Study of rs7759938, rs314280, and rs314276 Polymorphisms of LIN28B in Relation to Age at Menarche in Girls of Greek Descent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Analysis
2.3. DNA Isolation and Genotyping
2.4. Statistical Analysis
2.4.1. Sample Size Calculation
2.4.2. Association Analyses
- The dominant model, in which the homozygous genotype was used as a reference (TT for rs7759938 and rs314280, CC for rs314276) to investigate the prevalence of mutant-allele-associated genotypes (CC and TC for rs7759938 and rs314280, TT for rs314276) within age groups.
- The recessive model, in which wild-type-allele-associated genotypes (TC and TT for rs7759938 and rs314280, TC and CC for rs314276) were used as a reference to investigate the prevalence of the mutant homozygous genotype (CC for rs7759938 and rs314280, TT for rs314276) within age groups.
- The allelic model, in which the wild-type allele (T for rs7759938 and rs314280, C for rs314276) was used as a reference to investigate the prevalence of the mutant allele (C for rs7759938 and rs314280, T for rs314276) within age groups.
3. Results
3.1. Subject Characteristics and Genotypes
3.1.1. Subjects’ Perinatal History
3.1.2. Genotypes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques, P.; Madeira, T.; Gama, A. Menstrual cycle among adolescents: Girls’ awareness and influence of age at menarche and overweight. Rev. Paul. Pediatr. 2022, 40, e2020494. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, L.T.; Niu, L.; Pachucki, M.C.; Chaku, N. Timing of puberty in boys and girls: Implications for population health. SSM Popul. Health 2020, 10, 100549. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhong, C.; Liang, H.; Yang, Y.; Zhang, O.; Gao, E.; Chen, A.; Yuan, W.; Wang, J.; Sun, F.; et al. The relationship between age at menarche and infertility among Chinese rural women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 194, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, S.; Cong, H. Association between age at menarche and bone mineral density in postmenopausal women. J. Orthop. Surg. Res. 2023, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.T.; Wu, Q.J.; Vogtmann, E.; Lin, B.; Wang, Y.L. Age at menarche and risk of ovarian cancer: A meta-analysis of epidemiological studies. Int. J. Cancer 2013, 132, 2894–2900. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Xia, X.; Lei, L.; Xiang, W.; Wu, X.; Xie, S.; Li, J. Health outcomes of age at menarche in European women: A two-sample Mendelian randomization study. Postgrad. Med. J. 2023, 99, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, R.; Forouhi, N.G.; Sharp, S.J.; Luben, R.; Bingham, S.A.; Khaw, K.T.; Wareham, N.J.; Ong, K.K. Early age at menarche associated with cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 2009, 94, 4953–4960. [Google Scholar] [CrossRef]
- Bubach, S.; Horta, B.L.; Gonçalves, H.; Assunção, M.C.F. Early age at menarche and metabolic cardiovascular risk factors: Mediation by body composition in adulthood. Sci. Rep. 2021, 11, 148. [Google Scholar] [CrossRef]
- Jung, H.; Sung, Y.A.; Hong, Y.S.; Song, D.K.; Hong, S.H.; Lee, H. Relationship between age at menarche and metabolic diseases in Korean postmenopausal women: The Korea National Health and Nutrition Examination Survey 2016–2018. PLoS ONE 2023, 18, e0280929. [Google Scholar] [CrossRef]
- Dvornyk, V.; Haq, W.U. Genetics of age at menarche: A systematic review. Hum. Reprod. Update 2012, 18, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Day, F.R.; Thompson, D.J.; Helgason, H.; Chasman, D.I.; Finucane, H.; Sulem, P.; Ruth, K.S.; Whalen, S.; Sarkar, A.K.; Albrecht, E.; et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 2017, 49, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Kusa, T.O.; Chan, Y.M. Genetics of pubertal timing. Curr. Opin. Pediatr. 2018, 30, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Carty, C.L.; Spencer, K.L.; Setiawan, V.W.; Fernandez-Rhodes, L.; Malinowski, J.; Buyske, S.; Young, A.; Jorgensen, N.W.; Cheng, I.; Carlson, C.S.; et al. Replication of genetic loci for ages at menarche and menopause in the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) study. Hum. Reprod. 2013, 28, 1695–1706. [Google Scholar] [CrossRef]
- Busch, A.S.; Hagen, C.P.; Assens, M.; Main, K.M.; Almstrup, K.; Juul, A. Differential impact of genetic loci on age at thelarche and menarche in healthy girls. J. Clin. Endocrinol. Metab. 2018, 103, 228–234. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Kraft, P.; Chen, C.; Buring, J.E.; Paré, G.; Hankinson, S.E.; Chanock, S.J.; Ridker, P.M.; Hunter, D.J.; Chasman, D.I. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat. Genet. 2009, 41, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Elks, C.E.; Li, S.; Zhao, J.H.; Luan, J.; Andersen, L.B.; Bingham, S.A.; Brage, S.; Smith, G.D.; Ekelund, U.; et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 2009, 41, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.; Stolk, L.; Franceschini, N.; Lunetta, K.L.; Zhai, G.; McArdle, P.F.; Smith, A.V.; Aspelund, T.; Bandinelli, S.; Boerwinkle, E.; et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 2009, 41, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Sulem, P.; Gudbjartsson, D.F.; Rafnar, T.; Holm, H.; Olafsdottir, E.J.; Olafsdottir, G.H.; Jonsson, T.; Alexandersen, P.; Feenstra, B.; Boyd, H.A.; et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 2009, 41, 734–738. [Google Scholar] [CrossRef]
- Tanikawa, C.; Okada, Y.; Takahashi, A.; Oda, K.; Kamatani, N.; Kubo, M.; Nakamura, Y.; Matsuda, K. Genome wide association study of age at menarche in the Japanese population. PLoS ONE 2013, 8, e63821. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, R.; Cai, C. Association of genetic polymorphisms around the LIN28B gene and idiopathic central precocious puberty risks among Chinese girls. Pediatr. Res. 2016, 80, 521–525. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. Res. 2013, 13, 59. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Li, Q.; Huang, X.; Kong, X. Association of the KISS1, LIN28B, VDR and ERα gene polymorphisms with early and fast puberty in Chinese girls. Gynecol. Endocrinol. 2023, 39, 2181653. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Fernández-Rhodes, L.; Brzyski, R.G.; Carlson, C.S.; Chen, Z.; Heiss, G.; North, K.E.; Woods, N.F.; Rajkovic, A.; Kooperberg, C.; et al. Replication of loci influencing ages at menarche and menopause in Hispanic women: The Women’s Health Initiative SHARe Study. Hum. Mol. Genet. 2012, 21, 1419–1432. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Elks, C.E.; Wills, A.K.; Wong, A.; Wareham, N.J.; Loos, R.J.; Kuh, D.; Hardy, R. Associations between the pubertal timing-related variant in LIN28B and BMI vary across the life course. J. Clin. Endocrinol. Metab. 2011, 96, E125–E129. [Google Scholar] [CrossRef]
- Leinonen, J.T.; Surakka, I.; Havulinna, A.S.; Kettunen, J.; Luoto, R.; Salomaa, V.; Widén, E. Association of LIN28B with adult adiposity-related traits in females. PLoS ONE 2012, 7, e48785. [Google Scholar] [CrossRef] [PubMed]
- Elks, C.E.; Perry, J.R.; Sulem, P.; Chasman, D.I.; Franceschini, N.; He, C.; Lunetta, K.L.; Visser, J.A.; Byrne, E.M.; Cousminer, D.L.; et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 2010, 42, 1077–1085. [Google Scholar] [CrossRef]
- Widén, E.; Ripatti, S.; Cousminer, D.L.; Surakka, I.; Lappalainen, T.; Järvelin, M.R.; Eriksson, J.G.; Raitakari, O.; Salomaa, V.; Sovio, U.; et al. Distinct variants at LIN28B influence growth in height from birth to adulthood. Am. J. Hum. Genet. 2010, 86, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.C.; Hsu, C.H.; Chu, S.K.; Roy-Gagnon, M.H.; Lin, S.H. Genome-wide association study of age at menarche in the Taiwan Biobank suggests NOL4 as a novel associated gene. J. Hum. Genet. 2023, 68, 339–345. [Google Scholar] [CrossRef]
- Croteau-Chonka, D.C.; Lange, L.A.; Lee, N.R.; Adair, L.S.; Mohlke, K.L. Replication of LIN28B SNP association with age of menarche in young Filipino women. Pediatr. Obes. 2013, 8, e50–e53. [Google Scholar] [CrossRef]
- Delahanty, R.J.; Beeghly-Fadiel, A.; Long, J.R.; Gao, Y.T.; Lu, W.; Xiang, Y.B.; Zheng, Y.; Ji, B.T.; Wen, W.Q.; Cai, Q.Y.; et al. Evaluation of GWAS-identified genetic variants for age at menarche among Chinese women. Hum. Reprod. 2013, 28, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.; Day, F.; Elks, C.E.; Sulem, P.; Thompson, D.J.; Ferreira, T.; He, C.; Chasman, D.I.; Esko, T.; Thorleifsson, G.; et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014, 514, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Gao, Z.; Jiang, Y.; Chu, M. Lin28 gene and mammalian puberty. Mol. Reprod. Dev. 2020, 87, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Blell, M.; Pollard, T.M.; Pearce, M.S. Predictors of age at menarche in the newcastle thousand families study. J. Biosoc. Sci. 2008, 40, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, S.H.; Oh, M.; Lee, K.W.; Park, M.J. Age at menarche in Korean adolescents: Trends and influencing factors. Reprod. Health 2016, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ostbye, T.; Huang, X.; Li, Y.; Fang, B.; Wang, H.; Liu, Q. Maternal age at menarche and pubertal timing in boys and girls: A cohort study from Chongqing, China. J. Adolesc. Health 2021, 68, 508–516. [Google Scholar] [CrossRef]
- Bosch, A.M.; Willekens, F.J.; Baqui, A.H.; Van Ginneken, J.K.; Hutter, I. Association between age at menarche and early-life nutritional status in rural Bangladesh. J. Biosoc. Sci. 2008, 40, 223–237. [Google Scholar] [CrossRef]
- D’Aloisio, A.A.; DeRoo, L.A.; Baird, D.D.; Weinberg, C.R.; Sandler, D.P. Prenatal and infant exposures and age at menarche. Epidemiology 2013, 24, 277–284. [Google Scholar] [CrossRef]
Overall (n = 248) | Menarcheal Age ≤11 Years (n = 108) | Menarcheal Age >11 Years (n = 140) | ||||
---|---|---|---|---|---|---|
Parameter | Mean ± SD * | n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) |
Age at menarche (years) | 11.55 ± 1.55 | 10.24 ± 0.74 | 12.55 ± 1.21 | |||
Age at thelarche (years) | 9.95 ± 1.45 | |||||
Age at adrenarche (years) | 9.93 ± 1.46 | |||||
At enrolment | ||||||
Age (years) | 13.7 ± 2.28 | 13.0 ± 2.57 | 14.26 ± 1.84 | |||
Weight (kg) | 54.84 ± 11.50 | 53.19 ± 11.64 | 56.11 ± 11.26 | |||
Height (cm) | 158.73 ± 9.54 | 156.03 ± 10.71 | 160.81 ± 7.96 | |||
BMI * (kg/m2) | 21.57 ± 3.19 | 21.57 ± 3.08 | 21.57 ± 3.26 | |||
Residence | ||||||
Urban | 70 (64.81) | 80 (57.14) | ||||
Rural | 38 (35.10) | 60 (42.85) | ||||
Perinatal history data | ||||||
Gestational week | 38.30 ± 1.52 | 38.17 ± 1.59 | 38.40 ± 1.46 | |||
Birth weight (kg) | ||||||
SGA * | 34 (13.70) | 15 (13.90) | 19 (13.60) | |||
AGA | 185 (74.6) | 82 (75.9) | 104 (74.30) | |||
LGA | 28 (11.3) | 11 (10.20) | 17 (12.10) | |||
Birth length (cm) | 49.46 ± 2.85 | 49.28 ± 3.87 | 49.59 ± 2.36 | |||
Mode of delivery | ||||||
Vaginal delivery | 129 (52) | 61 (56.50) | 68 (48.60) | |||
Cesarian section | 119 (48) | 47 (43.50) | 72 (51.40) | |||
Order in family | ||||||
1st child | 144 (58.10) | 63 (58.30) | 81 (57.90) | |||
2nd child | 70 (28.20) | 34 (31.50) | 36 (25.70) | |||
3rd child | 27 (10.90) | 8 (7.40) | 19 (13.60) | |||
4th child | 7 (2.80) | 3 (2.80) | 4 (2.90) | |||
Family history | ||||||
Mothers AAM * | 12.10 ± 1.99 | 11.64 ± 1.86 | 12.47 ± 2.03 | |||
Mothers’ height (cm) | 161.91 ± 18.95 | 161.42 ± 16.89 | 162.28 ± 20.45 |
Overall (n = 248) | Menarcheal Age ≤11 Years (n = 108) | Menarcheal Age >11 Years (n = 140) | |
---|---|---|---|
Polymorphism | n (%) | n (%) | n (%) |
Genotype | |||
rs7759938 | |||
TT | 137 (55.20) | 59 (54.60) | 78 (55.70) |
CC | 24 (9.70) | 11 (10.20) | 13 (9.30) |
TC | 87 (35.10) | 38 (35.20) | 49 (35.0) |
rs314280 | |||
TT | 36 (14.50) | 13 (12.00) | 23 (16.40) |
CC | 88 (35.50) | 44 (40.70) | 44 (31.40) |
TC | 124 (85.50) | 51 (88.00) | 117 (83.60) |
rs314276 | |||
CC | 132 (53.20) | 61 (56.50) | 71 (50.7) |
TT | 23 (9.30) | 11 (10.20) | 12 (8.60) |
CT | 116 (46.80) | 47 (43.50) | 69 (49.30) |
Overall (n = 248) | Menarcheal Age ≤11 Years (n = 108) | Menarcheal Age >11 Years (n = 140) | ||||
---|---|---|---|---|---|---|
Polymorphism | n (%) | n (%) | n (%) | z-Score | p-Value | 95% CI |
Genotype | ||||||
Dominant model | ||||||
rs7759938 | 0.029 | 0.865 | 0.578–1.585 | |||
TT | 137 | 59 | 78 | |||
TC/CC | 111 | 49 | 62 | |||
rs314280 | 0.948 | 0.330 | 0.335–1.447 | |||
TT | 36 | 13 | 23 | |||
TC/CC | 212 | 95 | 117 | |||
rs314276 | 0.815 | 0.367 | 0.762–2.089 | |||
CC | 132 | 61 | 71 | |||
TC/TT | 116 | 47 | 69 | |||
Recessive model | ||||||
rs7759938 | 0.056 | 0.812 | 0.476–2.580 | |||
CC | 24 | 11 | 13 | |||
CT/TT | 224 | 97 | 127 | |||
rs314280 | 2.309 | 0.129 | 0.888–2.533 | |||
CC | 88 | 44 | 44 | |||
CT/TT | 160 | 64 | 96 | |||
rs314276 | 0.189 | 0.664 | 0.512–2.857 | |||
TT | 23 | 11 | 12 | |||
TC/CC | 225 | 97 | 128 |
Overall (n = 496) | Menarcheal Age ≤11 Years (n = 216) | Menarcheal Age >11 Years (n = 280) | ||||
---|---|---|---|---|---|---|
Polymorphism | n (%) | n (%) | n (%) | z-Score | p-Value | 95% CI |
Allele | ||||||
rs7759938 | 0.061 | 0.806 | 0.639–1.417 | |||
T | 361 (72.80) | 156 (72.20) | 205 (73.20) | |||
C | 135 (27.20) | 60 (27.80) | 75 (26.80) | |||
rs314280 | 2.395 | 0.122 | 0.520–1.080 | |||
T | 196 (39.50) | 77 (35.60) | 119 (42.50) | |||
C | 300 (60.5) | 139 (64.40) | 161 (57.50) | |||
rs314276 | 0.261 | 0.610 | 0.607–1.341 | |||
C | 357 (72.00) | 158 (73.10) | 199 (71.10) | |||
T | 139 (28.00) | 58 (26.90) | 81 (28.90) |
Polymorphism | <10 Years | 10–11 Years | >11 and ≤15 Years | >15 Years | |
---|---|---|---|---|---|
Genotype Allele | n (%) | n (%) | n (%) | n (%) | p-Value |
rs7759938 | |||||
TT | 14 (42.4) | 45 (60.0) | 70 (54.3) | 8 (72.7) | 0.562 |
TC | 14 (42.4) | 24 (32.0) | 47 (36.4) | 2 (18.2) | |
CC | 5 (15.2) | 6 (8.0) | 12 (9.3) | 1 (9.1) | |
T | 42 (63.6) | 114 (76.0) | 187 (72.5) | 18 (81.8) | 0.213 |
C | 24 (36.4) | 36 (24.0) | 71 (27.5) | 4 (18.2) | |
rs314280 | |||||
TT | 6 (18.2) | 7 (9.3) | 21 (16.3) | 2 (18.2) | 0.586 |
TC | 16 (48.5) | 35 (46.7) | 67 (51.9) | 6 (54.5) | |
CC | 11 (33.3) | 33 (44.0) | 41 (31.8) | 3 (27.3) | |
T | 28 (42.4) | 49 (32.7) | 107 (41.8) | 10 (45.5) | 0.255 |
C | 38 (57.6) | 101 (67.3) | 149 (58.2) | 12 (54.5) | |
rs314276 | |||||
TT | 18 (54.5) | 43 (57.3) | 63 (48.8) | 8 (72.7) | 0.474 |
TC | 10 (30.3) | 26 (34.7) | 55 (42.6) | 2 (18.2) | |
CC | 5 (15.2) | 6 (8.0) | 11 (8.5) | 1 (9.1) | |
T | 20 (30.3) | 38 (25.3) | 77 (29.8) | 4 (18.2) | 0.534 |
C | 46 (69.7) | 112 (74.7) | 181 (70.2) | 18 (81.8) |
p-Value | |||
---|---|---|---|
Parameter | rs7759938 | rs314280 | rs314276 |
Gestation duration (weeks) | |||
allele | 0.484 | 0.946 | 0.458 |
Birth weight (SGA, AGA, LGA) | |||
genotype | 0.691 | 0.278 | 0.436 |
allele | 0.679 | 0.315 | 0.139 |
Age at menarche for overweight girls (years) | |||
genotype | 0.543 | 0.455 | 0.994 |
Type of delivery (C-section, natural) | |||
genotype | 0.494 | 0.415 | 0.677 |
allele | 0.229 | 0.187 | 0.419 |
Mother’s age at menarche (years) | |||
genotype | 0.421 | 0.886 | 0.730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsinopoulou, V.R.; Bacopoulou, F.; Fidani, L.; Dimitriadis, D.; Gerou, S.; Christoforidis, A. Study of rs7759938, rs314280, and rs314276 Polymorphisms of LIN28B in Relation to Age at Menarche in Girls of Greek Descent. Children 2024, 11, 912. https://doi.org/10.3390/children11080912
Tsinopoulou VR, Bacopoulou F, Fidani L, Dimitriadis D, Gerou S, Christoforidis A. Study of rs7759938, rs314280, and rs314276 Polymorphisms of LIN28B in Relation to Age at Menarche in Girls of Greek Descent. Children. 2024; 11(8):912. https://doi.org/10.3390/children11080912
Chicago/Turabian StyleTsinopoulou, Vasiliki Rengina, Flora Bacopoulou, Liana Fidani, Dimitrios Dimitriadis, Spyridon Gerou, and Athanasios Christoforidis. 2024. "Study of rs7759938, rs314280, and rs314276 Polymorphisms of LIN28B in Relation to Age at Menarche in Girls of Greek Descent" Children 11, no. 8: 912. https://doi.org/10.3390/children11080912
APA StyleTsinopoulou, V. R., Bacopoulou, F., Fidani, L., Dimitriadis, D., Gerou, S., & Christoforidis, A. (2024). Study of rs7759938, rs314280, and rs314276 Polymorphisms of LIN28B in Relation to Age at Menarche in Girls of Greek Descent. Children, 11(8), 912. https://doi.org/10.3390/children11080912