Robotic Approach to Paediatric Gastrointestinal Diseases: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
2.1.1. Identification
2.1.2. Screening and Eligibility
2.2. Data Extraction
2.3. Methodological Quality Appraisal
2.4. Statistics
3. Results
3.1. Study Characteristics
3.2. Gastrointestinal Diseases
3.3. Hirschsprung’s Disease
3.4. Other Diseases
3.5. Robotic Systems and Port Placements
3.6. Methodological Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, N.J.; Pacilli, M.; Eaton, S.; Reblock, K.; A Gaines, B.; Pastor, A.; Langer, J.C.; I Koivusalo, A.; Pakarinen, M.P.; Stroedter, L.; et al. Recovery after open versus laparoscopic pyloromyotomy for pyloric stenosis: A double-blind multicentre randomised controlled trial. Lancet 2009, 373, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Zitsman, J.L. Current concepts in minimal access surgery for children. Pediatrics 2003, 111, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Zitsman, J.L. Pediatric minimal-access surgery: Update 2006. Pediatrics 2006, 118, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Georgeson, K.E.; Owings, E. Advances in minimally invasive surgery in children. Am. J. Surg. 2000, 180, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Mattei, P. Minimally invasive surgery in the diagnosis and treatment of abdominal pain in children. Curr. Opin. Pediatr. 2007, 19, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Standard. Available online: https://www.davincisurgerycommunity.com/systems_i_a/standard (accessed on 19 January 2023).
- Meininger, D.; Byhahn, C.; Markus, B.H.; Heller, K.; Westphal, K. Roboterassistierte, endoskopische fundoplikatio nach nissen bei kindern: Hämodynamik, gasaustausch und anästhesiologisches management. Anaesthesist 2001, 50, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Cundy, T.P.; Shetty, K.; Clark, J.; Chang, T.P.; Sriskandarajah, K.; Gattas, N.E.; Najmaldin, A.; Yang, G.-Z.; Darzi, A. The first decade of robotic surgery in children. J. Pediatr. Surg. 2013, 48, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Richards, H.W.; Kulaylat, A.N.; Cooper, J.N.; McLeod, D.J.; Diefenbach, K.A.; Michalsky, M.P. Trends in robotic surgery utilization across tertiary children’s hospitals in the United States. Surg. Endosc. 2021, 35, 6066–6072. [Google Scholar] [CrossRef]
- Mahida, J.B.; Cooper, J.N.; Herz, D.; Diefenbach, K.A.; Deans, K.J.; Minneci, P.C.; McLeod, D.J. Utilization and costs associated with robotic surgery in children. J. Surg. Res. 2015, 199, 169–176. [Google Scholar] [CrossRef]
- Geller, E.J.; Matthews, C.A. Impact of robotic operative efficiency on profitability. Am. J. Obstet. Gynecol. 2013, 209, e1–e20. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. Ottawa Hospital Research Institute. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 28 December 2023).
- Quynh, T.A.; Hien, P.D.; Du, L.Q.; Long, L.H.; Tran, N.T.N.; Hung, T. The follow-up of the robotic-assisted Soave procedure for Hirschsprung’s disease in children. J. Robot. Surg. 2022, 16, 301–305. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, S.; Luo, W.; Cai, D.; Zhang, Y.; Huang, Z.; Xuan, X.; Xiong, Q.; Gao, Z. Robotic-assisted laparoscopic management of mesenteric cysts in children. Front. Pediatr. 2023, 10, 1089168. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lin, M.; Hu, H.; Sun, Q.; Su, C.; Wang, C.; Li, Y.; Li, Y.; Chen, J.; Luo, Y. Surgical Management of Hirschsprung’s Disease: A Comparative Study Between Conventional Laparoscopic Surgery, Transumbilical Single-Site Laparoscopic Surgery, and Robotic Surgery. Front. Surg. 2022, 9, 924850. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, G.; Pio, L.; Leonelli, L.; Razore, B.; Disma, N.; Montobbio, G.; Jasonni, V.; Petralia, P.; Prato, A.P. A provisional experience with robot-assisted Soave procedure for older children with hirschsprung disease: Back to the future? J. Laparoendosc. Adv. Surg. Tech. 2017, 27, 546–549. [Google Scholar] [CrossRef] [PubMed]
- Hebra, A.; Smith, V.A.; Lesher, A.P. Robotic Swenson pull-through for Hirschsprung’s disease in infants. Am. Surg. 2011, 77, 937–941. [Google Scholar] [CrossRef]
- Altokhais, T.; Mandora, H.; Al-Qahtani, A.; Al-Bassam, A. Robot-assisted heller’s myotomy for achalasia in children. Comput. Assist. Surg. 2016, 21, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Romeo, C.; Di Fabrizio, D.; Impellizzeri, P.; Arena, S.; Dipasquale, V.; Palo, F.; Costa, S.; Pellegrino, S.; Antonuccio, P.; Romano, C.; et al. Laparoscopic robotic-assisted restorative proctocolectomy and ileal J-pouch-anorectal anastomosis in children. Pediatr. Surg. Int. 2022, 38, 59–68. [Google Scholar] [CrossRef]
- Delgado-Miguel, C.; Camps, J.I. Robotic Soave pull-through procedure for Hirschsprung’s disease in children under 12-months: Long-term outcomes. Pediatr. Surg. Int. 2022, 38, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Cao, G.; Pu, J.; Li, S.; Zhang, X.; Tang, S.-T. Robot-assisted anorectal pull-through for anorectal malformations with rectourethral and rectovesical fistula: Feasibility and short-term outcome. Surg. Endosc. 2022, 36, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-X.; Zhang, X.; Chang, X.-P.; Zeng, J.-X.; Bian, H.-Q.; Cao, G.-Q.; Li, S.; Chi, S.-Q.; Zhou, Y.; Rong, L.-Y.; et al. Robotic-assisted proctosigmoidectomy for Hirschsprung’s disease: A multicenter prospective study. World J. Gastroenterol. 2023, 29, 3715–3732. [Google Scholar] [CrossRef] [PubMed]
- Prato, A.P.; Arnoldi, R.; Faticato, M.G.; Mariani, N.; Dusio, M.P.; Felici, E.; Tentori, A.; Nozza, P. Minimally Invasive Redo Pull-Throughs in Hirschsprung Disease. J. Laparoendosc. Adv. Surg. Tech. 2020, 30, 1023–1028. [Google Scholar] [CrossRef]
- Prato, A.P.; Arnoldi, R.; Dusio, M.P.; Cimorelli, A.; Barbetta, V.; Felici, E.; Barbieri, P.; Barbero, S.; Carlini, C.; Petralia, P.; et al. Totally robotic soave pull-through procedure for Hirschsprung’s disease: Lessons learned from 11 consecutive pediatric patients. Pediatr. Surg. Int. 2020, 36, 209–218. [Google Scholar] [CrossRef]
- Alotaibi, W.M. Anesthesia experience of pediatric robotic surgery in a University Hospital. J. Robot. Surg. 2019, 13, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Albassam, A.; Gado, A.; Mallick, M.S.; Alnaami, M.; Al-Shenawy, W. Robotic-assisted anorectal pull-through for anorectal malformations. J. Pediatr. Surg. 2011, 46, 1794–1797. [Google Scholar] [CrossRef]
- Meehan, J.J. Robotic surgery in small children: Is there room for this? J. Laparoendosc. Adv. Surg. Tech. 2009, 19, 707–712. [Google Scholar] [CrossRef]
- Kantor, J. Reliability and Photographic Equivalency of the Scar Cosmesis Assessment and Rating (SCAR) Scale, an Outcome Measure for Postoperative Scars. JAMA Dermatol. 2017, 153, 55–60. [Google Scholar] [CrossRef]
- Scholfield, D.W.; Ram, A.D. Laparoscopic Duhamel Procedure for Hirschsprung’s Disease: Systematic Review and Meta-analysis. J. Laparoendosc. Adv. Surg. Tech. 2016, 26, 53–61. [Google Scholar] [CrossRef]
- Tomuschat, C.; Zimmer, J.; Puri, P. Laparoscopic-assisted pull-through operation for Hirschsprung’s disease: A systematic review and meta-analysis. Pediatr. Surg. Int. 2016, 32, 751–757. [Google Scholar] [CrossRef]
- De La Torre-Mondragón, L.; Ortega-Salgado, J.A. Transanal endorectal pull-through for Hirschsprung’s disease. J. Pediatr. Surg. 1998, 33, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.C.; Minkes, R.K.; Mazziotti, M.V.; Skinner, M.A.; Winthrop, A.L. Transanal one-stage soave procedure for infants with Hirschsprung’s disease. J. Pediatr. Surg. 1999, 34, 148–152. [Google Scholar] [CrossRef] [PubMed]
- De La Torre, L.; Langer, J.C. Transanal endorectal pull-through for Hirschsprung disease: Technique, controversies, pearls, pitfalls, and an organized approach to the management of postoperative obstructive symptoms. Semin. Pediatr. Surg. 2010, 19, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Piozzi, G.N.; Baek, S.J.; Kwak, J.M.; Kim, J.; Kim, S.H. Anus-Preserving Surgery in Advanced Low-Lying Rectal Cancer: A Perspective on Oncological Safety of Intersphincteric Resection. Cancers 2021, 13, 4793. [Google Scholar] [CrossRef]
Author, Year | Country | Study Design | Sample Size, n | Time of Data | Median Age (Range), Months | Disease | Robotic Platform | Generation |
---|---|---|---|---|---|---|---|---|
Altokhais, 2016 [20] | Saudi Arabia | RSC | 6 | January 2004–November 2015 | 84 (24–144) | Achalasia | Da Vinci Si | 3rd |
Al-Bassam, 2011 [28] | Saudi Arabia | RSC | 5 | April 2006–March 2010 | 6 (4–11) | ARM | Da Vinci Surgical System | 1st |
Chang, 2021 [23] | China | RSC | 17 | October 2016–January 2018 | Median NA (3–9) | ARM | Da Vinci Si | 3rd |
Li, 2022 [17] | China | PSC | 90 | 2015–2019 | 4.2 (range NA) | Hirschsprung’s disease | NA | NA |
Quynh, 2020 [15] | Vietnam | RSC | 55 | December 2014–December 2017 | 24.5 (6–120) | Hirschsprung’s disease | Da Vinci Surgical System | 1st |
Hebra, 2011 [19] | United States | RSC | 12 | 2003–2009 | 3.7 (1.4–7.4) | Hirschsprung’s disease | Da Vinci Surgical System | 1st |
Mattioli, 2017 [18] | Italy | RSC | 2 | NA | 20.0–60.0 | Hirschsprung’s disease | Da Vinci Si | 3rd |
Delgado-Miguel, 2021 [22] | United States | PSC | 15 | 2011–2020 | 4 [IQR 3–6] | Hirschsprung’s disease | Da Vinci Si | 3rd |
Zhang, 2021 [24] | China | PMC | 156 | July 2015–January 2022 | 9.5 (0.6–132.0) | Hirschsprung’s disease | Da Vinci Si | 3rd |
Prato, 2019 [26] | Italy | RSC | 9 | October 2015–June 2019 | 24 (12–120) | Hirschsprung’s disease | Da Vinci Si | 3rd |
Chen, 2023 [16] | China | RSC | 12 | February 2021–August 2022 | 69.7 (18.2–155.0) | Mesenteric cysts | NA | NA |
Meehan, 2009 [29] | United States | RSC | 33 | October 2002–September 2007 | 8.0 (0–27.0) | Multiple indications | Da Vinci Standard | 1st |
Alotaibi, 2018 [27] | Saudi Arabia | RSC | 49 | June 2004–November 2013 | NA | Multiple indications | Da Vinci Surgical System | 1st |
Prato, 2020 [25] | Italy | RSC | 4 | January 2012–January 2020 | 78 (range NA) | Redo Hirschsprung’s disease | Da Vinci Si | 3rd |
Romeo, 2021 [21] | Italy | PSC | 5 | 2015–2016 and 2019–2021 | 106.8 (43.2–141.6) | Restorative proctocolectomy | Da Vinci Surgical System | 1st |
Author, Year | Surgical Technique | Procedure | Age, Months | Male Sex | OT, Mins | IOC (%) | LOS, Days | POC | Conversion | Re-Admissions | Re-Interventions | Fecal Incontinence | Follow-Up, Months |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li, 2022 [17] | Rob | Soave | 4.3 ± 1.4 | 18 (64.3%) | 180 ± 21 * | 0 (0%) | 8.4 ± 0.6 | 7 (25.0%) | 0 (0%) | 1 (3.6%) | 1 (3.6%) | 2 (7.1%) | NA |
Lap | 4.3 ± 1.3 | 20 (66.7%) | 152 ± 21 * | 0 (0%) | 8.5 ± 0.9 | 7 (23.3%) | 1 (3.3%) | 2 (6.7%) | 1 (3.3%) | 2 (6.7%) | NA | ||
TU-LESS | 4.1 ± 1.5 | 22 (68.8%) | 162 ± 22 * | 0 (0%) | 8.8 ± 0.9 | 9 (28.1%) | 1 (4.5%) | 3 (9.4%) | 1 (3.1%) | 1 (3.1%) | NA | ||
Quynh, 2020 [15] | Rob | Soave | 24.5 (6–120) | 44 (80.0%) | 93.2 ± 35 | 0 (0%) | 5.5 (4–8) | 6 (10.9%) | 0 (0%) | NA | NA | 2 (3.6%) | 43.2 (30–66) |
Hebra, 2011 [19] | Rob | Swenson | 3.7 (1.4–7.4) | NA | 230 | 1 (8.3%) | 3 | 3 (25.0%) | NA | NA | NA | NA | 36 |
Mattioli, 2017 [18] | Rob | Soave | 20.0–60.0 | 1 (50%) | 337.5 ± 152 | 0 (0%) | 6.0 ± 1.4 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 4.5 ± 2.1 |
Delgado-Miguel, 2021 [22] | Rob | Soave | 4 [3–6] | 9 (60%) | 240 ± 72 | 0 (0%) | 3 [3–4] | 3 (20.0%) | 0 (0%) | 0 (0%) | 1 (6.7%) | 0 (0%) | 79 [45–115] |
Zhang, 2021 [24] | Rob | Soave | 9.5 (0.6–132.0) | NA | 155.2 ± 16.8 | 0 (0%) | 7.3 ± 1.7 | 25 (16.0%) | 0 (0%) | NA | 2 (1.3%) | 7 (4.5%) | 44.0 [6.0–78.0] |
Prato, 2019 [26] | Rob | Soave | 24 (12–120) | NA | 372 ± 76 | 4 (44.4%) | 7 (4–10) | 3 (33.3%) | 0 (0%) | NA | NA | 2 (22.2%) | 12 [5–20] |
Author, Year | Disease | Age, Months | Male Sex | OT, Mins | IOC | LOS, Days | POC | Conversion | Re-Admissions | Re-Interventions | Follow-Up, Months |
---|---|---|---|---|---|---|---|---|---|---|---|
Altokhais, 2016 [20] | Achalasia | 84 (24–144) | 2 (33.3%) | 204 (186–250) | 0 (0%) | 3.5 (2–7) | 0 (0%) | 0 (0%) | NA | NA | 24 (6–132) |
Al-Bassam, 2011 [28] | ARM | 6 (4–11) | 5 (100%) | 214 (130–305) | 0 (0%) | 6 (5–7) | NA | 0 (0%) | NA | 0 (0%) | 12 (6–36) |
Chang, 2021 [23] | ARM | 4.9 | 17 (100%) | NA | 0 (0%) | 10 (7–14) | 4 (23.5%) | 0 (0%) | NA | NA | 12 |
Chen, 2023 [16] | Mesenteric cysts | 69.7 (18.2–155.0) | 8 (66.7%) | 106.2 ± 33.7 | 0 (0%) | 7.8 ± 3.3 | 2 (16.7%) | 0 (0%) | NA | NA | NA |
Meehan, 2009 [29] | Multiple indications | 8.0 (0–27.0) | NA | NA | NA | NA | NA | 1 (3.0%) | 1 (3.0%) | 1 (3.0%) | NA |
Alotaibi, 2018 [27] | Multiple indications | NA | NA | NA | 0 (0%) | NA | NA | NA | NA | NA | NA |
Prato, 2020 [25] | Redo Hirschsprung’s disease | 78 | 3 (75%) | NA | 0 (0%) | NA | NA | 0 (0%) | NA | NA | 3.75 (1–16) |
Romeo, 2021 [21] | Restorative proctocolectomy | 106.8 (43.2–141.6) | 0 (0%) | 258 ± 54 | 0 (0%) | 7.4 ± 4.4 | 1 (20%) | 0 (0%) | NA | NA | 0.6 (0.3–5.9) |
Study | Selection | Comparability | Outcomes | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Outcome not Present at the Start of the Study | Assessment of Outcome | Follow-Up Length | Adequacy of the Follow-Up of Cohorts | ||||
Zhang, M., 2023 [24] | * | * | * | * | * | 5 | ||||
Quynh, T.A., 2022 [25] | * | * | * | * | * | 5 | ||||
Chang, X., 2022 [23] | * | * | * | * | 4 | |||||
Li, W., 2022 [17] | * | * | * | * | * | * | * | 7 | ||
Chen, X., 2022 [16] | * | * | * | 3 | ||||||
Romeo, C., 2022 [21] | * | * | * | 3 | ||||||
Delgado-Miguel, C., 2022 [22] | * | * | * | * | * | 5 | ||||
Pini Prato, A., 2020 (JLAST) [25] | * | * | * | 3 | ||||||
Pini Prato, A., 2020 (Ped Surg Int) [26] | * | * | * | * | 4 | |||||
Alotaibi, W., 2019 [27] | * | * | * | 3 | ||||||
Mattioli, G., 2017 [18] | * | * | 2 | |||||||
Altokhais, T., 2016 [20] | * | * | * | * | * | 5 | ||||
Hebra, A., 2011 [19] | * | * | * | * | 4 | |||||
Albassam, A., 2011 [28] | * | * | * | * | 4 | |||||
Meehan, J., 2009 [29] | * | * | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duhoky, R.; Claxton, H.; Piozzi, G.N.; Khan, J.S. Robotic Approach to Paediatric Gastrointestinal Diseases: A Systematic Review. Children 2024, 11, 273. https://doi.org/10.3390/children11030273
Duhoky R, Claxton H, Piozzi GN, Khan JS. Robotic Approach to Paediatric Gastrointestinal Diseases: A Systematic Review. Children. 2024; 11(3):273. https://doi.org/10.3390/children11030273
Chicago/Turabian StyleDuhoky, Rauand, Harry Claxton, Guglielmo Niccolò Piozzi, and Jim S. Khan. 2024. "Robotic Approach to Paediatric Gastrointestinal Diseases: A Systematic Review" Children 11, no. 3: 273. https://doi.org/10.3390/children11030273