–198. [Google Scholar] [CrossRef]
- Redline, R.W.; Ravishankar, S.; Bagby, C.M.; Saab, S.T.; Zarei, S. Four major patterns of placental injury: A stepwise guide for understanding and implementing the 2016 Amsterdam consensus. Mod. Pathol. 2021, 34, 1074–1092. [Google Scholar] [CrossRef]
- Stepan, H.; Hund, M.; Andraczek, T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension 2020, 75, 918–926. [Google Scholar] [CrossRef]
- Godtfredsen, A.C.; Sidelmann, J.J.; Dolleris, B.B.; Jørgensen, J.S.; Johansen, E.K.J.; Pedersen, M.F.B.; Palarasah, Y.; Gram, J.B. Fibrinolytic changes in women with preeclampsia. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221126172. [Google Scholar] [CrossRef]
- Crocker, I.P.; Cooper, S.; Ong, S.C.; Baker, P.N. Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am. J. Pathol. 2003, 162, 637–643. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Seow, K.M.; Chen, K.H. The pathophysiological, genetic, and hormonal changes in preeclampsia: A systematic review of the molecular mechanisms. Int. J. Mol. Sci. 2024, 25, 4532. [Google Scholar] [CrossRef]
- Michita, R.T.; Kaminski, V.D.L.; Chies, J.A.B. Genetic variants in preeclampsia: Lessons from studies in Latin-American populations. Front. Physiol. 2018, 9, 1771. [Google Scholar] [CrossRef]
- Irimia, T.; Pușcașiu, L.; Mitranovici, M.-I.; Crișan, A.; Budianu, M.A.; Bănescu, C.; Chiorean, D.M.; Niculescu, R.; Sabău, A.-H.; Cocuz, I.-G.; et al. Oxidative-stress related gene polymorphism in endometriosis-associated infertility. Medicina 2022, 58, 1105. [Google Scholar] [CrossRef]
- Bombrys, A.E.; Barton, J.R.; Nowacki, E.A.; Habli, M.; Pinder, L.; How, H.; Sibai, B.M. Expectant management of severe preeclampsia at less than 27 weeks’ gestation: Maternal and perinatal outcomes according to gestational age by weeks at onset of expectant management. Am. J. Obstet. Gynecol. 2008, 199, 247.e1. [Google Scholar] [CrossRef]
- Witlin, A.G.; Saade, G.R.; Mattar, F.; Sibai, B.M. Predictors of neonatal outcome in women with severe preeclampsia or eclampsia between 24 and 33 weeks’ gestation. Am. J. Obstet. Gynecol. 2000, 182, 607–611. [Google Scholar] [CrossRef]
- Shear, R.M.; Rinfret, D.; Leduc, L. Should we offer expectant management in cases of severe preterm preeclampsia with fetal growth restriction? Am. J. Obstet. Gynecol. 2005, 192, 1119–1125. [Google Scholar] [CrossRef]
- Holthe, M.R.; Lyberg, T.; Staff, A.C.; Berge, L.N. Leukocyte-platelet interaction in pregnancies complicated with preeclampsia. Platelets 2005, 16, 91–97. [Google Scholar] [CrossRef]
- Braekke, K.; Holthe, M.R.; Harsem, N.K.; Fagerhol, M.K.; Staff, A.C. Calprotectin, a marker of inflammation, is elevated in the maternal but not in the fetal circulation in preeclampsia. Am. J. Obstet. Gynecol. 2005, 193, 227–233. [Google Scholar] [CrossRef]
- Rezniczek, G.A.; Förster, C.; Hilal, Z.; Westhoff, T.; Tempfer, C.B. Calprotectin in pregnancy and pregnancy-associated diseases: A systematic review and prospective cohort study. Arch. Gynecol. Obstet. 2019, 299, 1567–1577. [Google Scholar] [CrossRef]
- Katiyar, H.; Yadav, S.; Singh, S.; Mishra, A.K.; Pradhan, M.; Lingaiah, R.; Goel, A. Evaluation of Serum Calprotectin as an Alternative Diagnostic Marker for Intrahepatic Cholestasis of Pregnancy. J. Clin. Med. 2024, 13, 5644. [Google Scholar] [CrossRef]
- Michaud, A.; Ng-Pellegrino, A.; Birk, R.; Stawicki, S.P. The 2022 St. Luke’s University health network annual research symposium: Event highlights and scientific abstracts. Int. J. Acad. Med. 2022, 8, 151–188. [Google Scholar] [CrossRef]
- Montecinos, L.; Eskew, J.D.; Smith, A. What is next in this “age” of heme-driven pathology and protection by hemopexin? An update and links with iron. Pharmaceuticals 2019, 12, 144. [Google Scholar] [CrossRef]
- Goldmann, O.; Medina, E. The expanding world of extracellular traps: Not only neutrophils but much more. Front. Immunol. 2013, 3, 420. [Google Scholar] [CrossRef]
- Jiménez-Cortegana, C.; Salamanca, E.; Palazón-Carrión, N.; Sánchez-Jiménez, F.; Pérez-Pérez, A.; Vilariño-García, T.; Fuentes, S.; Martín, S.; Jiménez, M.; Galván, R.; et al. Circulating myeloid-derived suppressor cells may be a useful biomarker in the follow-up of unvaccinated COVID-19 patients after hospitalization. Front. Immunol. 2023, 14, 1266659. [Google Scholar] [CrossRef]
- Marković, S.; Popović, T.; Jelušić, A.; Iličić, R.; Stanković, S. Genetic Insight into the Isolates Causing Blackleg Disease on Potato. In Proceedings of the 6th Congress of the Serbian Genetic Society, Vrnjačka Banja, Serbia, 13–17 October 2019; p. 165. [Google Scholar]
- Aberšek, N.; Tsiartas, P.; Jonsson, D.; Grankvist, A.; Barman, M.; Hallingström, M.; Jacobsson, B. Calprotectin levels in amniotic fluid in relation to intra-amniotic inflammation and infection in women with preterm labor with intact membranes: A retrospective cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 272, 24–29. [Google Scholar] [CrossRef]
- Moodley, M.; Moodley, J.; Naicker, T. Neutrophil extracellular traps: The synergy source in the placentae of HIV infected women with pre-eclampsia. Pregnancy Hypertens 2020, 20, 69–74. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, L.; Jin, P.; Li, N.; Chen, X.; Yang, A.; Qi, H. NET-targeted nanoparticles for antithrombotic therapy in pregnancy. Iscience 2024, 27, 109823. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Radic, M. Neutrophil extracellular traps: Double-Edged swords of innate immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef]
- Bonaventura, A.; Liberale, L.; Carbone, F.; Vecchié, A.; Diaz-Cañestro, C.; Camici, G.G.; Montecucco, F.; Dallegri, F. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb. Haemost. 2018, 118, 006–027. [Google Scholar] [CrossRef]
- Brinkmann, V. Neutrophil extracellular traps in the second decade. J. Innate Immun. 2018, 10, 414–421. [Google Scholar] [CrossRef]
- Hoppenbrouwers, T.; Autar, A.S.A.; Sultan, A.R.; Abraham, T.E.; van Cappellen, W.A.; Houtsmuller, A.B.; van Wamel, W.J.B.; van Beusekom, H.M.M.; van Neck, J.W.; de Maat, M.P.M. In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review. PLoS ONE 2017, 12, e0176472. [Google Scholar] [CrossRef]
- Wirestam, L.; Arve, S.; Linge, P.; Bengtsson, A.A. Neutrophils—Important communicators in systemic lupus erythematosus and antiphospholipid syndrome. Front. Immunol. 2019, 10, 2734. [Google Scholar] [CrossRef]
- Mitranovici, M.I.; Pușcașiu, L.; Oală, I.E.; Petre, I.; Craina, M.L.; Mager, A.R.; Vasile, K.; Chiorean, D.M.; Sabău, A.-H.; Turdean, S.G.; et al. A race against the clock: A case report and literature review concerning the importance of ADAMTS13 testing in diagnosis and management of thrombotic thrombocytopenic purpura during pregnancy. Diagnostics 2022, 12, 1559. [Google Scholar] [CrossRef]
- Mitranovici, M.I.; Chiorean, D.M.; Oală, I.E.; Petre, I.; Cotoi, O.S. Evaluation of the Obstetric Patient: Pregnancy Outcomes during COVID-19 Pandemic—A Single-Center Retrospective Study in Romania. Reports 2022, 5, 27. [Google Scholar] [CrossRef]
- Deng, Y.; She, L.; Li, X.; Lai, W.; Yu, L.; Zhang, W.; Peng, M. Monitoring hypertensive disorders in pregnancy to prevent preeclampsia in pregnant women of advanced maternal age: Trial mimicking with retrospective data. Open Med. 2022, 17, 1840–1848. [Google Scholar] [CrossRef]
- Prentice, R.E.; Flanagan, E.K.; Wright, E.K.; Dolinger, M.T.; Gottlieb, Z.; Ross, A.L.; Bell, S.J. Active inflammatory bowel disease on intestinal ultrasound during pregnancy is associated with an increased risk of adverse pregnancy and neonatal outcomes independent of clinical and biochemical disease activity. Gastroenterology 2025, 169, 647–662. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.; Kandalgaonkar, M.R.; Golonka, R.M.; Yeoh, B.S.; Vijay-Kumar, M.; Saha, P. Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy. Biomedicines 2023, 11, 294. [Google Scholar] [CrossRef]
- Yip, P.K.; Bremang, M.; Pike, I.; Ponnusamy, V.; Michael-Titus, A.T.; Shah, D.K. Newborns with favourable outcomes after perinatal asphyxia have upregulated glucose metabolism-related proteins in plasma. Biomolecules 2023, 13, 1471. [Google Scholar] [CrossRef]
- Mahroum, N.; Elsalti, A.; Alwani, A.; Seida, I.; Alrais, M.; Seida, R.; Esirgun, S.N.; Abali, T.; Kiyak, Z.; Zoubi, M.; et al. The mosaic of autoimmunity–Finally discussing in person. The 13th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun. Rev. 2022, 21, 103166. [Google Scholar] [CrossRef]
- Ruff, W.E.; Dehner, C.; Kim, W.J.; Pagovich, O.; Aguiar, C.L.; Yu, A.T.; Roth, A.S.; Vieira, S.M.; Kriegel, C.; Adeniyi, O.; et al. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host Microbe 2019, 26, 100–113. [Google Scholar] [CrossRef]
- Ren, R.; Jiang, J.; Li, X.; Zhang, G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front. Immunol. 2024, 15, 1349138. [Google Scholar] [CrossRef]
- Morton, A. Investigating gastrointestinal disorders in pregnancy. Obstet. Med. 2024, 17, 5–12. [Google Scholar] [CrossRef]
- Singh, G.; Prentice, R.; Langsford, D.; Christensen, B.; Garg, M. Altered bowel habit and rectal bleeding in pregnancy: The importance of recognising undiagnosed inflammatory bowel disease. Intern. Med. J. 2021, 51, 424–427. [Google Scholar] [CrossRef]
- Li, L.; Baek, K.H. Exploring Potential Biomarkers in Recurrent Pregnancy Loss: A Literature Review of Omics Studies to Molecular Mechanisms. Int. J. Mol. Sci. 2025, 26, 2263. [Google Scholar] [CrossRef]
- Golubinskaya, V.; Puttonen, H.; Fyhr, I.-M.; Rydbeck, H.; Hellström, A.; Jacobsson, B.; Nilsson, H.; Mallard, C.; Sävman, K. Expression of S100A alarmins in cord blood monocytes is highly associated with chorioamnionitis and fetal inflammation in preterm infants. Front. Immunol. 2020, 11, 1194. [Google Scholar] [CrossRef]
- Al-Jipouri, A.; Eritja, À.; Bozic, M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int. J. Mol. Sci. 2023, 25, 485. [Google Scholar] [CrossRef]
- Kaluarachchi, A.; Peiris, G.R.M.U.G.; Ranaweera, A.K.P.; Rishard, M.R.M. Hyperechoic amniotic fluid in a term pregnancy. J. Fam. Med. Prim. Care 2018, 7, 635–637. [Google Scholar] [CrossRef]
- Sugulle, M.; Kvehaugen, A.S.; Brække, K.; Harsem, N.K.; Staff, A.C. Plasma calprotectin as inflammation marker in pregnancies complicated by diabetes mellitus and superimposed preeclampsia. Pregnancy Hypertens 2011, 1, 137–142. [Google Scholar] [CrossRef]
- Hosono, S.; Ohno, T.; Kimoto, H.; Shimizu, M.; Harada, K. Morbidity and mortality of infants born at the threshold of viability: Ten years’ experience in a single neonatal intensive care unit, 1991–2000. Pediatr. Int. 2006, 48, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, V.; Tosello, B.; Pfister, R. Effect of written outcome information on attitude of perinatal healthcare professionals at the limit of viability: A randomized study. BMC Med. Ethics 2019, 20, 74. [Google Scholar] [CrossRef]
- Lui, K.; Bajuk, B.; Foster, K.; Gaston, A.; Kent, A.; Sinn, J.; Spence, K.; Fischer, W.; Henderson-Smart, D. Perinatal care at the borderlines of viability: A consensus statement based on a NSW and ACT consensus workshop. Med. J. Aust. 2006, 185, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Roets, E.; Dierickx, S.; Deliens, L.; Chambaere, K.; Dombrecht, L.; Roelens, K.; Beernaert, K. Healthcare professionals’ attitudes towards termination of pregnancy at viable stage. Acta Obstet. Gynecol. Scand. 2021, 100, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Dagla, M.; Petousi, V.; Poulios, A. Neonatal end-of-life decision making: The possible behavior of Greek physicians, midwives, and nurses in clinical scenarios. Int. J. Environ. Res. Public Health 2021, 18, 3938. [Google Scholar] [CrossRef]
- Provinciatto, H.; Araujo Júnior, E.; Granese, R. Therapeutic strategies to prolong gestation in preterm preeclampsia. J. Obstet. Gynaecol. 2025, 45, 2442815. [Google Scholar] [CrossRef]
- Tong, S.; Tu’uhevaha, J.; Hastie, R.; Brownfoot, F.; Cluver, C.; Hannan, N. Pravastatin, proton-pump inhibitors, metformin, micronutrients, and biologics: New horizons for the prevention or treatment of preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S1157–S1170. [Google Scholar] [CrossRef]
- Gülmezoǧlu, A.M.; Hofmeyr, G.J.; Oosthuisen, M.M.J. Antioxidants in the treatment of severe pre-eclampsis an explanatory randomised controlled trial. BJOG: Int. J. Obstet. Gynaecol. 1997, 104, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Madero, M.; Castellanos, F.E.R.; Jalal, D.; Villalobos-Martín, M.; Salazar, J.; Vazquez-Rangel, A.; Johnson, R.J.; Sanchez-Lozada, L.G. A pilot study on the impact of a low fructose diet and allopurinol on clinic blood pressure among overweight and prehypertensive subjects: A randomized placebo controlled trial. J. Am. Soc. Hypertens 2015, 9, 837–844. [Google Scholar] [CrossRef]
- Crouwel, F.; Simsek, M.; de Boer, M.A.; van Asseldonk, D.P.; Bhalla, A.; Weusthuis, A.L.M.; Gilissen, L.P.L.; Verburg, R.J.; Mares, W.G.N.; Jharap, B. Multicentre study and systematic review: Allopurinol exposure during pregnancy. Aliment. Pharmacol. Ther. 2024, 60, 503–518. [Google Scholar] [CrossRef]
- Simsek, M.; Opperman, R.C.; Mulder, C.J.; Lambalk, C.B.; de Boer, N.K. The teratogenicity of allopurinol: A comprehensive review of animal and human studies. Reprod. Toxicol. 2018, 81, 180–187. [Google Scholar] [CrossRef]
- Niu, Y.; Kane, A.D.; Lusby, C.M.; Allison, B.J.; Chua, Y.Y.; Kaandorp, J.J.; Nevin-Dolan, R.; Ashmore, T.J.; Blackmore, H.L.; Derks, J.B.; et al. Maternal allopurinol prevents cardiac dysfunction in adult male offspring programmed by chronic hypoxia during pregnancy. Hypertension 2018, 72, 971–978. [Google Scholar] [CrossRef]
- Ahmed, G.S.; Al-Sabbagh, M.S. The Possible beneficial effects of Antioxidant drugs (Vitamin C and E) and Allopurinol in the management of Pre-eclamptic patients treated with Methyldopa. J. Fac. Med. Baghdad 2010, 52, 90–94. [Google Scholar] [CrossRef]
- Cluver, C.A.; Hannan, N.J.; van Papendorp, E.; Hiscock, R.; Beard, S.; Mol, B.W.; Theron, G.B.; Hall, D.R.; Decloedt, E.H.; Stander, M.; et al. Esomeprazole to treat women with preterm preeclampsia: A randomized placebo controlled trial. Am. J. Obstet. Gynecol. 2018, 219, 388.e1–388.e17. [Google Scholar] [CrossRef]
- Neuman, R.I.; Baars, M.D.; Saleh, L.; Broekhuizen, M.; Nieboer, D.; Cornette, J.; Schoenmakers, S.; Verhoeven, M.; Koch, B.C.; Russcher, H.; et al. Omeprazole administration in preterm preeclampsia: A randomized controlled trial to study its effect on sFlt-1 (soluble Fms-like tyrosine kinase-1), PlGF (placental growth factor), and ET-1 (endothelin-1). Hypertension 2022, 79, 1297–1307. [Google Scholar] [CrossRef]
- Mills, K.; McDougall, A.R.; Tan, A.; Makama, M.; Nguyen, P.-Y.; Armari, E.; Bradfield, Z.; Hastie, R.; Ammerdorffer, A.; Gülmezoglu, A.M.; et al. The effects of proton pump inhibitors during pregnancy on treatment of preeclampsia and related outcomes: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2024, 6, 101478. [Google Scholar] [CrossRef] [PubMed]
- Hastie, R.; Bergman, L.; Cluver, C.A.; Wikman, A.; Hannan, N.J.; Walker, S.P.; Wikström, A.K.; Tong, S.; Hesselman, S. Proton pump inhibitors and preeclampsia risk among 157 720 women: A Swedish population register–based cohort study. Hypertension 2019, 73, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Williams, D.J.; Cheed, V.; Middleton, L.J.; Ahmad, S.; Wang, K.; Vince, A.T.; Hewett, P.; Spencer, K.; Khan, K.S.; et al. Pravastatin for early-onset pre-eclampsia: A randomised, blinded, placebo-controlled trial. BJOG: Int. J. Obstet. Gynaecol. 2020, 127, 478–488. [Google Scholar] [CrossRef]
- Mészáros, B.; Veres, D.S.; Nagyistók, L.; Somogyi, A.; Rosta, K.; Herold, Z.; Kukor, Z.; Valent, S. Pravastatin in preeclampsia: A meta-analysis and systematic review. Front. Med. 2023, 9, 1076372. [Google Scholar] [CrossRef]
- Cluver, C.A.; Hiscock, R.; Decloedt, E.H.; Hall, D.R.; Schell, S.; Mol, B.W.; Brownfoot, F.; Kaitu’u-Lino, T.J.; Walker, S.P.; Tong, S. Use of metformin to prolong gestation in preterm pre-eclampsia: Randomised, double blind, placecontrolled trial. BMJ 2021, 374, n2103. [Google Scholar] [CrossRef]
- Haddad, B.; Lefèvre, G.; Rousseau, A.; Robert, T.; Saheb, S.; Rafat, C.; Bornes, M.; Petit-Hoang, C.; Richard, F.; Lecarpentier, E.; et al. LDL-apheresis to decrease sFlt-1 during early severe preeclampsia: Report of two cases from a discontinued phase II trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 231, 70–74. [Google Scholar] [CrossRef]
- Winkler, K.; Contini, C.; König, B.; Krumrey, B.; Pütz, G.; Zschiedrich, S.; Pecks, U.; Stavropoulou, D.; Prömpeler, H.; Kunze, M.; et al. Treatment of very preterm preeclampsia via heparin-mediated extracorporeal LDL-precipitation (HELP) apheresis: The Freiburg preeclampsia HELP-Apheresis study. Pregnancy Hypertens 2018, 12, 136–143. [Google Scholar] [CrossRef]
- Tskhay, V.; Schindler, A.; Shestakova, M.; Klimova, O.; Narkevich, A. The role of progestogen supplementation (dydrogesterone) in the prevention of preeclampsia. Gynecol. Endocrinol. 2020, 36, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Darzi, S.; Arabian, S.; Kia, P.M.; Pordanjani, S.R.; Saffarieh, E. Vaginal Progesterone Effects on Ultrasound Indices, Fetal Outcomes, and Preeclampsia in High-risk Pregnancy: Vaginal Progesterone in High-risk Pregnancy: Ultrasound Indices and Outcomes. Galen. Med. J. 2025, 14, e3745. [Google Scholar] [CrossRef]
- Mares, R.G.; Suica, V.I.; Uyy, E.; Boteanu, R.M.; Ivan, L.; Cocuz, I.G.; Sabau, A.H.; Yadav, V.; Szabo, I.A.; Cotoi, O.S.; et al. Short-term S100A8/A9 Blockade Promotes Cardiac Neovascularization after Myocardial Infarction. J. Cardiovasc. Transl. Res. 2024, 17, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Björk, P.; Björk, A.; Vogl, T.; Stenström, M.; Liberg, D.; Olsson, A.; Roth, J.; Ivars, F.; Leanderson, T. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009, 7, e1000097. [Google Scholar] [CrossRef]
- Bengtsson, A.A.; Sturfelt, G.; Lood, C.; Rönnblom, L.; Van Vollenhoven, R.F.; Axelsson, B.; Sparre, B.; Tuvesson, H.; Öhman, M.W.; Leanderson, T. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: Studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 1579–1588. [Google Scholar] [CrossRef]
References | Calprotectin Activity | Role in Placenta | Relevance in PE |
---|---|---|---|
[3] | Inflammation | Influence trophoblastic invasion | Role in PE, potential biomarker |
[12,13,14,23] | Inflammation, calcium storage, metal scavenger, antimicrobial | Inflammation in placenta and decidua, leukocyte activation in placenta | Role in PE |
[21,22] | Inflammation | Hypoxia/ischemia of placenta | The role of calprotectin in PE is controversial |
[27] | Coagulopathy and increased fibrinolysis | Placental ischemia | Role in PE |
[35] | Maternal leukocyte activation | Ischemia in placenta, inflammation | Role in PE |
[36] | Inflammation in decidua, maternal and fetal plasma | Inflammation | Role in PE, potential biomarker |
[37,38] | Pathogenesis of PE | Inflammation | Possible role but more research is needed |
[39] | Inflammation, COVID-19 infection | Inflammation two times higher than normal | Role in PE |
[40] | Calcium is a sensor for calprotectin | Placental ischemia | Role in PE |
[14,41,42,43] | Increased level of plasma calprotectin | Placental insufficiency | Role in PE |
[41,45] | Increased calprotectin in amniotic fluid, inflammation, infection | Placental ischemia | Role in PE |
[45,46,47] | Neutrophil extracellular traps (NETs) and infections | Placental ischemia | Role in PE |
[48,49,50] | NETs and non-infection stimuli, vasculopathy in autoimmune diseases | Placental ischemia | Role in PE |
[51,52,53] | Antiphospholipid syndrome and vasculopathy | Placental ischemia | Role in PE |
[24,52,55] | Fecal calprotectin associated with PE, placental abruption | Placental ischemia | Controversial |
[58] | Plasma calprotectin associated with inflammation in mother and infant, role as biomarker | Placental ischemia Calprotectin associated with PE severity and infant viability | Role in PE |
[60] | Calprotectin present in umbilical cord | Placental ischemia | Not known |
[61] | Plasma calprotectin rise in parallel with severity of PE, biomarker | Placental ischemia calprotectin associated with PE severity and infant viability | Role in PE |
[63] | Plasma calprotectin in mother and infants | Placental ischemia, fetal development and viability | Role in PE severity |
[64] | Placental and plasma calprotectin, in mothers and infants | Severity of placental damage or neonatal viability | Role in PE |
[65,66] | Calprotectin with effects on placental EVs | Placental ischemia and inflammation | Role in PE |
Type of Therapy | Effect | Reference | Conclusion |
---|---|---|---|
Antioxidant therapy/Allopurinol | Targets oxidative stress | [73] | Significant effect |
Reduces anti-angiogenic factors | [75] | Significant effect | |
Safe for pregnancy Prevents the development of cardiac dysfunction in adult offspring of hypoxic pregnancies Improves the maternal and biochemical indicators of preeclampsia, reducing blood pressure | [77,78,79,80] | Further studies needed Further studies needed | |
Proton pump inhibitors/esomeprazole | Act on sFLT-1 and PlGF level | [73] | No significant effect |
Proton pump inhibitors omeprazole | Act on sFLT-1 and PlGF levels | [73] | No significant effect |
Proton pump inhibitors | Prevents severe forms of the disease | [83,84] | Trials ongoing |
Pravastatin | Reduces sFLT-1 and increases PlGF | [73,85] | Failed to demonstrate an effect |
Pravastatin | Prophylactic use | [86] | Significant effect |
Metformin | Antioxidant effect sFLT-1 or PlGF levels | [87,88] | Further research needed |
Plasmapheresis | Reduces sFLT-1 levels | [82,83] | Study interrupted for safety reasons |
Progesterone | Increases progesterone levels, which are low in PE | [90,91] | Statistically significant |
Monoclonal antibody Eculizumab, caplacizumab | Scavenging | [52,74] | Promising effect |
Quinoline-3-carboxamides | Anti-inflammatory effect | [93,94] | Promising effect |
ABR-238901 | reduces ischemic injury and enhance angiogenesis | [92] | Promising effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emilian, O.I.; Apostol, A.; Ivan, V.M.; Pușcașiu, L. Infant Viability in Severe Preeclampsia: Management Strategies and the Potential Role of Calprotectin—A Narrative Review. Children 2025, 12, 1410. https://doi.org/10.3390/children12101410
Emilian OI, Apostol A, Ivan VM, Pușcașiu L. Infant Viability in Severe Preeclampsia: Management Strategies and the Potential Role of Calprotectin—A Narrative Review. Children. 2025; 12(10):1410. https://doi.org/10.3390/children12101410
Chicago/Turabian StyleEmilian, Oala Ioan, Adrian Apostol, Viviana Mihaela Ivan, and Lucian Pușcașiu. 2025. "Infant Viability in Severe Preeclampsia: Management Strategies and the Potential Role of Calprotectin—A Narrative Review" Children 12, no. 10: 1410. https://doi.org/10.3390/children12101410
APA StyleEmilian, O. I., Apostol, A., Ivan, V. M., & Pușcașiu, L. (2025). Infant Viability in Severe Preeclampsia: Management Strategies and the Potential Role of Calprotectin—A Narrative Review. Children, 12(10), 1410. https://doi.org/10.3390/children12101410