Procalcitonin and Presepsin as Markers of Infectious Respiratory Diseases in Children: A Scoping Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Questions
- Does the adjunction of presepsin to the use of procalcitonin improve the accuracy in identifying bacterial infectious diseases?
- What is the role of presepsin and procalcitonin in the subgroup of children with bronchiolitis?
- What is the role of presepsin and procalcitonin in the subgroup of children with RSV bronchiolitis?
2.2. Inclusion Criteria
2.2.1. Participants
2.2.2. Concept
2.2.3. Context
2.2.4. Type of Sources
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction
- Study general features: title, author, year of publication, type of study, number of patients included in the study, geographical area where the study was performed;
- Participant general features: sample size of each group, nationality, age, socioeconomic status, comorbidities;
- Clinical manifestations of children included in our review;
- Main imaging findings: type of lung involvement at chest X-Ray and/or CT scan;
- Microbiological results;
- Results of the inflammation indices performed (procalcitonin and presepsin);
- Antibiotic use;
- Hospitalization, including pediatric intensive care;
- Outcomes (death, survival; survival with or without sequelae; type of sequelae).
2.6. Data Analysis and Presentation
2.7. Patient and Public Involvement
3. Results
Synthesis of the Evidence
4. Discussion
4.1. Limitations
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunaratnam, L.C.; Robinson, J.L.; Hawkes, M.T. Systematic Review and Meta-Analysis of Diagnostic Biomarkers for Pediatric Pneumonia. J. Pediatr. Infect. Dis. Soc. 2021, 10, 891–900. [Google Scholar] [CrossRef]
- Park, H.N.; Kim, S.Y.; Lee, N.M.; Yi, D.Y.; Yun, S.W.; Chae, S.A.; Lim, I.S.; Lim, Y.K.; Park, J.Y. Usefulness of Procalcitonin in the Diagnosis of Bacterial Infection in Immunocompetent Children. Children 2022, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Azim, A. Presepsin: A Promising Biomarker for Sepsis. Indian. J. Crit. Care Med. 2021, 25, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Velissaris, D.; Zareifopoulos, N.; Karamouzos, V.; Karanikolas, E.; Pierrakos, C.; Koniari, I.; Karanikolas, M. Presepsin as a Diagnostic and Prognostic Biomarker in Sepsis. Cureus 2021, 13, e15019. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Chen, G.Y.; Liu, Z.; Zhao, Y.; Xu, G.Y.; Li, S.F.; Li, C.N.; Chen, L.S.; Tao, Z. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review. Crit. Care 2018, 22, 316. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Baghi, H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomed. Pharmacother. 2019, 111, 649–656. [Google Scholar] [CrossRef] [PubMed]
- El Gendy, F.M.; El-Mekkawy, M.S.; Saleh, N.Y.; Habib, M.S.E.; Younis, F.E. Clinical study of Presepsin and Pentraxin3 in critically ill children. J. Crit. Care 2018, 47, 36–40. [Google Scholar] [CrossRef]
- Özdemir, Z.C.; Düzenli-Kar, Y.; Canik, A.; Küskü-Kiraz, Z.; Özen, H.; Bör, Ö. The predictive value of procalcitonin, C-reactive protein, presepsin, and soluble-triggering receptor expressed on myeloid cell levels in bloodstream infections in pediatric patients with febrile neutropenia. Turk. J. Pediatr. 2019, 61, 359–367. [Google Scholar] [CrossRef]
- Hagedoorn, N.N.; Borensztajn, D.M.; Nijman, R.; Balode, A.; von Both, U.; Carrol, E.D.; Eleftheriou, I.; Emonts, M.; van der Flier, M.; de Groot, R.; et al. Variation in antibiotic prescription rates in febrile children presenting to emergency departments across Europe (MOFICHE): A multicentre observational study. PLoS Med. 2020, 17, e1003208. [Google Scholar] [CrossRef]
- Sodero, G.; Mariani, F.; Pulcinelli, V.; Gentili, C.; Valentini, P.; Buonsenso, D. Presepsin and procalcitonin as markers of infectious respiratory diseases in children: A protocol for a scoping review of the literature. F1000Research 2023, 12, 253. [Google Scholar] [CrossRef]
- Bashir, A.; Khan, R.; Thompson, S.; Caceres, M. A retrospective observational study of biomarker levels and severity assessment in pediatric community-acquired pneumonia. Medicine 2022, 101, e30010. [Google Scholar] [CrossRef] [PubMed]
- Gómez de Oña, C.; Alvarez-Argüelles, M.E.; Rojo-Alba, S.; Casares, H.; Arroyo, M.; Rodríguez, J.; de Oña, M.; Melón, S. Alterations in biochemical markers in adenovirus infection. Transl. Pediatr. 2021, 10, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Guitart, C.; Rodríguez-Fanjul, J.; Bobillo-Perez, S.; Carrasco, J.L.; Inarejos Clemente, E.J.; Cambra, F.J.; Balaguer, M.; Jordan, I. An algorithm combining procalcitonin and lung ultrasound improves the diagnosis of bacterial pneumonia in critically ill children: The PROLUSP study, a randomized clinical trial. Pediatr. Pulmonol. 2022, 57, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Jullien, S.; Richard-Greenblatt, M.; Casellas, A.; Tshering, K.; Ribó, J.L.; Sharma, R.; Tshering, T.; Pradhan, D.; Dema, K.; Ngai, M.; et al. Association of Clinical Signs, Host Biomarkers and Etiology with Radiological Pneumonia in Bhutanese Children. Glob. Pediatr. Health. 2022, 9, 2333794X221078698. [Google Scholar] [CrossRef] [PubMed]
- Kotula, J.J., 3rd; Moore, W.S., 2nd; Chopra, A.; Cies, J.J. Association of Procalcitonin Value and Bacterial Coinfections in Pediatric Patients with Viral Lower Respiratory Tract Infections Admitted to the Pediatric Intensive Care Unit. J. Pediatr. Pharmacol. Ther. 2018, 23, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Florin, T.A.; Ambroggio, L.; Brokamp, C.; Zhang, Y.; Rattan, M.; Crotty, E.; Belsky, M.A.; Krueger, S.; Epperson, T.N., 4th; Kachelmeyer, A.; et al. Biomarkers and Disease Severity in Children with Community-Acquired Pneumonia. Pediatrics 2020, 145, e20193728, Erratum in Pediatrics 2020, 146, e2020011452. [Google Scholar] [CrossRef]
- Gan, Y.; Hu, Y.; Dong, H.; Wu, L.; Niu, Y. Causes of Lower Respiratory Tract Infections and the Use of Diagnostic Biomarkers in Blood Samples from Children in Hohhot, Inner Mongolia, China, Between July 2019 and June 2020. Med. Sci. Monit. 2022, 28, e934889. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hwang, S.J.; Shim, J.W.; Jung, H.L.; Park, M.S.; Woo, H.Y.; Shim, J.Y. Clinical significance of serum procalcitonin in patients with community-acquired lobar pneumonia. Korean J. Lab. Med. 2010, 30, 406–413. [Google Scholar] [CrossRef]
- Zhu, F.; Jiang, Z.; Li, W.H.; Wei, H.Y.; Su, G.D. Clinical significance of serum procalcitonin level monitoring on early diagnosis of severe pneumonia on children. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4300–4303. [Google Scholar]
- Zhu, G.; Zhu, J.; Song, L.; Cai, W.; Wang, J. Combined use of biomarkers for distinguishing between bacterial and viral etiologies in pediatric lower respiratory tract infections. Infect Dis. 2015, 47, 289–293. [Google Scholar] [CrossRef]
- Dudognon, D.; Levy, C.; Chalumeau, M.; Biscardi, S.; Dommergues, M.A.; Dubos, F.; Levieux, K.; Aurel, M.; Minodier, P.; Zenkhri, F.; et al. Diagnostic Accuracy of Routinely Available Biomarkers to Predict Bacteremia in Children with Community-Acquired Pneumonia: A Secondary Analysis of the GPIP/ACTIV Pneumonia Study in France, 2009–2018. Front Pediatr. 2021, 9, 684628. [Google Scholar] [CrossRef]
- Page, A.L.; de Rekeneire, N.; Sayadi, S.; Aberrane, S.; Janssens, A.C.; Dehoux, M.; Baron, E. Diagnostic and prognostic value of procalcitonin and C-reactive protein in malnourished children. Pediatrics 2014, 133, e363–e370. [Google Scholar] [CrossRef]
- Pham, H.T.; Nguyen, T.T.N.; Tam, N.T. Diagnostic Value of Different Biomarkers to Identify Bacterial Coinfection in Vietnamese Children with Severe Rhinovirus Pneumonia. J. Child Sci. 2020, 10, e25–e31. [Google Scholar] [CrossRef]
- Don, M.; Valent, F.; Korppi, M.; Canciani, M. Differentiation of bacterial and viral community-acquired pneumonia in children. Pediatr. Int. 2009, 51, 91–96. [Google Scholar] [CrossRef]
- Don, M.; Valent, F.; Korppi, M.; Falleti, E.; De Candia, A.; Fasoli, L.; Tenore, A.; Canciani, M. Efficacy of serum procalcitonin in evaluating severity of community-acquired pneumonia in childhood. Scand. J. Infect. Dis. 2007, 39, 129–137. [Google Scholar] [CrossRef]
- Cheng, H.R.; Li, D.C.; Wu, B.Q.; Yang, J.L.; Chen, L. Evaluation of serum high sensitive C-reactive protein, procalcitonin, neopterin and leukocyte on different respiratory infectious disease in Chinese children. Int. J. Clin. Exp. Med. 2016, 9, 14635–14641. [Google Scholar]
- Meyer Sauteur, P.M.; Krautter, S.; Ambroggio, L.; Seiler, M.; Paioni, P.; Relly, C.; Capaul, R.; Kellenberger, C.; Haas, T.; Gysin, C.; et al. Improved Diagnostics Help to Identify Clinical Features and Biomarkers That Predict Mycoplasma pneumoniae Community-acquired Pneumonia in Children. Clin. Infect. Dis. 2020, 71, 1645–1654. [Google Scholar] [CrossRef]
- Khan, D.A.; Rahman, A.; Khan, F.A. Is procalcitonin better than C-reactive protein for early diagnosis of bacterial pneumonia in children? J. Clin. Lab. Anal. 2010, 24, 1–5. [Google Scholar] [CrossRef]
- Schützle, H.; Forster, J.; Superti-Furga, A.; Berner, R. Is serum procalcitonin a reliable diagnostic marker in children with acute respiratory tract infections? A retrospective analysis. Eur. J. Pediatr. 2009, 168, 1117–1124. [Google Scholar] [CrossRef]
- Elenius, V.; Peltola, V.; Ruuskanen, O.; Ylihärsilä, M.; Waris, M. Plasma procalcitonin levels in children with adenovirus infection. Arch. Dis. Child. 2012, 97, 582–583. [Google Scholar] [CrossRef]
- Pham, H.T.; Nguyen, T.N.; Tran, Q.A.; Ngo, T.T. Prevalence and Associated Factors with Mixed Coinfections among under 5-Year-Old Children with Severe Viral Pneumonia in Vietnam. J. Child Sci. 2020, 10, e74–e79. [Google Scholar] [CrossRef]
- Stockmann, C.; Ampofo, K.; Killpack, J.; Williams, D.J.; Edwards, K.M.; Grijalva, C.G.; Arnold, S.R.; McCullers, J.A.; Anderson, E.J.; Wunderink, R.G.; et al. Procalcitonin Accurately Identifies Hospitalized Children with Low Risk of Bacterial Community-Acquired Pneumonia. J. Pediatr. Infect. Dis. Soc. 2018, 7, 46–53. [Google Scholar] [CrossRef]
- Díez-Padrisa, N.; Bassat, Q.; Machevo, S.; Quintó, L.; Morais, L.; Nhampossa, T.; O’Callaghan-Gordo, C.; Torres, A.; Alonso, P.L.; Roca, A. Procalcitonin and C-reactive protein for invasive bacterial pneumonia diagnosis among children in Mozambique, a malaria-endemic area. PLoS ONE 2010, 5, e13226. [Google Scholar] [CrossRef]
- Prat, C.; Domínguez, J.; Rodrigo, C.; Giménez, M.; Azuara, M.; Jiménez, O.; Galí, N.; Ausina, V. Procalcitonin, C-reactive protein and leukocyte count in children with lower respiratory tract infection. Pediatr. Infect. Dis. J. 2003, 22, 963–968. [Google Scholar] [CrossRef]
- Do, Q.; Dao, T.M.; Nguyen, T.N.T.; Tran, Q.A.; Nguyen, H.T.; Ngo, T.T. Procalcitonin Identifies Bacterial Coinfections in Vietnamese Children with Severe Respiratory Syncytial Virus Pneumonia. Biomed. Res. Int. 2020, 2020, 7915158. [Google Scholar] [CrossRef]
- Moulin, F.; Raymond, J.; Lorrot, M.; Marc, E.; Coste, J.; Iniguez, J.L.; Kalifa, G.; Bohuon, C.; Gendrel, D. Procalcitonin in children admitted to hospital with community acquired pneumonia. Arch. Dis. Child. 2001, 84, 332–336. [Google Scholar] [CrossRef]
- Nascimento-Carvalho, C.M.; Cardoso, M.R.; Barral, A.; Araújo-Neto, C.A.; Guerin, S.; Saukkoriipi, A.; Paldanius, M.; Vainionpää, R.; Lebon, P.; Leinonen, M.; et al. Procalcitonin is useful in identifying bacteraemia among children with pneumonia. Scand. J. Infect. Dis. 2010, 42, 644–649. [Google Scholar] [CrossRef]
- Laham, J.L.; Breheny, P.J.; Gardner, B.M.; Bada, H. Procalcitonin to predict bacterial coinfection in infants with acute bronchiolitis: A preliminary analysis. Pediatr. Emerg. Care. 2014, 30, 11–15. [Google Scholar] [CrossRef]
- Ratageri, V.H.; Panigatti, P.; Mukherjee, A.; Das, R.R.; Goyal, J.P.; Bhat, J.I.; Vyas, B.; Lodha, R.; Singhal, D.; Kumar, P.; et al. Role of procalcitonin in diagnosis of community acquired pneumonia in Children. BMC Pediatr. 2022, 22, 217. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Zhang, Z.; Ma, X.; Sang, Y.; Wang, J.; Xu, G.; Feng, Q.; Zhao, S. Serum amyloid a, C-reactive protein, and procalcitonin levels in children with Mycoplasma pneumoniae infection. J. Clin. Lab. Anal. 2022, 36, e24265. [Google Scholar] [CrossRef]
- Hatzistilianou, M.; Hitoglou, S.; Gougoustamou, D.; Rekliti, A.; Tzouvelekis, G.; Nanas, C.; Catriu, D.; Kotsis, O. Serum procalcitonin, adenosine deaminase and its isoenzymes in the aetiological diagnosis of pneumonia in children. Int. J. Immunopathol. Pharmacol. 2002, 15, 119–127. [Google Scholar] [CrossRef]
- Korppi, M.; Remes, S.; Heiskanen-Kosma, T. Serum procalcitonin concentrations in bacterial pneumonia in children: A negative result in primary healthcare settings. Pediatr. Pulmonol. 2003, 35, 56–61. [Google Scholar] [CrossRef]
- Toikka, P.; Irjala, K.; Juvén, T.; Virkki, R.; Mertsola, J.; Leinonen, M.; Ruuskanen, O. Serum procalcitonin, C-reactive protein and interleukin-6 for distinguishing bacterial and viral pneumonia in children. Pediatr. Infect. Dis. J. 2000, 19, 598–602. [Google Scholar] [CrossRef]
- Korppi, M.; Remes, S. Serum procalcitonin in pneumococcal pneumonia in children. Eur. Respir. J. 2001, 17, 623–627. [Google Scholar] [CrossRef]
- Zhu, F.; Wei, H.; Li, W. Significance of Serum Procalcitonin Levels in Differential Diagnosis of Pediatric Pneumonia. Cell Biochem. Biophys. 2015, 73, 619–622. [Google Scholar] [CrossRef]
- Wrotek, A.; Robakiewicz, J.; Pawlik, K.; Rudzinski, P.; Pilarska, I.; Jaroń, A.; Imiełowska, A.; Jarzębowska, M.; Zabłocka, K.; Jackowska, T. The Etiology of Community-Acquired Pneumonia Correlates with Serum Inflammatory Markers in Children. J. Clin. Med. 2022, 11, 5506. [Google Scholar] [CrossRef]
- Ericksen, R.T.; Guthrie, C.; Carroll, T. The Use of Procalcitonin for Prediction of Pulmonary Bacterial Coinfection in Children with Respiratory Failure Associated with Viral Bronchiolitis. Clin. Pediatr. 2019, 58, 288–294. [Google Scholar] [CrossRef]
- Hoshina, T.; Nanishi, E.; Kanno, S.; Nishio, H.; Kusuhara, K.; Hara, T. The utility of biomarkers in differentiating bacterial from non-bacterial lower respiratory tract infection in hospitalized children: Difference of the diagnostic performance between acute pneumonia and bronchitis. J. Infect. Chemother. 2014, 20, 616–620. [Google Scholar] [CrossRef]
- Korppi, M.; Don, M.; Valent, F.; Canciani, M. The value of clinical features in differentiating between viral, pneumococcal and atypical bacterial pneumonia in children. Acta Paediatr. 2008, 97, 943–947. [Google Scholar] [CrossRef]
- Hou-Zhen, F.; Jun-Hua, L. The value of pro-calcitonin and C-reactive protein for early diagnosis and treatment of children pneumonia caused by Mycoplasma. Biomed. Res. 2017, 28, 2334–2336. [Google Scholar]
- Alejandre, C.; Guitart, C.; Balaguer, M.; Torrús, I.; Bobillo-Perez, S.; Cambra, F.J.; Jordan, I. Use of procalcitonin and C-reactive protein in the diagnosis of bacterial infection in infants with severe bronchiolitis. Eur. J. Pediatr. 2021, 180, 833–842. [Google Scholar] [CrossRef]
- Erixon, E.R.; Cunningham, K.J.; Schlicher, A.N.; Dajud, M.V.; Ferguson, A.M.; Fondell, A.W.; Hess, J.R.; Smith, H.L. Use of Procalcitonin for Identification of Cobacterial Pneumonia in Pediatric Patients. J. Pediatr. Pharmacol. Ther. 2020, 25, 445–450. [Google Scholar] [CrossRef]
- Li, Y.; Min, L.; Zhang, X. Usefulness of procalcitonin (PCT), C-reactive protein (CRP), and white blood cell (WBC) levels in the differential diagnosis of acute bacterial, viral, and mycoplasmal respiratory tract infections in children. BMC Pulm. Med. 2021, 21, 386. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Yin, L.; Deng, Y.; Chu, G.; Liu, S. Utilization of serum procalcitonin as a biomarker in the diagnosis and treatment of children with bacterial hospital-acquired pneumonia. Mol. Cell Biochem. 2021, 476, 261–267. [Google Scholar] [CrossRef]
- Su, W.; Ju, L.; Hua, Q.; Hu, J.; Qian, W. Values of combined C-reactive protein, procalcitonin and serum amyloid A in differential diagnosis of bacterial and non-bacterial community acquired pneumonia in children. Diagn. Microbiol. Infect. Dis. 2023, 105, 115865. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Long, S.S. Diagnosis and management of undifferentiated fever in children. J. Infect. 2016, 72, S68–S76. [Google Scholar] [CrossRef]
- Buonsenso, D.; Sodero, G.; Valentini, P. Transcript host-RNA signatures to discriminate bacterial and viral infections in febrile children. Pediatr. Res. 2022, 91, 454–463. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N. Emerging resistance to antibiotics against respiratory bacteria: Impact on therapy of community-acquired pneumonia in children. Drug Resist. Updat. 2002, 5, 73–87. [Google Scholar] [CrossRef]
- McDonnell, L.; Gilkes, A.; Ashworth, M.; Rowland, V.; Harries, T.H.; Armstrong, D.; White, P. Association between antibiotics and gut microbiome dysbiosis in children: Systematic review and meta-analysis. Gut Microbes. 2021, 13, 1870402. [Google Scholar] [CrossRef]
- Buonsenso, D.; Sodero, G.; Mariani, F.; Lazzareschi, I.; Proli, F.; Zampino, G.; Pierantoni, L.; Valentini, P.; Rendeli, C. Comparison between Short Therapy and Standard Therapy in Pediatric Patients Hospitalized with Urinary Tract Infection: A Single Center Retrospective Analysis. Children 2022, 9, 1647. [Google Scholar] [CrossRef]
- Dornbusch, H.J.; Strenger, V.; Sovinz, P.; Lackner, H.; Schwinger, W.; Kerbl, R.; Urban, C. Non-infectious causes of elevated procalcitonin and C-reactive protein serum levels in pediatric patients with hematologic and oncologic disorders. Support. Care Cancer 2008, 16, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- De Rop, L.; De Burghgraeve, T.; De Sutter, A.; Buntinx, F.; Verbakel, J.Y. Point-of-care C-reactive protein test results in acute infections in children in primary care: An observational study. BMC Pediatr. 2022, 22, 633. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.L.; Lee, H.C.; Yu, C.W.; Chen, H.C.; Wang, C.C.; Wu, J.Y.; Lee, C.C. Value of procalcitonin in differentiating pulmonary tuberculosis from other pulmonary infections: A meta-analysis. Int. J. Tuberc. Lung Dis. 2014, 18, 470–477. [Google Scholar] [CrossRef]
- Pata, D.; Buonsenso, D.; Valentini, P. Comparison of the Clinical and Laboratory Features of COVID and Influenza in Children. Mediterr. J. Hematol. Infect. Dis. 2022, 14, e2022065. [Google Scholar] [CrossRef]
- Valentini, P.; Sodero, G.; Buonsenso, D. The Relationship between COVID-19 and Innate Immunity in Children: A Review. Children 2021, 8, 266. [Google Scholar] [CrossRef]
- Yaegashi, Y.; Shirakawa, K.; Sato, N.; Suzuki, Y.; Kojika, M.; Imai, S.; Takahashi, G.; Miyata, M.; Furusako, S.; Endo, S. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J. Infect. Chemother. 2005, 11, 234–238. [Google Scholar] [CrossRef]
- Zou, Q.; Wen, W.; Zhang, X.C. Presepsin as a novel sepsis biomarker. World J. Emerg. Med. 2014, 5, 16–19. [Google Scholar] [CrossRef]
- Poggi, C.; Lucenteforte, E.; Petri, D.; De Masi, S.; Dani, C. Presepsin for the Diagnosis of Neonatal Early-Onset Sepsis: A Systematic Review and Meta-analysis. JAMA Pediatr. 2022, 176, 750–758. [Google Scholar] [CrossRef]
- Cebey-López, M.; Pardo-Seco, J.; Gómez-Carballa, A.; Martinón-Torres, N.; Martinón-Sánchez, J.M.; Justicia-Grande, A.; Rivero-Calle, I.; Pinnock, E.; Salas, A.; Fink, C.; et al. Bacteremia in Children Hospitalized with Respiratory Syncytial Virus Infection. PLoS ONE 2016, 11, e0146599. [Google Scholar] [CrossRef]
- Meesters, K.; Buonsenso, D. Antimicrobial Stewardship in Pediatric Emergency Medicine: A Narrative Exploration of Antibiotic Overprescribing, Stewardship Interventions, and Performance Metrics. Children 2024, 11, 276. [Google Scholar] [CrossRef]
- Buonsenso, D.; Morello, R.; Mariani, F.; Mazzoli, B.; De Rose, C.; Lazzareschi, I.; Raffaelli, F.; Blandino, R.; Sanguinetti, M.; Valentini, P. Utility of Rapid Nasopharyngeal Swab for Respiratory Pathogens in the Diagnosis of Viral Infections in Children Hospitalized with Fever: A Prospective Validation Study to Improve Antibiotic Use. Children 2024, 11, 225. [Google Scholar] [CrossRef] [PubMed]
- Rees, C.A.; Colbourn, T.; Hooli, S.; King, C.; Lufesi, N.; McCollum, E.D.; Mwansambo, C.; Cutland, C.; Madhi, S.A.; Nunes, M.; et al. Derivation and validation of a novel risk assessment tool to identify children aged 2–59 months at risk of hospitalised pneumonia-related mortality in 20 countries. BMJ Glob. Health. 2022, 7, e008143. [Google Scholar] [CrossRef] [PubMed]
- Diasorin Website. Available online: https://int.diasorin.com/it/immunodiagnostica/malattie-infettive/memed-bv (accessed on 8 March 2024).
- Klein, A.; Shapira, M.; Lipman-Arens, S.; Bamberger, E.; Srugo, I.; Chistyakov, I.; Stein, M. Diagnostic Accuracy of a Real-Time Host-Protein Test for Infection. Pediatrics 2023, 152, e2022060441. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Voice, M.; Calvo-Bado, L.; Rivero-Calle, I.; Morris, S.; Nijman, R.; Broderick, C.; De, T.; Eleftheriou, I.; Galassini, R.; et al. Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: A multicentre, prospective observational study. Lancet Reg. Health Eur. 2023, 32, 100682. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
Articles | N. of Patients with an Infection | Age | Sex | Comorbidities | Type of Infection | PCT Value ng/mL | PCT PPV % | PCT NPV % | PCR Value mg/L |
---|---|---|---|---|---|---|---|---|---|
Constanza Gómez de Oña et al. [12] | 16 | 80 children < 1 year old, 298 between 1 and 5 years, 109 between 6 and 14. | - | - | S. aureus | >0.5 in 3 cases | - | - | >1 in 14 cases |
Lee J.Y. et al. [18] | 76 | 39 months (3–158 months) | M = 36 F = 40 | - | - | 2.06 ± 0.60 | - | - | 8.00 ± 0.75 |
Zhu G. et al. [20] | 45 | (4–7 years old) | M = 55 F = 41 | - | Streptococcus pneumoniae, S. aureus | 81.9 | |||
Pham H.T. et al. [23] | 10 | 8.6 months | M = 19 F = 7 | - | Streptococcus pneumoniae | 1.6 (0.1–3) | 83 | 75 | 5.6 (1.7–14.4) |
Khan D.A. et al. [28] | 46 | 1–12 years old | M = 28 F = 18 | - | Streptococcus pneumoniae, S. aureus | 2.69 (0.300–13.00) | - | - | 6.5 (0.30–60.00) |
Diez-Padrisa N. et al. [33] | 89 | - | M = 112 F = 64 | Plasmodium Falciparum HIV | Streptococcus pneumoniae, S. aureus | 8.31–21.75 | - | - | 185.4–217.4 |
Do Q. et al. [35] | 11 | 5.8 (8.2) | M = 36 F = 34 | - | Streptococcus pneumoniae, S. aureus | 2.3 (0.2–4.2) | 55 | 92 | 5.7 (1.7–23.6) |
Korppi, M. et al. [44] | 38 | 3 years | M = 85 F = 47 | - | Streptococcus pneumoniae, | 0.45 (0.22–1.2) | - | - | - |
Hoshina T. et al. [48] | 21 | 22 months (3–167) in bacterial and 25 (0–142) in viral group | M = 35 F = 19 | Severe physical handicap and intellectual disability | Streptococcus pneumoniae | 1.1 (0.1–13.0) | 90 | 73 | 9.93 (0.12–36.69) |
Erixon E.R. et al. [52] | 43 | 2.4 years (4 days, 17 years) | M = 209 F = 165 | - | - | 0.25 (0.18, 056) | 5.1 (4.2, 9.0) |
Title | N. of Patients with an Infection | Age | Sex | Comorbidities | Type of Infection | PCT Value ng/mL | PCT PPV % | PCT NPV % | PCR Value mg/L |
---|---|---|---|---|---|---|---|---|---|
Bashir A. et al. [11] | 108 | 4, 62 days–17 years | M = 53 F = 55 | - | Streptococcus pneumoniae, Streptococcus pyogenes, S. aureus | 0.29 Mild–4.02 moderate/severe | −3 | −4 | 51.7 Mild–104.8 moderate/severe |
Carmina Guitart et al. [13] | 97 | 134 days (IQR 39–554) | M = 81 F = 113 | 78 | Streptococcus pneumoniae, Streptococcus pyogenes, S. aureus | 0.6, 0.18, −2.26 IQR | 82 | 64 | 43.1 (20–96.1 IQR) |
Jullien S. et al. [14] | 67 | 16.1 (in pneumonia group), 2–59 months | M= 84 F = 65 | - | Streptococcus pneumoniae | 452.8 (46.6–2153.2) | - | - | 2.1 (1.4–4.3) |
John J. et al. [15] | 21 | 9 (1–55) | M = 49 F = 26 | - | Streptococcus pneumoniae, S. aureus | 1 ng/mL (IQR, 0.41–3.83 ng/mL) | 68 | 76 | |
Zhu F. et al. [19] | 34 | 10 months–6 years old (bacterial group) and 11 months–7 years old (non-bacterial group) | M = 16 F = 18 | - | - | 12.0 ± 6.7 | - | - | - |
Dudognon D et al. [21] | 137 | 3.7 years (3.3) (<2–15 years) | M = 1990 F = 1839 | - | Streptococcus pneumoniae, S. aureus | 8.6 (2.7–21.6) | - | - | 223 (94–316) |
Page A. et al. [22] | 141 | 13 months [IQR] 10 to 24 (from 6 to 59 months) | - | - | - | 0.7 (0.3–5.2) | - | - | 40.8 (16.1–126) |
Pham, Hien T., et al. [31] | 47 | 8.6 months [SD] 19.6, range: 1.0–48.7 months. | M = 121 F = 81 | - | Streptococcus pneumoniae, S. Aureus | 3.4 (5.9) | - | - | 32.5 (51.8) |
Stockmann C. et al. [32] | 136 | 2.4 years; [IQR], 1.0–6.3 | M = 289 F = 243 | - | - | 6.10 IQR, 0.84–22.79 | 17 | 96 | - |
Laham J.L. et al. [38] | 15 | Mean age 2 months | M = 25 F = 15 | - | Streptococcus pneumoniae, Streptococcus pyogenes | 10.4 | - | - | - |
Ratageri V.H. et al. [39] | 370 | 12 months (7, 22) | M = 235 F = 135 | - | - | 0.1 (0.05, 0.4) | - | - | - |
Zhu F. et al. [45] | 34 | 10 months to 6 years in bacterial group; 11 months to 7 years in non-bacterial group | M = 31 F = 34 | - | - | 12.0 ± 6.7 | - | - | - |
Ericksen R.T. et al. [47] | 21 | 4.26 (±3.72) in patients with pneumonia and 4.68 (±4.32) in patients with bronchiolitis | M = 10 F = 11 | - | - | 0.93 (0.25–6.64) | - | - | 51.25 (21.1–107.5) |
Alejandre C. et al. [51] | 181 | 47 days (25–100.3) | M = 399 F = 276 | - | Streptococcus pneumoniae, S. Aureus | 2.7 (0.8–8.3) | 76.7 | 86.2 | 39.2 (12.5–90.2) |
Wang W. et al. [54] | 56 | 3.2 | M = 128 F = 136 | Yes (548 various comorbidities) | - | 3.95 ± 3.75 | 3.05 ± 2.35 |
Title | N. of Patients | Age | Sex | Comorbidities | Type of Infection | PCT Value ng/mL | PCT PPV % | PCT NPV % | PCR Value mg/L |
---|---|---|---|---|---|---|---|---|---|
Gan Y. et al. [17] | 56 | 3.4 (6 months–12 years) | M = 156 F = 109 | - | Streptococcus pneumoniae, Mycoplasma | 0.25 | - | - | 20–39 |
Don, M. et al. [24] | 42 | 3.6 years (Sixty-three percent were <5 years and 37% were 5 years old) | - | - | Streptococcus pneumoniae, Mycoplasma | - | - | - | - |
Don, M. et al. [25] | 43 | 3.7 years (19% were <24 months old, 43% were between 2 and 5 years and 38% were >5 years old.) | 49% M | - | Streptococcus pneumoniae, Mycoplasma | 9.43 (0.54–22.87) | 57.14 | - | 59.5 |
Cheng H.-R. et al. [26] | 242 | 64 newborns and 374 children (2 months–11 years) | 274 M 174 F | - | Mycoplasma S. Aureus | 1.33 ± 6.90 | - | - | 11.55 ± 9.31 |
Meyer Sauteur PM et al. [27] | 63 | 8.6 (6.3–11.0) in mycoplasma group, 4.7 (3.9–6.2) in mycoplasma-negative group | 39 M | 10, not specified | Mycoplasma (29) | 0.06 (0.04–0.14) in mycoplasma group, 0.28 (0.12–1.75) in mycoplasma negative CAP | - | - | 16 (8–36) in mycoplasma group, 72 (24–170) in mycoplasma negative CAP |
Schutzle H. et al. [29] | 124 | 22 months (1 month–17 years) | 189 M | - | Mycoplasma and others not reported | - | - | - | - |
Prat, C. et al. [34] | 49 | Not reported (6 months–10 years) | - | - | Streptococcus pneumoniae, Mycoplasma | 9.42 (0.078–63.32) in CAP, 0.913 (0.076–8.02) in atypical pneumonia | - | - | 268 (9.62–575.8) in CAP, 66.1 (5–232.16) in atypical pneumonia |
Moulin F. et al. [36] | 25 | 2 months to 13 years | - | - | Streptococcus pneumoniae, Mycoplasma | 10.0 (0.6–21) | 96.4 | 60 | 197 (15–400) |
Nascimento-Carvalho C.M. et al. [37] | 48 | 20 months (14) (26 days–4.8 years) | M = 95 F = 64 | - | Streptococcus pneumoniae, Mycoplasma | (1.47; 0.24–4.07) | 52 | 58 | - |
Jiang Y. et al. [40] | 152 | 3.67 ± 2.04 | M = 95 F = 1074 | - | Mycoplasma | 0.49 ± 0.05 | - | - | 25.56 ± 8.25 |
Hatzistilianou M. et al. [41] | 23 | 2–14 years (5.8 ± 2.9) in bacterial group, 2–14 years (6.8 ± 3.1) in viral and mycoplasma group | M = 42 F = 31 | - | Streptococcus pneumoniae, S. aureus, Mycoplasma | 12.63 (0.94–62.1) | 93 | - | 3.16 (0.31–15.66) |
Korppi M. et al. [42] | 105 | 5.8 years | M = 121 F = 80 | - | Streptococcus pneumoniae, Mycoplasma | - | 79 | - | - |
Wrotek A. et al. [46] | 825 | 29.2 months (13.9–54.8) | M = 591 F = 473 | - | Streptococcus pneumoniae, Streptococcus pyogenes S. aureus, Mycoplasma | 0.36 (0.12–1.50) | 87.59 | 23.41 | 24.26 (7.67–66.94) |
Korrpi M. et al. [49] | 46 | 19 were <24 months old, 44 were 2 to 4 years old and 38 were ≥5 years old | - | - | Mycoplasma | - | - | - | - |
Hou-Zhen F. et al. [50] | 60 | 1.1 ± 0.3 in mycoplasma group, 1.3 ± 0.3 in control group | - | - | Mycoplasma | 3.68 ± 1.62 | - | - | 14.27 ± 3.72 |
Li Y. et al. [53] | 230 | (2.84 ± 3.30) | M = 115 F = 109 | - | Streptococcus pneumoniae, S. aureus, Mycoplasma | 0.54 (1.56 IQR) | 50.4 | 79.1 | 8.21 (IQR 29.34) |
Su W. et al. [55] | 106 | 6.9 +/− 2.1 in bacterial and 7.2 +/− 2.6 in non-bacterial pneumonia | M = 104 F = 89 | - | Streptococcus pneumoniae, S. aureus, Mycoplasma | - | - | - | - |
Florin, T.A et al. [16] | 38 | 5.6 (4.6) 3 months–18 years | M = 251 F = 226 | - | S. aureus, Mycoplasma | - | 0.13 (0.09–0.19) | 0.9 (0.86–0.93) | - |
Toikka, P. et al. [43] | 68 | 4.2 years old | M = 66 F = 60 | Streptococcus pneumoniae, Mycoplasma | 2.09 | - | - | 54 |
Title | N. of Patients | Age | Sex | Comorbidities | Type of Infection | PCT Value (ng/mL) | PCR Value (mg/L) |
---|---|---|---|---|---|---|---|
Constanza Gómez de Oña et al. [12] | 303 | 80 children < 1 year old, 298 between 1 and 5 years, 109 between 6 and 14. | - | - | RSV, rhinovirus, influenza, adenovirus | >0.5 in 66 adenovirus and 34 other viruses | >1 in 77 cases of adenovirus and 77 cases of other viruses |
Gan Y. et al. [17] | 64 | 3.4 (6 months–12 years) | M = 156 F = 109 | - | RSV, influenza, adenovirus | 0.084 (p = 0.208) | 17.32 |
Lee J.Y. et al. [18] | 76 | 39 months (3–158 months) | M = 36 F = 40 | - | - | - | - |
Zhu G. et al. [20] | 51 | (4–7 years old) | M = 55 F = 41 | - | RSV, influenza, adenovirus | - | 16.8 |
Pham H.T. et al. [23] | 26 | 8.6 months ([SD] 9.6) | M = 19 F = 7 | - | Rhinovirus | 0.2 (0–0.9) | 0.8 (0.3–4.7) |
Don, M. et al. [24] | 47 | 3.6 years (sixty-three percent were <5 years and 37% were 5 years old) | - | - | RSV, influenza | - | - |
Don M et al. [25] | 23 | 3.7 years (19% were <24 months old, 43% were between 2 and 5 years and 38% were >5 years old.) | 49% M | - | RSV | 0.53 (0.31–1.04) | Not reported |
Cheng H.-R. et al. [26] | 196 | 64 newborns and 374 children (2 months–11 years) | 274 M 174 F | - | - | 0.18 ± 7.10 | 1.84 ± 2.03 |
Schutzle H. et al. [29] | 213 | 22 months (1 month–17 years) | - | - | Rhinovirus Adenovirus RSV Influenza | <0.1 | - |
Varpu E. et al. [30] | 16 | (age 0.3–8.3 years) | M = 11 F = 5 | - | Adenovirus | Less than 0.5 in 14/16 patients | >40 in 12/16 patients |
Diez-Padrisa N. et al. [33] | 87 | - | M = 112 F = 64 | - | RSV, influenza, adenovirus | 0.21–23.1 | 18.3–96.8 |
Prat, C. et al. [34] | 34 | 6 months–10 years | - | - | RSV, influenza, adenovirus | 0.854 (0.128–6.08) | 37.35 (10.03–229.74) |
Do Q. et al. [35] | 59 | 5.8 (8.2) | M = 36 F = 34 | - | RSV | 0.3 (0.1–1.1) | 1.5 (0.6–4.9) |
Moulin F. et al. [36] | 29 | 2 months to 13 years | - | - | RSV, influenza, adenovirus | 0.63 (0.01–4.38) | 39.1 (1–169) |
Nascimento-Carvalho C.M. et al. [37] | 57 | 20 months (14) (26 days–4.8 years) | M = 95 F = 64 | - | RSV, rhinovirus, influenza, adenovirus | (0.65; 0.11–2.22) | - |
Hatzistilianou M. et al. [41] | 50 | 2–14 years (5.8 ± 2.9) in bacterial group, 2–14 years (6.8 ± 3.1) in viral and mycoplasma group | M = 42 F = 31 | - | RSV, influenza, adenovirus | 0.42 (0.1–2.13) | 10.9 (1.35–32.62) |
Korppi M. et al. [42] | 29 | 5.8 years | M = 121 F = 80 | - | - | - | - |
Toikka, P. et al. [43] | 40 | 4.2 | M = 66 F = 60 | - | RSV, rhinovirus, influenza, adenovirus | 0.56 | 96 |
Korppi, M. et al. [44] | 38 | 3 years | M = 85 F = 47 | - | RSV | 0.28 (0.11–0.71) | - |
Wrotek A. et al. [46] | 190 | 29.2 months (13.9–54.8) | M = 591 F = 473 | - | RSV, influenza | 0.22 (0.10–0.52) | 7.07 (2.33–22.66) |
Hoshina T. et al. [48] | 10 | 22 months (3–167) in bacterial and 25 (0–142) in viral group | M = 35 F = 19 | severe physical handicap and intellectual disability | - | 0.1 (0.1–1.1) | 2.11 (0.12–20.52) |
Korppi M. et al. [49] | 22 | 19 were <24 months old, 44 were 2 to 4 years old and 38 were ≥5 years old | not specified | - | - | - | - |
Erixon E.R. et al. [52] | 197 | 2.4 yr (4 days, 17 years) | M = 209 F = 165 | - | - | 0.14 (0.09, 0.28) | 3.9 (2.5, 4.9) |
Li Y. et al. [53] | 116 | (2.84 ± 3.30) | M = 115 F = 109 | - | - | 0.21 (IQR 0.44) | 4.94 (IQR 10.54) |
Su W. et al. [55] | 87 | 6.9 +/− 2.1 in bacterial and 7.2 +/− 2.6 in non-bacterial pneumonia | M = 104 F = 89 | - | RSV, influenza, adenovirus | - | - |
Title | N. of Patients | Age | Sex | Comorbidities | Type of Infection | PCT Value (ng/mL) | PCR Value (mg/L) |
---|---|---|---|---|---|---|---|
Carmina Guitart et al. [13] | 169 | 134 days (IQR 39–554) | M = 81 F = 113 | Yes (78) | RSV, rhinovirus, influenza, adenovirus | - | |
Jullien S. et al. [14] | 89 | 16.1 (in pneumonia group), 2–59 months | M= 84 F = 65 | - | RSV, rhinovirus, influenza, adenovirus | 46.6 (46.6–253.8) | 1.1 (0.4–2.9) |
John J. et al. [15] | 61 | 9 (1–55) | M = 49 F = 26 | - | Rhinovirus, influenza, adenovirus | 0.61 (IQR, 0.2–0.97) | - |
Florin, T.A et al. [16] | 248 | 5.6 (4.6) 3 months–18 years | M = 251 F = 226 | - | RSV, rhinovirus, influenza, adenovirus | - | - |
Zhu F. et al. [19] | 32 | 10 months–6 years old (bacterial group) and 11 months–7 years old (non-bacterial group) | M = 16 F = 18 | - | - | 2.8 ± 1.2 | |
Pham, H.T et al. [31] | 202 | 8.6 months [SD] 19.6, range: 1.0–48.7 months. | M = 121 F = 81 | - | RSV, rhinovirus, influenza, adenovirus | 1.1 (1.7) | 12.7 (25.6) |
Stockmann C. et al. [32] | 349 | 2.4 years; [IQR], 1.0–6.3 | M = 289 F = 243 | - | Not reported | 0.33 IQR 0.12–1.35 | - |
Laham J.L. et al. [38] | 40 | Mean age 2 months | M = 25 F = 15 | - | RSV, rhinovirus | 3.9 (0.2–36.3) | - |
Zhu F. et al. [45] | 32 | 10 months to 6 years in bacterial group; 11 months to 7 years in non-bacterial group | M = 31 F = 34 | - | - | 2.8 ± 1.2 | - |
Ericksen R.T. et al. [47] | 35 | 4.26 (±3.72) in patients with pneumonia and 4.68 (±4.32) in patients with bronchiolitis | M = 10 F = 11 | - | RSV, rhinovirus | 1.85 (0.28–7.94) | 59.0 (21.6–69.3) |
Alejandre C. et al. [51] | 494 | 47 days (25–100.3) | M = 399 F = 276 | - | RSV, rhinovirus | 0.2 (0.1–0.5) | 11.3 (3.7–29.6) |
Wang W. et al. [54] | 108 | 3.2 | M = 128 F = 136 | Yes (548 various comorbidities) | - | 1.07 ± 1.69 | 3.31 ± 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sodero, G.; Gentili, C.; Mariani, F.; Pulcinelli, V.; Valentini, P.; Buonsenso, D. Procalcitonin and Presepsin as Markers of Infectious Respiratory Diseases in Children: A Scoping Review of the Literature. Children 2024, 11, 350. https://doi.org/10.3390/children11030350
Sodero G, Gentili C, Mariani F, Pulcinelli V, Valentini P, Buonsenso D. Procalcitonin and Presepsin as Markers of Infectious Respiratory Diseases in Children: A Scoping Review of the Literature. Children. 2024; 11(3):350. https://doi.org/10.3390/children11030350
Chicago/Turabian StyleSodero, Giorgio, Carolina Gentili, Francesco Mariani, Valentina Pulcinelli, Piero Valentini, and Danilo Buonsenso. 2024. "Procalcitonin and Presepsin as Markers of Infectious Respiratory Diseases in Children: A Scoping Review of the Literature" Children 11, no. 3: 350. https://doi.org/10.3390/children11030350