The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article
Abstract
1. Introduction
2. Etiology
3. Clinical Presentation and Classification
4. Diagnostic Approach
5. Therapy
New Therapeutic Options
6. Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vece, T.J.; Wambach, J.A.; Hagood, J.S. Childhood rare lung disease in the 21st century: “-omics” technology advances accelerating discovery. Pediatr. Pulmonol. 2020, 55, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.M.; Deterding, R.R.; Young, L.R.; Fishman, M.P.; Fiorino, E.K.; Liptzin, D.R. Overview of the ChILD Research Network: A roadmap for progress and success in defining rare diseases. Pediatr. Pulmonol. 2020, 55, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Busha, A.; Gilbertc, C.; Gregoryb, J.; Nicholson, A.G.; Semple, T.; Pabary, R. Interstitial lung disease in infancy. Early Hum. Dev. 2020, 150, 105186. [Google Scholar] [CrossRef] [PubMed]
- Langston, C.; Fan, L.L. The spectrum of interstitial lung disease in childhood. Pediatr. Pulmonol. 2001, S23, 70–71. [Google Scholar] [CrossRef]
- Clement, A.; Henrion-Caude, A.; Fauroux, B. The pathogenesis of interstitial lung diseases in children. Paediatr. Respir. Rev. 2004, 5, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Clement, A.; Eber, E. Interstitial lung disease in infants and children. Eur. Respir. J. 2008, 31, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Nathan, N.; Berdah, L.; Delestrain, C.; Sileo, C.; Clement, A. Interstitial lung diseases in children. La Presse Médicale 2020, 49, 103909. [Google Scholar] [CrossRef] [PubMed]
- Griese, M.; Haug, M.; Brasch, F.; Freihorst, A.; Lohse, P.; von Kries, R.; Zimmermann, T.; Hartl, D. Incidence and classification of pediatric diffuse parenchymal lung diseases in Germany. Orphanet. J. Rare Dis. 2009, 4, 26. [Google Scholar] [CrossRef]
- Bush, A.; Griese, M.; Elias Seidl, E.; Kerem, E.; Reu, S.; Nicholson, A.G. Early onset children’s interstitial lung diseases: Discrete entities or manifestations of pulmonary dysmaturity? Paediatr. Respir. Rev. 2019, 30, 65–71. [Google Scholar] [CrossRef]
- Vece, T.J.; Fan, L.L. Diagnosis and Management of Diffuse Lung Disease in Children. Paediatr. Respir. Rev. 2011, 12, 238–242. [Google Scholar] [CrossRef]
- Dishop, M.K. Paediatric Interstitial Lung Disease: Classification and Definitions. Paediatr. Respir. Rev. 2011, 12, 230–237. [Google Scholar] [CrossRef]
- Pastroma, A.; Papaioannou, G.M.D.; Raissaki, M.; Alexopoulou, E. The Common among the Rare: A Pictorial Essay of the Most Common Diffuse Lung Diseases in Children. Can. Assoc. Radiol. J. 2018, 69, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Cinel, G.; Kiper, N.; Orhan, D.; Emiralioğlu, B.; Yalçın, E.; Doğru, D.; Özçelik, U.; Oğuz, B.; Haliloğlu, M. Childhood diffuse parenchymal lung diseases: We need a new classification. Clin. Respir. J. 2020, 14, 102–108. [Google Scholar] [CrossRef]
- Griese, M. Etiologic classifcation of difuse parenchymal (interstitial) lung diseases. J. Clin. Med. 2022, 11, 174. [Google Scholar] [CrossRef]
- Bush, A.; Cunningham, S.; De Blic, J.; Barbato, A.; Clement, A.; Epaud, R.; Hengst, M.; Kiper, N.; Nicholson, A.G.; Wetzke, M.; et al. European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax 2015, 70, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Singh, S.H. Interstitial Lung Diseases and Air Pollution: Narrative Review of Literature. Pulm. Ther. 2021, 7, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Fenu, G.; Astori, C.; Lombardi, E. Childhood interstitial lung disease: When to suspect and what to do. Glob. Pediatr. 2024, 8, 100110. [Google Scholar] [CrossRef]
- Gabitova, N.K.H.; Cherezova, I.N.; Arafat, A.; Sadykova, D. Interstitial Lung Disease in Neonates: A Long Road Is Being Paved. Children 2023, 10, 916. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Cleveland, R.; Langston, C. Interstitial Lung Disease in Infants and Children: New Classification System with Emphasis on Clinical, Imaging, and Pathological Correlation. Imaging Pediatr. Pulmonol. 2011, 24, 99–154. [Google Scholar]
- Knoflach, K.; Rapp, C.K.; Schwerk, N.; Carlens, J.; Wetzke, M.; Emiralioğlu, N.; Kiper, N.; Ring, A.M.; Buchvald, F.; Manali, E.; et al. Diffuse alveolar hemorrhage in children with interstitial lung disease: Determine etiologies! Pediatr. Pulmonol. 2023, 58, 1106–1121. [Google Scholar] [CrossRef]
- Buyuksahin, H.N.; Basaran, O.; Balık, Z.; Bilginer, Y.; Ozen, S.; Dogru, D. Interstitial lung disease in autoinflammatory disease in childhood: A systematic review of the literature. Pediatr. Pulmonol. 2023, 58, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Kurland, G.; Deterding, R.R.; Hagood, J.S.; Young, L.R.; Alan, S.; Brody, A.S.; Castile, R.G.; Dell, S.H.; Fan, L.L.; Hamvas, A.; et al. An Official American Thoracic Society Clinical Practice Guideline: Classification, Evaluation, and Management of Childhood Interstitial Lung Disease in Infancy. Am. J. Respir. Crit. Care Med. 2013, 188, 376–394. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, G.H.; Albright, E.; Chou, P.M.; Cool, C.D.; Coventry, S.; Davis, M.M.; Dishop, M.K.; Galambos, C.; Patterson, K.; Wert, S.E.; et al. Defining the spectrum of diffuse lung disease in infancy: A working classification American Thoracic Society Documents 389 of the pediatric interstitial lung disease cooperative. Mod. Pathol. 2005, 18, 304. [Google Scholar]
- Deutsch, G.H.; Young, L.R.; Deterding, R.R.; Fan, L.L.; Dell, S.D.; Bean, J.A.; Brody, A.S.; Nogee, L.M.; Trapnell, B.C.; Langston, C.; et al. Diffuse lung disease in young children: Application of a novel classification scheme. Am. J. Respir. Crit. Care Med. 2007, 176, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Vargas, S.O.; Lee, E.Y. Childhood Interstitial (Diffuse) Lung Disease: Pattern Recognition Approach to Diagnosis in Infants. Pediatr. Imaging 2019, 212, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.; Nicoleta Popescu NAStănescu, D.; Enculescu, A.; Bălgrădean, M.; Căpitănescu, G.M.; Bumbăcea, D. The Challenging Diagnosis of Interstitial Lung Disease in Children—One Case Report and Literature Review. J. Clin. Med. 2022, 11, 6736. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.B.; Melton, K.; Wert, S.; Couriel, J.; Bush, A.; Ashworth, M.; Nogee, L.M. Large ABCA3 and SFTPC deletions resulting in lung disease. Ann. Am. Thorac. Soc. 2013, 10, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Nogee, L.M. Genetic Causes of Surfactant Protein Abnormalities. Curr. Opin. Pediatr. 2019, 31, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Nathan, N.; Pautrat, J.; L’Hermine, A.C.; Corvol, H. Pulmonary sarcoid-like granulomatous disease in an 11-month-old girl. BMJ Case Rep. 2013, 2013, bcr2012008024. [Google Scholar] [CrossRef]
- Cottin, V.; Nunes, H.; Brillet, P.-Y.; Delaval, P.; Devouassoux, G.; Tillie-Leblond, I.; Israel-Biet, D.; Court-Fortune, I.; Valeyre, D.; Cordier, J.F. Combined pulmonary fibrosis and emphysema: A distinct underrecognised entity. Eur. Respir. J. 2005, 26, 586–593. [Google Scholar] [CrossRef]
- Cottin, V.; Reix, P.; Khouatra, C.; Khouatra, C.H.; Thivolet-Béjui, F.; Feldmann, D.; Cordier, J.-F. Combined pulmonary fibrosis and emphysema syndrome associated with familial SFTPC mutation. Thorax 2011, 66, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Nathan, N.; Griese, M.; Michel, K.; Carlens, J.; Gilbert, C.; Emiralioglu, N.; Torrent-Vernetta, A.; Marczak, H.; Willemse, B.; Delestrain, C.; et al. Diagnostic workup of childhood interstitial lung disease. Eur. Respir. Rev. 2023, 32, 220188. [Google Scholar] [CrossRef] [PubMed]
- Wert, S.E.; Whitsett, J.E.; Nogee, L.M. Genetic Disorders of Surfactant Dysfunction. Pediatr. Dev. Pathol. 2010, 12, 253–274. [Google Scholar] [CrossRef] [PubMed]
- Liptzin, D.R.; Patel, T.; Deterding, R.R. Chronic ventilation in infants with surfactant protein C mutations: An alternative to lung transplantation. Am. J. Respir. Crit. Care Med. 2015, 191, 1338. [Google Scholar] [CrossRef]
- McCarthy, C.; Kokosi, M.; Bonella, F. Shaping the future of an ultra-rare disease: Unmet needs in the diagnosis and treatment of pulmonary alveolar proteinosis. Curr. Opin. Pulm. Med. 2019, 25, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Griese, M.; Kirmeier, H.G.; Liebisch, G. Surfactant lipidomics in healthy children and childhood interstitial lung disease. PLoS ONE 2015, 10, e0117985. [Google Scholar] [CrossRef] [PubMed]
- Semple, T.R.; Ashworth, M.T.; Owens, C.M. Interstitial lung disease in children made easier … well, almost. Radiographics 2017, 37, 1679–1703. [Google Scholar] [CrossRef] [PubMed]
- Pelizzo, G.; Silvestro, S.; Avanzini, M.A.; Zuccotti, G.; Mazzon, E.; Calcaterra, V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021, 10, 3270. [Google Scholar] [CrossRef]
- Ring, A.M.; Carlens, J.; Bush, A.; Castillo-Corullón, S.; Fasola, S.; Gaboli, M.P.; Matthias Griese, M.; Koucky, V.; La Grutta, S.; Lombardi, E.; et al. Pulmonary function testing in children’s interstitial lung disease. Eur. Respir. Rev. 2020, 29, 200019. [Google Scholar] [CrossRef]
- Ferraro, V.A.; Zanconato, S.; Zamunaro, A.; Carraro, S. Children’s Interstitial and Diffuse Lung Diseases (ChILD) in 2020. Children 2020, 7, 280. [Google Scholar] [CrossRef]
- Nam, B.D.; Jung Kim, T.; Pyo Chung, M.; Jin Chung, M.; Sung Kim, T.; Soo Lee, K. CT findings in pulmonary alveolar proteinosis: Serial changes and prognostic implications. J. Thorac. Dis. 2018, 10, 5774–5783. [Google Scholar] [CrossRef] [PubMed]
- Drobnakova, S.; Vargova, V.; Smolova, J.; Drencakova, P.; Giertlova, M.; Pisarcikova, M.; Barkai, L. Novel surfactant C variant c.325-47_374del without response to hydroxychloroquine treatment. Respir. Med. Case Rep. 2024, 50, 102034. [Google Scholar] [CrossRef] [PubMed]
- Miraftabi, P.; Kirjavainen, T.; Suominen, J.S.; Lohi, J.; Martelius, L. Children’s interstitial lung disease: Multidetector computed tomography patterns and correlations between imaging and histopathology. Eur. J. Radiol. 2023, 165, 110886. [Google Scholar] [CrossRef]
- Kebbe, J.; Abdo, T. Interstitial lung disease: The diagnostic role of bronchoscopy. J. Thorac. Dis. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Fortmann, C.; Schwerk, N.; Wetzke, M.l. Diagnostic accuracy and therapeutic relevance of thoracoscopic lung biopsies in children. Pediatr. Pulmonol. 2018, 53, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Lipsett, J.; Dishop, M.K. Strategies for the neonatal lung biopsy: Histology to genetics. Surg. Pathol. Clin. 2020, 13, 657–682. [Google Scholar] [CrossRef] [PubMed]
- Laenger, F.P.; Schwerk, N.; Dingemann, J.; Welte, T.; AuberStijn Verleden, B.; Ackermann, M.; Mentzer, S.J.; Griese, M.; Jonigk, D. Interstitial lung disease in infancy and early childhood: A clinicopathological primer. Eur. Respir. Rev. 2022, 31, 210251. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.; Jaffe, A.; Young, L.R. Children’s interstitial and diffuse lung disease. Lancet Child Adolesc. Health 2019, 3, 568–577. [Google Scholar] [CrossRef]
- Deterding, R.R.; DeBoer, E.M.; Cidon, M.J.; Robinso, T.E.; Warburton, D.; Deutsch, G.H.; Young, L.R. Approaching Clinical Trials in Childhood Interstitial Lung Disease and Pediatric Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 1219–1227. [Google Scholar] [CrossRef]
- Ring, A.M.; Buchvald, F.; Main, K.; Oturai, P.; Nielsen, K. Long-term effects of high-dose systemic corticosteroids on growth and bone mineral density in patients treated for childhood interstitial lung disease (chILD). Pediatr. Pulmonol. 2024, 59, 964–973. [Google Scholar] [CrossRef]
- Rosen, D.M.; Waltz, D.A. Hydroxychloroquine and surfactant protein C deficiency. N. Engl. J. Med. 2005, 352, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.S.; Wert, S.E.; Baughman, R.P.; Tomashefski, J.F., Jr.; Nogee, L.M.; Brody, A.S. Surfactant protein deficiency in familial interstitial lung disease. J. Pediatr. 2001, 139, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Avital, A.; Hevroni, A.; Godfrey, S.; Cohen, S.; Maayan, C.; Nusair, S. Natural history of five children with surfactant protein C mutations and interstitial lung disease. Pediatr. Pulmonol. 2014, 49, 1097–1105. [Google Scholar] [CrossRef]
- Rabach, I.; Poli, F.; Zennaro, F.; Germani, C.; Ventura, A.; Barbi, E. Is treatment with hydroxychloroquine effective in surfactant protein C deficiency? Arch. Bronconeumol. 2013, 49, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.; Wallis, C. Ten-year follow up of hydroxychloroquine treatment for ABCA3 deficiency. Pediatr. Pulmonol. 2014, 49, 299–301. [Google Scholar] [CrossRef]
- Winter, J.; Essmann, S.; Kidszun, A.; Aslanidis, C.; Griese, M.; Poplawska, K. Neonatal respiratory insufficiency caused by an (homozygous) ABCA3-stop mutation: A systematic evaluation of therapeutic options. Klin. Padiatr. 2014, 226, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kroner, C.; Wittmann, T.; Reu, S.; Teusch, V.; Klemme, M.; Rauch, D. Lung disease caused by ABCA3 mutations. Thorax 2017, 72, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Griese, M.; Kappler, M.; Stehling, F.; Schulze, J.; Baden, W.; Koerner-Rettberg, C.; Carlens, J.; Prenzel, F.; Nährlich, L.; Thalmeier, A.; et al. Randomized controlled phase 2 trial of hydroxychloroquine in childhood interstitial lung disease. Orphanet. J. Rare Dis. Vol. 2022, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Bush, A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr. Respir. Rev. 2020, 34, 67–74. [Google Scholar] [CrossRef]
- Khirani, S.; Nathan, N.; Ramirez, A.; Aloui, S.; Delacourt, C.; Clément, A.; Fauroux, B. Work of breathing in children with diffuse parenchymal lung disease. Respir. Physiol. Neurobiol. 2015, 15, 45–52. [Google Scholar] [CrossRef]
- Breuer, O.; Schultz, A. Side effects of medications used to treat childhood interstitial lung disease. Paediatr. Respir. Rev. 2018, 28, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Bernardinello, N.; Griese, M.; Borie, R.; Spagnolo, P. Emerging Treatments for Childhood Interstitial Lung Disease. Pediatr. Drugs 2024, 26, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Griese, M. Pulmonary alveolar proteinosis: A comprehensive clinical perspective. Pediatrics 2017, 140, e20170610. [Google Scholar] [CrossRef]
- Leong, S.W.; Bos, S.; Lordan, J.L.; Nair, A.; Fisher, A.J.; Meachery, G. Lung transplantation for interstitial lung disease: Evolution over three decades. BMJ Open Resp. Res. 2023, 10, e001387. [Google Scholar] [CrossRef] [PubMed]
- Carlens, J.; Schwerk, N.; Müller, C.; Schütz, K.; Länger, F.; Hansen, G.; Salman, J.; Bobylev, D.; Ius, F. Paediatric lung transplantation for children with interstitial lung disease: A 12-year single-center analysis of underlying ChILD diagnoses and outcome. Eur. Respir. J. 2023, 62, OA2508. [Google Scholar]
- Gozal, D.; Kolb, M. Nintedanib in chILD: A small step, yes…but at least a step forward in a marathon! Eur. Respir. J. 2023, 61, 2201797. [Google Scholar] [CrossRef] [PubMed]
- Deterding, R.; Young, L.R.; DeBoer, E.M.; Warburton, D.; Cunningham, S.; Schwerk, N.; Flaherty, K.R.; Brown, K.K.; Dumistracel, M.; Erhardt, E.; et al. Nintedanib in children and adolescents with fibrosing interstitial lung diseases. Eur. Respir. J. 2023, 61, 2201512. [Google Scholar] [CrossRef]
- Tazawa, R.; Ueda, T.; Abe, M.; Tatsumi, K.; Eda, R.; Kondoh, S.; Morimoto, K.; Tanaka, T.; Yamaguchi, E.; Takahashi, A.; et al. Inhaled GM-CSF for pulmonary alveolar proteinosis. N. Engl. J. Med. 2019, 381, 923–932. [Google Scholar] [CrossRef]
- Forstner, M.; Lin, S.; Yang, X.; Kinting, S.; Rothenaigner, I.; Schorpp, K.; Li, Y.; Hadian, K.; Griese, M. High-Content Screening Identifies Cyclosporin A as a Novel ABCA3-Specific Molecular Corrector. Am. J. Respir. Cell Mol. Biol. 2022, 66, 382–390. [Google Scholar] [CrossRef]
- Kinting, S.; Li, Y.; Forstner, M.; Delhommel, F.; Sattler, M.; Griese, M. Potentiation of ABCA3 lipid transport function by ivacaftor and genistein. J. Cell Mol. Med. 2019, 23, 5225–5234. [Google Scholar] [CrossRef]
- Kinting, S.; Höppner, S.; Schindlbeck, U.; Forstner, M.E.; Harfst, J.; Wittmann, T.; Griese, M. Functional rescue of misfolding ABCA3 mutations by small molecular correctors. Hum. Mol. Genet. 2018, 27, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.C.; O’Sullivan, A.; MacLoughlin, R. Cellular therapy for the treatment of paediatric respiratory disease. Int. J. Mol. Sci. 2021, 22, 8906. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Chang, Y.S.; Lee, M.H.; Sung, S.I.; Lee, B.S.; Kim, K.S.; Kim, A.R.; Park, W.S. Stem cells for bronchopulmonary dysplasia in preterm infants: A randomized controlled phase II trial. Stem. Cells Transl. Med. 2021, 10, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Mucci, A.; Lopez-Rodriguez, E.; Hetzel, M.; Liu, S.; Suzuki, T.; Happle, C.; Ackermann, M.; Kempf, H.; Hillje, R.; Kunkiel, J.; et al. iPSC-derived macrophages effectively treat pulmonary alveolar proteinosis in Csf2rb-defcient mice. Stem. Cell Rep. 2018, 11, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Tašić, J.; Takács, M.; Kovács, L. Control engineering methods for blood glucose levels regulation. Acta Polytech. Hung. 2022, 19, 127–152. [Google Scholar] [CrossRef]
- Mahiny, A.J.; Dewerth, A.; Mays, L.E.; Alkhaled, M.; Mothes, B.; Malaeksefat, E.; Loretz, B.; Rottenberger, J.; Brosch, D.M.; Reautschnig, P.; et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B defciency. Nat. Biotechnol. 2015, 33, 584–586. [Google Scholar] [CrossRef]
- Kang, M.H.; van Lieshout, L.P.; Xu, L.; Domm, J.M.; Vadivel, A.; Renesme, L.; Mühlfeld, C.; Hurskainen, M.; Mižíková, I.; Pei, Y.; et al. A lung tropic AAV vector improves survival in a mouse model of surfactant B defciency. Nat. Commun. 2020, 11, 3929. [Google Scholar] [CrossRef]
- Hetzel, M.; Suzuki, T.; Hashtchin, A.R.; Arumugam, P.; Carey, B.; Schwabbauer, M.; Kuhn, A.; Meyer, J.; Schambach, A.; Van Der Loo, J.; et al. Function and safety of lentivirus-mediated gene transfer for CSF2RA-defciency. Hum. Gene. Ther. Methods 2017, 28, 318–329. [Google Scholar] [CrossRef]
- Cooney, A.L.; Wambach, J.A.; Sinn, P.L.; McCray, P.B., Jr. Gene therapy potential for genetic disorders of surfactant dysfunction. Front. Genome. Ed. 2022, 3, 785829. [Google Scholar] [CrossRef]
- Zrubka, Z.S.; Hermann, Z.; Péntek, M.; Kovács, L.; Drexler, D.A.; Békésy, M.; Gulácsi, L. Exploring a Markov Model Framework to quantify societal preferences, concerning age and severity of disease, for health resource allocation. Acta Polytech. Hung. 2023, 20, 175–195. [Google Scholar] [CrossRef]
- McKnight, L.; Schultz, A.; Vidic, N.; Palmer, E.; Adam Jaffe, A. Learning to make a difference for chILD: Value creation through network collaboration and team science. Padiatr. Pulmonol. 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
Known Etiology | Systemic Disorders with Pulmonary Involvement | Unknown Etiology |
---|---|---|
|
|
|
Disorders More Prevalent in Infancy |
A. Diffuse developmental disorders (e.g., congenital alveolar dysplasia) |
B. Growth abnormalities (e.g., chronic neonatal lung disease) |
C. Specific conditions of undefined etiology (e.g., pulmonary interstitial glycogenosis) |
D. Surfactant dysfunction mutations and related disorders (e.g., SPFTB genetic mutations) |
Disorders not Specific to Infancy |
A. Disorders of normal hosts (e.g., infectious and postinfectious processes) |
B. Disorders related to systemic disease processes (e.g., immune-related disorders) |
C. Disorders of immunocompromised hosts (e.g., opportunistic infections) |
D. Disorders masquerading as interstitial disease (e.g., arterial hypertensive vasculopathy) |
Unclassified (e.g., end-stage disease) |
Presentation | Radiology (CT) | Histology | Possible Genetic Mutations | |
---|---|---|---|---|
Neonatal period |
| normal, ground-glass opacification, consolidations | pulmonary alveolar proteinosis, desquamative interstitial pneumonia, nonspecific interstitial pneumonia, chronic pneumonitis of infancy, alveolocapillary dysplasia with misalignment of pulmonary veins, alveolar simplification, acinar dysplasia, pulmonary interstitial glycogenosis | ABCA3, SFTPB/C, NKX2-1, TBX4, FOXF1, TBX4, NKX2-1 |
First two years of life |
| consolidations, air trapping, hyperinflation, ground-glass opacification, reticulation, cysts, periventricular heterotopia | pulmonary alveolar proteinosis, desquamative interstitial pneumonia, nonspecific interstitial pneumonia, chronic pneumonitis of infancy, alveolar simplification, infections | NKX2-1, ABCA3, SFTPC, CSF2RA, CSF2RB, GATA2, MARS, OAS1, SLCA7, FLNA |
Older children |
| intra-alveolar calcification, ground-glass opacification, reticulation, cysts | microlithiasis, follicular bronchitis, pulmonary alveolar proteinosis, infections (CMV), pneumonitis, capillaritis, alveolar hemorrhage | FLNA, COPA, STAT3-GOF, HPS1,3,4,5,6, AP3B1, DTNBP1, TMEM137, SCL34A2, SFTPC |
Genetic Mutation | Inheritance | Lung Involvement |
---|---|---|
SFTPB (surfactant protein B deficiency) | Autosomal recessive | Surfactant disorder |
SFTPC (surfactant protein C mutation) | Autosomal dominant | Surfactant disorder |
CSF2RB (colony-stimulating factor 2 receptor β) | Autosomal recessive | Pulmonary alveolar proteinosis |
CSF2RA (colony-stimulating factor 2 receptor α) | X-linked | Pulmonary alveolar proteinosis |
ABCA3 (ATP-binding cassette-family A-member 3) | Autosomal recessive | Deficit surfactant |
COPA (coatomer-associated protein subunit alpha) | Autosomal dominant | General disorder including lung |
FLNA (Filamin A) | X-linked recessive | General disorder including lung |
FOXF1 (forkhead box F1) | Autosomal dominant | Alveolar capillary dysplasia |
GATA2 (GATA Binding Protein 2) | Autosomal dominant | Pulmonary alveolar proteinosis |
MARS (metionil-transfer RNA sintetasi) | Autosomal recessive | Pulmonary alveolar proteinosis |
NKX2-1 (NK2 homeobox 1) | Autosomal dominant | Interstitial lung disease |
NSMCE3 (non-structural maintenance of chromosome element 3 homolog) | Autosomal recessive | Immunodeficiency |
OAS1 (oligoadenylate synthetase 1) | Autosomal dominant | Pulmonary alveolar proteinosis |
SLC7A7 (solute carrier family 7 member 7) | Autosomal recessive | Surfactant disorder |
TBX4 (T-box transcription factor 4) | Autosomal dominant | Acinar dysplasia |
TMEM173 (transmembrane protein 173) | Autosomal dominant | Lung fibrosis with general inflammation |
chILD (Ventilated or Close to Ventilation) | chILD (Not Ventilated or Close to Ventilation) | |
---|---|---|
Methylprednisolone | ||
Dose | 10 mg/kg or 500 mg/m2 (intravenous) | 10 mg/kg or 500 mg/m2 (intravenous) |
Response rate | 7 days | 28 days |
Comment | A dose of 30 mg/kg is used by some centers. | An alternative to oral prednisolone. Use before other therapies and judge response. |
Prednisolone | ||
Dose | Doses of 1 mg/kg (oral) are used between pulses of methylprednisolone. | Doses of 2 mg/kg (oral) are used as an alternative to methylprednisolone pulses. Use before other therapies and judge response. |
Response rate | 7 days | 28 days |
Hydroxychloroquine | ||
Dose | 10 mg/kg | 10 mg/kg |
Response rate | 21–28 days | 3 months |
Comment | In children <6 years, 6.5 mg/kg is used in some centers to reduce toxicity. | In children <6 years, 6.5 mg/kg is used in some centers to reduce toxicity. No preference over azithromycin as a second-line treatment. In addition, 54% would consider hydroxychloroquine as a sole therapy in mild stable chILD. |
Azithromycin | ||
Dose | 10 mg/kg 3 days per week | 10 mg/kg 3 days per week |
Response rate | 3 months | 3 months |
Comment | No preference over hydroxychloroquine as a second-line treatment. In addition, 51% would consider azithromycin as a sole therapy in mild stable chILD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drobňaková, S.; Vargová, V.; Barkai, L. The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article. Children 2024, 11, 904. https://doi.org/10.3390/children11080904
Drobňaková S, Vargová V, Barkai L. The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article. Children. 2024; 11(8):904. https://doi.org/10.3390/children11080904
Chicago/Turabian StyleDrobňaková, Simona, Veronika Vargová, and László Barkai. 2024. "The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article" Children 11, no. 8: 904. https://doi.org/10.3390/children11080904
APA StyleDrobňaková, S., Vargová, V., & Barkai, L. (2024). The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article. Children, 11(8), 904. https://doi.org/10.3390/children11080904