Optimizing Therapeutic Strategies for Syringomyelia Associated with Tethered Cord Syndrome: A Comprehensive Review
Abstract
:1. Introduction
Pathophysiology of Syrinxes Associated with Tethered Cord Syndrome
2. Materials and Methods
3. Results
3.1. Surgical Cord Untethering Alone
3.2. Direct Syrinx Drainage and Cord Untethering
3.3. Syrinx Shunting
4. Discussion
4.1. Therapeutic Approaches for Syrinx Associated with Tethered Cord Syndrome
4.1.1. Surgical Cord Untethering Alone
4.1.2. Direct Drainage of the Syrinx Combined with Surgical Cord Untethering
4.1.3. Syrinx Shunting
- An Illustrative case of a syringo-pleural shunt with a reservoir valve implant:
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Conflicts of Interest
References
- Greitz, D. Unraveling the riddle of syringomyelia. Neurosurg. Rev. 2006, 29, 251–263; discussion 264. [Google Scholar] [CrossRef]
- Bruzek, A.K.; Starr, J.; Garton, H.J.L.; Muraszko, K.M.; Maher, C.O.; Strahle, J.M. Syringomyelia in children with closed spinal dysraphism: Long-term outcomes after surgical intervention. J. Neurosurg. Pediatr. 2019, 25, 319–325. [Google Scholar] [CrossRef]
- Lee, G.Y.; Paradiso, G.; Tator, C.H.; Gentili, F.; Massicotte, E.M.; Fehlings, M.G. Surgical management of tethered cord syndrome in adults: Indications, techniques, and long-term outcomes in 60 patients. J. Neurosurg. Spine 2006, 4, 123–131. [Google Scholar] [CrossRef]
- McLone, D.G. The adult with a tethered cord. Clin. Neurosurg. 1996, 43, 203–209. [Google Scholar]
- Leclerc, A.; Matveeff, L.; Emery, E. Syringomyelia and hydromyelia: Current understanding and neurosurgical management. Rev. Neurol. 2021, 177, 498–507. [Google Scholar] [CrossRef]
- Heiss, J.D.; Snyder, K.; Peterson, M.M.; Patronas, N.J.; Butman, J.A.; Smith, R.K.; Devroom, H.L.; Sansur, C.A.; Eskioglu, E.; Kammerer, W.A.; et al. Pathophysiology of primary spinal syringomyelia. J. Neurosurg. Spine 2012, 17, 367–380. [Google Scholar] [CrossRef]
- Tsitouras, V.; Sgouros, S. Syringomyelia and tethered cord in children. Childs Nerv. Syst. 2013, 29, 1625–1634. [Google Scholar] [CrossRef]
- Vandertop, W.P. Syringomyelia. Neuropediatrics 2014, 45, 3–9. [Google Scholar] [CrossRef]
- Shenoy, V.S.; Munakomi, S.; Sampath, R. Syringomyelia; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Sakushima, K.; Hida, K.; Yabe, I.; Tsuboi, S.; Uehara, R.; Sasaki, H. Different surgical treatment techniques used by neurosurgeons and orthopedists for syringomyelia caused by Chiari I malformation in Japan. J. Neurosurg. Spine 2013, 18, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yang, C.; Gan, J.; Wu, L.; Yang, T.; Yang, J.; Xu, Y. Long-Term Outcomes After Small-Bone-Window Posterior Fossa Decompression and Duraplasty in Adults with Chiari Malformation Type I. World Neurosurg. 2015, 84, 998–1004. [Google Scholar] [CrossRef]
- Klekamp, J. Treatment of syringomyelia related to nontraumatic arachnoid pathologies of the spinal canal. Neurosurgery 2013, 72, 376–389; discussion 389. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Boop, S.H.; Barber, J.K.; Susarla, S.M.; Durfy, S.; Ojemann, J.G.; Goldstein, H.E.; Lee, A.; Browd, S.; Ellenbogen, R.G.; et al. Perioperative complications and secondary retethering after pediatric tethered cord release surgery. J. Neurosurg. Pediatr. 2023, 32, 607–616. [Google Scholar] [CrossRef]
- Iskandar, B.J.; Oakes, W.J.; McLaughlin, C.; Osumi, A.K.; Tien, R.D. Terminal syringohydromyelia and occult spinal dysraphism. J. Neurosurg. 1994, 81, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, I.; Iwasaki, Y.; Hida, K.; Abe, H.; Isu, T.; Akino, M. Surgical treatment of syringomyelia associated with spinal dysraphism. Childs Nerv. Syst. 1997, 13, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Caldarelli, M.; Di Rocco, C.; La Marca, F. Treatment of hydromyelia in spina bifida. Surg. Neurol. 1998, 50, 411–420. [Google Scholar] [CrossRef]
- Erkan, K.; Unal, F.; Kiris, T. Terminal syringomyelia in association with the tethered cord syndrome. Neurosurgery 1999, 45, 1351–1359; discussion 1359–1360. [Google Scholar] [CrossRef]
- Erkan, K.; Unal, F.; Kiris, T.; Karalar, T. Treatment of terminal syringomyelia in association with tethered cord syndrome: Clinical outcomes with and without syrinx drainage. Neurosurg. Focus 2000, 8, E9. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, A.; Muszynski, C.A.; Kaufman, B.A. Clinical significance of terminal syringomyelia in association with pediatric tethered cord syndrome. Pediatr. Neurosurg. 2007, 43, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Phi, J.H.; Cheon, J.E.; Kim, S.K.; Kim, I.O.; Cho, B.K.; Wang, K.C. Preuntethering and postuntethering courses of syringomyelia associated with tethered spinal cord. Neurosurgery 2012, 71, 23–29. [Google Scholar] [CrossRef]
- Kulwin, C.G.; Patel, N.B.; Ackerman, L.L.; Smith, J.L.; Boaz, J.C.; Fulkerson, D.H. Radiographic and clinical outcome of syringomyelia in patients treated for tethered cord syndrome without other significant imaging abnormalities. J. Neurosurg. Pediatr. 2013, 11, 307–312. [Google Scholar] [CrossRef]
- Davidson, K.A.; Rogers, J.M.; Stoodley, M.A. Syrinx to Subarachnoid Shunting for Syringomyelia. World Neurosurg. 2018, 110, e53–e59. [Google Scholar] [CrossRef] [PubMed]
- Rakip, U.; Canbek, İ.; Ylldlzhan, S.; Boyacl, M.G.; Cengiz, A.; Aslan, A. Clinical Significance of Terminal Syringomyelia and Accompanying Congenital Anomalies of Neurosurgical Interest in Adult and Pediatric Patients with Tethered Cord Syndrome. J. Child Sci. 2022, 12, E92–E103. [Google Scholar] [CrossRef]
- Sun, M.; Tao, B.; Gao, G.; Li, S.; Li, T.; Shang, A. An Effective Surgical Method for Terminal Syringomyelia: Terminal Ventriculostomy-Associated “V”-Type Ostomy. Glob. Spine J. 2023, 13, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Giner, J.; Pérez López, C.; Hernández, B.; Gómez de la Riva, Á.; Isla, A.; Roda, J.M. Update on the pathophysiology and management of syringomyelia unrelated to Chiari malformation. Neurologia 2019, 34, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Heiss, J.D.; Jarvis, K.; Smith, R.K.; Eskioglu, E.; Gierthmuehlen, M.; Patronas, N.J.; Butman, J.A.; Argersinger, D.P.; Lonser, R.R.; Oldfield, E.H. Origin of Syrinx Fluid in Syringomyelia: A Physiological Study. Neurosurgery 2019, 84, 457–468. [Google Scholar] [CrossRef]
- Chang, H.S. Hypothesis on the pathophysiology of syringomyelia based on analysis of phase-contrast magnetic resonance imaging of Chiari-I malformation patients. F1000Res 2021, 10, 996. [Google Scholar] [CrossRef]
- Bertram, C.D.; Bilston, L.E.; Stoodley, M.A. Tensile radial stress in the spinal cord related to arachnoiditis or tethering: A numerical model. Med. Biol. Eng. Comput. 2008, 46, 701–707. [Google Scholar] [CrossRef]
- Cheng, S.; Stoodley, M.A.; Wong, J.; Hemley, S.; Fletcher, D.F.; Bilston, L.E. The presence of arachnoiditis affects the characteristics of CSF flow in the spinal subarachnoid space: A modelling study. J. Biomech. 2012, 45, 1186–1191. [Google Scholar] [CrossRef]
- Yamada, S.; Won, D.J.; Pezeshkpour, G.; Yamada, B.S.; Yamada, S.M.; Siddiqi, J.; Zouros, A.; Colohan, A.R. Pathophysiology of tethered cord syndrome and similar complex disorders. Neurosurg. Focus 2007, 23, E6. [Google Scholar] [CrossRef]
- Husain, A.M.; Shah, D. Prognostic value of neurophysiologic intraoperative monitoring in tethered cord syndrome surgery. J. Clin. Neurophysiol. 2009, 26, 244–247. [Google Scholar] [CrossRef]
- Filippidis, A.S.; Kalani, M.Y.; Theodore, N.; Rekate, H.L. Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome. Neurosurg. Focus 2010, 29, E9. [Google Scholar] [CrossRef] [PubMed]
- Rothrock, R.J.; Lu, V.M.; Levi, A.D. Syrinx shunts for syringomyelia: A systematic review and meta-analysis of syringosubarachnoid, syringoperitoneal, and syringopleural shunting. J. Neurosurg. Spine 2021, 35, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Page, N. Surgical treatment of syringomyelia with syringopleural shunting. Br. J. Neurosurg. 1987, 1, 63–80. [Google Scholar] [CrossRef]
- Ghobrial, G.M.; Dalyai, R.T.; Maltenfort, M.G.; Prasad, S.K.; Harrop, J.S.; Sharan, A.D. Arachnolysis or cerebrospinal fluid diversion for adult-onset syringomyelia? A Systematic review of the literature. World Neurosurg. 2015, 83, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Perrini, P.; Benedetto, N.; Vercelli, A.; Di Carlo, D.T. Syringopleural shunt for refractory syringomyelia: How I do it. Acta Neurochir. 2023, 165, 3039–3043. [Google Scholar] [CrossRef]
- Zhao, J.L.; Li, M.H.; Wang, C.L.; Meng, W. A Systematic Review of Chiari I Malformation: Techniques and Outcomes. World Neurosurg. 2016, 88, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Alexander, H.; Tsering, D.; Myseros, J.S.; Magge, S.N.; Oluigbo, C.; Sanchez, C.E.; Keating, R.F. Management of Chiari I malformations: A paradigm in evolution. Childs Nerv. Syst. 2019, 35, 1809–1826. [Google Scholar] [CrossRef]
No. (Year) | Patients [M/F] | Etiologies of TCS (Case) | C/M of TCS (Case) | Preop. Syrinx Dimension and SI | Postop. Radiographic Result of the Syrinx | Outcome of the Syrinx (Case) | Overall Surgical Outcomes | Summary |
---|---|---|---|---|---|---|---|---|
2022 [23] | 54 [23/31] | TF (40) 74% Sc (35) 64.8% DTM (31) 57.4% * SM (42) 78% | G1 (Ped, 34) u/b Dys (22) 64.5% mN/D (19) 55/8% Pain (16) 47% G2 (Adult, 20) Pain (15) 75% b Dys (6) 30% | G1: SI 0.21 ± 0.15 D 2.7 ± 1.9 × 2.8 ± 1.0 mm G2: SI 0.12 ± 0.17 D 2.8 ± 1.3 × 2.6 ± 1.6 mm Level T6–T12 (9) 22% T6–L5 (17) 40% L1–S1 (15) 36% | G1: SI 0.14 ± 0.15 D 2.1 ± 2.0 × 2.1 ± 1.7 mm G2: SI 0.05 ± 0.04 D 0.85 ± 0.7 × 0.8 ± 0.7 mm * Improved SI (p < 0.05) | G1 (27) 63% CR (5) 18.6% Improved (12) 44.4% U (10) 37% G2 (8) 87.5% CR (3) 37.5% Improved (4) 50% U (1) 12.5% | G1: 88% improved m/s N/D 70/70% u/b Dys 54.5% G2: 93% improved m/sN/D 86/84% u/b Dys 54.5% |
|
2019 [2] | 25 [17/8] | LMMC (8) 32% TF (7) 28% LP (5) 20% MCC (2) 8% MC (2) 8% DTM (1) 4% | Sc (11) 44% u/b Dys (8) 32% Pain (8) 32% mN/D (4) 16% sN/D (2) 8% | Lt 4.81 ± 4.35 mm WD 5.19 ± 2.55 mm Extent C4–T7 (cranial) C6–S2 (caudal) | Lt: 0.86 ± 4.36 mm (Incr.) W: 0.72 ± 2.94 mm (Dec.) | Improved (9) 36% U (12) 48% W (4) 16% | Improved: m/sN/D 4% u/b Dys 12% Pain 8% Sc w/fusion 16% U/W: m/sN/D 16% Pain 20% Sc w/o fusion 8/20% |
|
2013 [21] | 16 [8/8] | OSD (16) 100% TF (2) 12.5% | u Dys (12) 75% Pain (8) 50% Sc (3) 19% Gait ds (2) 12.5% B Dys (1) 6.2% | D: 3.7 mm (ranged 2–6.5 mm) Extent >T5 (6) 37.5% <T5 (10) 62.5% conus (10) 62.5% | D: 3.6 mm (overall)
| Improved **: (4) 25% U + (12) 75%—no gait improvement, except 1 ** syrinx < T5 (4) + no improvement (6) in a cervical syrinx (p = 0.23). | Improved: u/b Dys 100% Pain 87.5% Sc 67% Gait ds 100% W: Sc 33% |
|
2012 [20] | 33 [16/17] | LS LP (24) 73% TF (6) 18% LMMC (3) 9% | Asx (18) 55% mN/D (5) 15% Foot def (6) 18% sN/D (1) 3% u Dys (7) 21% b Dys (7) 21% | G1: SI < 0.6 (20) 60% G2: SI ≥ 0.6 (13) 39% SI 0.4–0.7 (24) 72% SI > 0.7 (9) 27% Lt: 3.4 ± 3.0 (vert. level) Location: TL (16) 48% LS (17) 52% | No statistical postop changes in two groups (SI of <60 vs. >60) | CR (8) 25% Improved (10) 31% U ++ (9) 28% W (1) 3% | GI: SI < 0.6 (n = 20) Improved/U 90% W 10% GII: SI ≥ 0.6 (n = 13) improved/U 61% W 23% |
|
No. (Year) | Patients [M/F] | Etiologies of TCS (Case) | C/M of TCS (Case) | Preop. Syrinx Dimension and SI | Postop. Radiographic Result of the Syrinx | Outcome of the Syrinx (Case) | Overall Surgical Outcomes | Summary |
---|---|---|---|---|---|---|---|---|
2023 [24] | 28 [12/16] | TCS (26) 93% DTM (1) 3.6% | m N/D (24) 85.7% s N/D (19) 67.9% u/b Dys (12) 43% constip. (7) 25% Amyotr. (5) 17.9% foot df (3) 10.7% Asx (1) 3.8% | SI.: 0.49 ± 0.16 Trans. 4.5 ± 1.1 mm Centric (25) 89.3% Eccentric (3) 14.3% Level >10 seg (13) 46.4% 5–10 seg (11) 39.3% <5 seg (4) 14.3% | SI: 0.06 ± 0.08 (improved, p < 0.001) Resolved (21) 75% Improved (7) 25% | SM shrunk—50% None relapsed, 3 yrs Surgery (28): Untethering + TV | I: m/s N/D 91/79% uDys 33% constip. 14% U: m/s N/D 8.3/21% uDys 67% constip. 86% Foot def 100% Asx 100% |
|
2007 [19] | 34 [17/17] G1 (24) G2 (10) | G1: TCS (24) FM (19) 79% LP (9) 37.5% MC (2) 8.3% MMC (2) 20% G2: TCS + TS(10) FM (7) 70% LP (3) 30% MMC (2) 20% DTM (1) 10% | G1: TCS (24) Asx: (9) 37.5% m/s N/D (4/1) 16.7/4.2% u/b Dys (5) 21% Sc (1) 4.2% Pain (4) 16.7% G2: TCS + TS (10) Asx (5) 50% m/s N/D(1) 10% u/b Dys (3) 30% Sc (1) 10% Pain (4) 40% | No SI value Lt: 4.6 seg. (mean, 2~10) Level: midT (2) 20% TL (3) 30% LS (5) 50% | Postop MR (3/10) in G2 Improved (2/3) 66% U (1/3) 33% | Reduced size (2) at 4 and 7 mos MRI U (1): on 2 yr MR Surgery: All Untethering (34) Direct drainage (1) * * G2: >1.5 cm SM | G1: Improved 60% Asx 20% U 13.3% W 6.6% G2: Improved 80% Asx 20% |
|
2000 [18] | 30 [11/19] G1 (16) G2 (14)
| TF (12) 40% DTM (13) 43.3% Prev OP (4) 14% DTM + LP(1) 3.3% | m/s N/D (23/26) 76.6/86.6% u/b Dys (20/11) 70/36.6% Sc (15) 50% Pain (10) 33.3% Gait dys (13) 43.3% | G1: SI 0.40 ± 0.20 G2: SI 0.45 ± 0.16 Trans./Sag. (mm) G1: 3.0 ± 1.7/13.3 ± 1.8 G2: 3.0 ± 1.4/4.0 ± 1.2 Centric (4/4) 29/29% Eccentric (11/10) 75/71% Lt: G1: 4.2 ± 1.7 seg G2: 4.3 ± 1.6 seg | G1: SI 0.31 ± 0.13 (p = 0.13) G2: SI 0.18 ± 0.11 (p = 0.001) G1: improved (7) 42.8% U (9) 56.2% W * (1) 6.2% * no FU data G2: CR (2) 14.2% improved (9) 64.2% U (3) 21.4% | * Higher sN/D and u/bDys improvement in cases of reduced SM over no SM change (p = 0.019) Surgery: G1: Untethering alone (16) G2: with TV (8) or myelotomy (M, 6) | G1: I: m/s N/D 50/50% u/b Dys 30% U: m/s N/D 43/50% u/b Dys 70% W: m N/D 1% G2: I: m/s N/D 78/92% u/b Dys 70% U: m/s N/D 11/8% u/bDys 27% W: m/sph N/D 11/7% |
|
1999 [17] | 32 [10/22] G1 (19) G2 (13) | 132 TCS TF (12) 37% LP (25) 78% DTM (31) 96% rLMMC (16) 50% LMMC + LP (16) 50% | m/sN/D (22/20) 68.8/62.5% u/bDy (14/7) 43.8/21.9% Sc (15) 46.9% Blts (11) 37.5% Pain (4) 12.5% | SI: 0.42 ± 0.2 WD: 3.6 ± 2.1 mm Centric (9) 28% Eccentric (23) 72% Level T8–T12 38% T8–L4 28% L1–S1 34% | G1: improved (5) 26% U (14) 73% G2: CR (4) 30.7% improved (5) 38.4% U (4) 30.7% | Improved clinical outcomes in G2 highlight the importance of identifying and addressing this pathological condition Surgery: G1: Untethering alone (19) G2: untethering with
|
Overall Improved in
Unchanged G1 vs. G2
|
|
No. (yr) | Patients [M/F] | Etiologies of TCS (Case) | C/M of TCS (Case) | Preop. Syrinx Dimension and SI | Postop. Radiographic Result of the Syrinx | Outcome of the Syrinx (Case) | Overall Surgical Outcomes | Summary |
---|---|---|---|---|---|---|---|---|
2018 [22] | SM (41) | * Etiology of SM unknown (15) 37% Known (26) 63%
| Pain 6 15% sN/D (17) 42.5% mN/D 11) 27% MP (2)5% Spas (4) 10% uDys (1) 2.5% | D: >2 mm Level: C (11) 27% CT (5) 12% CL (2) 5% T (18) 44% | Initial FU (3 mo) Improved: (37) 90.2% U: (3) 7.3% W: (1) 2.4% Final FU (31 ± 28 mo) Improved: (23) 56% U: (16) 39.2% W: (2) 4.8% | Reduced size (37): outcome varied over time Surgery: SS shunt * subset—expansile duraplasty | TCS (3) I (3) 100% Others I (29/32) U (8) 19.5% W (1) (trauma) |
|
1998 [16] | SM (32)
| MMC (14) 100% Asx of SM (18)
| mN/D (10) 71.4% Sc (8) 57.1% Pain (5) 35.7% Pyr. Sxl (4)28.6% sN/D (3) 21.4% Neck Sx (2) 21.4% uDys (3) 21.4% | SI: Severe (9) 64.3% Moderate (5) 35.7% Extent: Holocord: (6) 42.9% CT (3) 21.4% T (3) 21.4% TL (2) 14.2% | CR (4) 28.5% * % of SM changes a. <50% decr.(2) 14.2% b. >50% decr.(8) 57.1% * A correlation btw the Sx and syrinx | Shunt (7): SP shunt (5), SS shunt (2) Indirect Tx (8): SOC (5), VP shunt (2), untethering (1) | mN/D (10): CR/I/St: (6/2/2) Sc (8): I/St: (3/5) Pain (5): CR: (5) Pyr. sg (4): CR: (4) sN/D (3): I: (3) Neck stiff (3): CR/I: (2/1) uDys (3): I: (3) |
|
1997 [15] | SM (15) [4/11] SD (43) | OSD (34) 80% OSD + SM (8) 23.5% MMC (9) 20% MMC + SM (9)100%, FU only 7 | OSD (34) mN/D (3) 38% u/bDys (7) 87.5% MMC (9) mN/D (7) 100% sN/D (7) 100% u/b Dys (7) 100% Nyst (3) 43% | OSD: SI ≤ 0.7 (7) 87.5% large SI ≥ 0.7 (1) 12.5% Level: LS (8) 100% MMC large SI ≥ 0.7 (3) 43% Level: CT (3) 42% CL (4) 57% | SS shunt (6):
No Neurological deterioration. | OSD: untethering and
MMC:
| OSD SM (8) No N/D (7) mN/D (1) MMC CM (7): Plasty + VP shunt (7) * SS hunt for Large SM (2) Improved (1) No mN/D change (6) |
|
1994 [14] | tSM(27) 33.2% 138 OSD (143) 57:86 | OSD c MRI (90) DST (6) 5.4% LMMC (41) 37% TC (9) 8.1% DTM (26) 23.4% MC (11) 9.9% TC_a (9) 8.1% | OSD with tSM (27) N/D (11) 40.7% u/bDys (13) 48.1% foot-df (13) 48.1% Sc (16) 59.3% Pain (9) 33.3% Asx (4) 15% | tSM (27) A. Large (17): SI > 0.5 and L2 cm
| Large SM-Shunt (12) CR (5): A(2), B(3) I (5): A(2), B(3) U (1): A (1) A: shunt (6) B: shunt + OSD (6) | Shunt (12 for Large SM): CR/I (10) 91%
| Shunt (12): Pain (5): I (5) 100% N/D: improved (4), U (7): No Sx worsen |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosleh, M.M.; Sohn, M.-J. Optimizing Therapeutic Strategies for Syringomyelia Associated with Tethered Cord Syndrome: A Comprehensive Review. Children 2024, 11, 961. https://doi.org/10.3390/children11080961
Mosleh MM, Sohn M-J. Optimizing Therapeutic Strategies for Syringomyelia Associated with Tethered Cord Syndrome: A Comprehensive Review. Children. 2024; 11(8):961. https://doi.org/10.3390/children11080961
Chicago/Turabian StyleMosleh, Mohammad Mohsen, and Moon-Jun Sohn. 2024. "Optimizing Therapeutic Strategies for Syringomyelia Associated with Tethered Cord Syndrome: A Comprehensive Review" Children 11, no. 8: 961. https://doi.org/10.3390/children11080961
APA StyleMosleh, M. M., & Sohn, M.-J. (2024). Optimizing Therapeutic Strategies for Syringomyelia Associated with Tethered Cord Syndrome: A Comprehensive Review. Children, 11(8), 961. https://doi.org/10.3390/children11080961