Identification of Neonatal Factors Predicting Pre-Discharge Mortality in Extremely Preterm or Extremely Low Birth Weight Infants: A Historical Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. Data Analysis
2.3.1. Data Processing
2.3.2. Data Description and Univariate Analysis
2.3.3. Screening Predictive Features Using a LASSO–Cox Model
2.3.4. Identification of Final Predictive Features Using a Stepwise Cox Model
3. Results
3.1. Comparison of Basic Characteristics of Newborns by Survival Status
3.2. LASSO–Cox Regression for Selecting Important Features in Neonatal Mortality
3.3. Predictive Cox Model for Neonatal Mortality Causes
4. Discussion
4.1. Comparison of Predictors of Pre-Discharge Mortality in EPIs/ELBWIs
4.2. Key Predictors of Pre-Discharge Mortality in This Population
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaempf, J.; Morris, M.; Steffen, E.; Wang, L.; Dunn, M. Continued improvement in morbidity reduction in extremely premature infants. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Lawn, J.E.; Cousens, S.; Zupan, J. 4 million neonatal deaths: When? Where? Why? Lancet 2005, 365, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.F.; Hintz, S.R.; Hansen, N.I.; Bann, C.M.; Wyckoff, M.H.; DeMauro, S.B.; Walsh, M.C.; Vohr, B.R.; Stoll, B.J.; Carlo, W.A.; et al. Mortality, In-Hospital Morbidity, Care Practices, and 2-Year Outcomes for Extremely Preterm Infants in the US, 2013–2018. JAMA 2022, 327, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.; Hallberg, B.; Abrahamsson, T.; Björklund, L.J.; Domellöf, M.; Farooqi, A.; Foyn Bruun, C.; Gadsbøll, C.; Hellström-Westas, L.; Ingemansson, F.; et al. Association Between Year of Birth and 1-Year Survival Among Extremely Preterm Infants in Sweden During 2004–2007 and 2014–2016. JAMA 2019, 321, 1188–1199. [Google Scholar] [CrossRef]
- Helenius, K.; Sjörs, G.; Shah, P.S.; Modi, N.; Reichman, B.; Morisaki, N.; Kusuda, S.; Lui, K.; Darlow, B.A.; Bassler, D.; et al. Survival in Very Preterm Infants: An International Comparison of 10 National Neonatal Networks. Pediatrics 2017, 140, e20171264. [Google Scholar] [CrossRef]
- Zhu, Z.; Yuan, L.; Wang, J.; Li, Q.; Yang, C.; Gao, X.; Chen, S.; Han, S.; Liu, J.; Wu, H.; et al. Mortality and Morbidity of Infants Born Extremely Preterm at Tertiary Medical Centers in China from 2010 to 2019. JAMA Netw. Open 2021, 4, e219382. [Google Scholar] [CrossRef]
- Lin, H.J.; Du, L.Z.; Ma, X.L.; Shi, L.P.; Pan, J.H.; Tong, X.M.; Li, Q.P.; Zhou, J.G.; Yi, B.; Liu, L.; et al. Mortality and Morbidity of Extremely Low Birth Weight Infants in the Mainland of China: A Multi-Center Study. Chin. Med. J. 2015, 128, 2743–2750. [Google Scholar] [CrossRef]
- Sartorius, V.; Philibert, M.; Klungsoyr, K.; Klimont, J.; Szamotulska, K.; Drausnik, Z.; Velebil, P.; Mortensen, L.; Gissler, M.; Fresson, J.; et al. Neonatal Mortality Disparities by Gestational Age in European Countries. JAMA Netw. Open 2024, 7, e2424226. [Google Scholar] [CrossRef]
- Do, H.J.; Moon, K.M.; Jin, H.S. Machine Learning Models for Predicting Mortality in 7472 Very Low Birth Weight Infants Using Data from a Nationwide Neonatal Network. Diagnostics 2022, 12, 625. [Google Scholar] [CrossRef]
- Norman, M.; Nilsson, D.; Trygg, J.; Håkansson, S. Perinatal risk factors for mortality in very preterm infants-A nationwide, population-based discriminant analysis. Acta Paediatr. 2022, 111, 1526–1535. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef] [PubMed]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020, 12, CD004454. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef]
- Tay, J.K.; Narasimhan, B.; Hastie, T. Elastic Net Regularization Paths for All Generalized Linear Models. J. Stat. Softw. 2023, 106, 1. [Google Scholar] [CrossRef]
- Therneau, T. A Package for Survival Analysis in R_. R Package Version 3.5-8. Available online: https://CRAN.R-project.org/package=survival (accessed on 20 July 2024).
- Harrell, F.E., Jr. rms: Regression Modeling Strategies. R Package Version 6.6-0. Available online: https://CRAN.R-project.org/package=rms (accessed on 20 July 2024).
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Making 2006, 26, 565–574. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, Z. ggDCA: Calculate and Plot Decision Curve. R Package Version 1.2, Commit a54317ff8d544efa35dae0606f54049c1fe9ad10. Available online: https://github.com/yikeshu0611/ggDCA (accessed on 20 July 2024).
- Morgan, A.S.; Zeitlin, J.; Källén, K.; Draper, E.S.; Maršál, K.; Norman, M.; Serenius, F.; van Buuren, S.; Johnson, S.; Benhammou, V.; et al. Birth outcomes between 22 and 26 weeks’ gestation in national population-based cohorts from Sweden, England and France. Acta Paediatr. 2022, 111, 59–75. [Google Scholar] [CrossRef]
- van Beek, P.E.; Andriessen, P.; Onland, W.; Schuit, E. Prognostic Models Predicting Mortality in Preterm Infants: Systematic Review and Meta-Analysis. Pediatrics 2021, 147, e2020020461. [Google Scholar] [CrossRef]
- McLeod, J.S.; Menon, A.; Matusko, N.; Weiner, G.M.; Gadepalli, S.K.; Barks, J.; Mychaliska, G.B.; Perrone, E.E. Comparing mortality risk models in VLBW and preterm infants: Systematic review and meta-analysis. J. Perinatol. 2020, 40, 695–703. [Google Scholar] [CrossRef]
- The CRIB (clinical risk index for babies) score: A tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. The International Neonatal Network. Lancet 1993, 342, 193–198. [CrossRef]
- Zhang, W.W.; Wang, S.; Li, Y.; Dong, X.; Zhao, L.; Li, Z.; Liu, Q.; Liu, M.; Zhang, F.; Yao, G.; et al. Development and validation of a model to predict mortality risk among extremely preterm infants during the early postnatal period: A multicentre prospective cohort study. BMJ Open 2023, 13, e074309. [Google Scholar] [CrossRef]
- Huang, X.; Li, S.; Feng, Q.; Tian, X.; Jiang, Y.N.; Tian, B.; Zhai, S.; Guo, W.; He, H.; Li, Y.; et al. A nomogram for predicting death for infants born at a gestational age of <28 weeks: A population-based analysis in 18 neonatal intensive care units in northern China. Transl. Pediatr. 2023, 12, 1769–1781. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Qiu, X.; Zhou, R. Construction and evaluation of neonatal respiratory failure risk prediction model for neonatal respiratory distress syndrome. BMC Pulm. Med. 2024, 24, 8. [Google Scholar] [CrossRef]
- Short-term outcomes and their related risk factors of extremely preterm and extremely low birth weight infants in Guangdong province. Chin. J. Pediatr. 2019, 57, 934–942. [CrossRef]
- Härtel, C.; Kribs, A.; Göpel, W.; Dargaville, P.; Herting, E. Less Invasive Surfactant Administration for Preterm Infants—State of the Art. Neonatology 2024, 121, 584–595. [Google Scholar] [CrossRef]
- Hoshino, Y.; Arai, J.; Cho, K.; Yukitake, Y.; Kajikawa, D.; Hinata, A.; Miura, R. Diagnosis and management of neonatal respiratory distress syndrome in Japan: A national survey. Pediatr. Neonatol. 2023, 64, 61–67. [Google Scholar] [CrossRef]
- Siew, M.L.; van Vonderen, J.J.; Hooper, S.B.; te Pas, A.B. Very Preterm Infants Failing CPAP Show Signs of Fatigue Immediately after Birth. PLoS ONE 2015, 10, e0129592. [Google Scholar] [CrossRef]
- Gulczyńska, E.; Szczapa, T.; Hożejowski, R.; Borszewska-Kornacka, M.K.; Rutkowska, M. Fraction of Inspired Oxygen as a Predictor of CPAP Failure in Preterm Infants with Respiratory Distress Syndrome: A Prospective Multicenter Study. Neonatology 2019, 116, 171–178. [Google Scholar] [CrossRef]
- Schulzke, S.M.; Stoecklin, B. Update on ventilatory management of extremely preterm infants-A Neonatal Intensive Care Unit perspective. Paediatr. Anaesth. 2022, 32, 363–371. [Google Scholar] [CrossRef]
- Hess, S.; Poryo, M.; Ruckes, C.; Papan, C.; Ehrlich, A.; Ebrahimi-Fakhari, D.; Bay, J.S.; Wagenpfeil, S.; Simon, A.; Meyer, S. Assessment of an umbilical venous catheter dwell-time of 8-14 days versus 1-7 days in very low birth weight infants (UVC—You Will See): A pilot single-center, randomized controlled trial. Early Hum. Dev. 2023, 179, 105752. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, V.; Prontera, G.; Rubortone, S.A.; Pezza, L.; Pinna, G.; Barone, G.; Pittiruti, M.; Vento, G. Umbilical Venous Catheter Update: A Narrative Review Including Ultrasound and Training. Front. Pediatr. 2021, 9, 774705. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Hess, S.; Poryo, M.; Papan, C.; Simon, A.; Welcker, S.; Ehrlich, A.; Ruckes, C. Study draft: “UVC-You Will See” study: Longer vs. shorter umbilical venous catheter (UVC) dwell time (6-10 vs. 1-5 days) in very premature infants with birth weight < 1250 g and/or gestational age < 30 weeks. Wien. Med. Wochenschr. 2024, 174, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Dongara, A.R.; Patel, D.V.; Nimbalkar, S.M.; Potana, N.; Nimbalkar, A.S. Umbilical Venous Catheter Versus Peripherally Inserted Central Catheter in Neonates: A Randomized Controlled Trial. J. Trop. Pediatr. 2017, 63, 374–379. [Google Scholar] [CrossRef]
- Konstantinidi, A.; Sokou, R.; Panagiotounakou, P.; Lampridou, M.; Parastatidou, S.; Tsantila, K.; Gounari, E.; Gounaris, A.K. Umbilical Venous Catheters and Peripherally Inserted Central Catheters: Are They Equally Safe in VLBW Infants? A Non-Randomized Single Center Study. Medicina 2019, 55, 442. [Google Scholar] [CrossRef]
- Alshafei, A.; Farouk, S.; Khan, A.; Ahmed, M.; Elsaba, Y.; Aldoky, Y. Association of umbilical venous catheters vs peripherally inserted central catheters with death or severe intraventricular hemorrhage among preterm infants < 30 weeks: A randomized clinical trial. J. Neonatal-Perinat. Med. 2023, 16, 247–255. [Google Scholar] [CrossRef]
- Shalabi, M.; Adel, M.; Yoon, E.; Aziz, K.; Lee, S.; Shah, P.S. Risk of Infection Using Peripherally Inserted Central and Umbilical Catheters in Preterm Neonates. Pediatrics 2015, 136, 1073–1079. [Google Scholar] [CrossRef]
- Kong, X.; Xu, F.; Wu, R.; Wu, H.; Ju, R.; Zhao, X.; Tong, X.; Lv, H.; Ding, Y.; Liu, F.; et al. Neonatal mortality and morbidity among infants between 24 to 31 complete weeks: A multicenter survey in China from 2013 to 2014. BMC Pediatr. 2016, 16, 174. [Google Scholar] [CrossRef]
Neonatal Factors | Surviving Infants (n = 119) | Deceased Infants (n = 92) | |||||
---|---|---|---|---|---|---|---|
n | Median | P25, P75 | n | Median | P25, P75 | p-Value | |
Time observed, day | 119 | 70 | (61, 81) | 92 | 2 | (1, 9) | <0.001 |
Gestational age, week | 119 | 27.7 | (27.0, 28.4) | 92 | 27.1 | (26.1, 27.9) | <0.001 |
Mother’s age, year | 119 | 31.5 | ±4.7 | 92 | 30.0 | ±4.7 | 0.037 |
Birth weight, kg | 119 | 0.95 | (0.90, 0.99) | 92 | 0.90 | (0.78, 0.98) | 0.004 |
Apgar scores at 1 min | 119 | 8 | (5, 9) | 92 | 6 | (4, 8) | 0.002 |
Apgar scores at 5 min | 119 | 10 | (9, 10) | 92 | 9 | (7, 10) | <0.001 |
Apgar scores at 10 min | 119 | 10 | (9, 10) | 92 | 9 | (9, 10) | 0.043 |
Base excess, mmol/L | 119 | −6.80 | (−9.35, −4.70) | 92 | −8.1 | (−11.7, −5.5) | 0.014 |
Blood lactate, mmol/L | 119 | 2.9 | (2.2, 4.7) | 92 | 4.2 | (3.1, 6.5) | <0.001 |
Blood pH | 119 | 7.28 | ±0.11 | 92 | 7.24 | ±0.13 | 0.036 |
White blood cell count, 109/L | 119 | 8.42 | (5.65, 13.88) | 92 | 7.95 | (5.60, 11.53) | 0.279 |
Hemoglobin, g/L | 119 | 156 | (140, 167) | 92 | 154 | (144, 165) | 0.869 |
Body temperature, °C | 119 | 36.5 | (36.2, 36.5) | 92 | 36.2 | (36.0, 36.5) | <0.001 |
Heart rate, BPM | 119 | 144.2 | ±15.1 | 92 | 143.7 | ±18.7 | 0.713 |
Systolic pressure, mmHg | 119 | 58 | (51, 63) | 92 | 55 | (47, 65) | 0.270 |
Diastolic pressure, mmHg | 119 | 30 | (25, 36) | 92 | 29 | (23, 37) | 0.550 |
Average blood pressure, mmHg | 119 | 38 | (34, 43) | 92 | 37 | (32, 44) | 0.584 |
Maximum appropriate FiO2, % | 119 | 40 | (30, 60) | 92 | 60 | (40, 100) | <0.001 |
Variables | Total (n = 211) | Deceased (n = 92) | Crude HRs | 95% CIs | p-Value | |
---|---|---|---|---|---|---|
n | % | |||||
Sex (Female vs. Male) | 99 | 46 | 46.5 | 1.240 | 0.824, 1.866 | 0.302 |
Twins/multiplicity (Y/N) | 45 | 27 | 60.0 | 1.891 | 1.206, 2.964 | 0.008 |
Cesarean (vs. Vaginal) | 107 | 37 | 34.6 | 0.569 | 0.375, 0.863 | 0.007 |
UVC (vs. PICC) | 100 | 34 | 34.0 | 0.534 | 0.350, 0.817 | 0.003 |
Antenatal steroids (Y/N) | 156 | 60 | 38.5 | 0.563 | 0.366, 0.865 | 0.011 |
Ventilation (Y/N) | 151 | 75 | 49.7 | 1.969 | 1.163, 3.335 | 0.007 |
Asphyxia at birth (Y/N) | 106 | 56 | 52.8 | 1.840 | 1.210, 2.798 | 0.004 |
Small for gestational age (Y/N) | 36 | 16 | 44.4 | 1.058 | 0.617, 1.815 | 0.838 |
C-reactive protein, mg/dL | 0.928 | |||||
<10 | 176 | 72 | 40.9 | 1.000 | — | |
≥10 | 8 | 3 | 37.5 | 0.949 | 0.299, 3.011 | |
Surfactants, dose | 0.084 | |||||
0 | 69 | 34 | 49.3 | 1.000 | — | |
1 | 64 | 31 | 48.4 | 0.969 | 0.595, 1.576 | |
2 | 52 | 20 | 38.5 | 0.688 | 0.396, 1.195 | |
≥3 | 26 | 7 | 26.9 | 0.421 | 0.186, 0.949 | |
Gestational age, week | <0.001 | |||||
<26.0 | 23 | 18 | 78.3 | 1.000 | — | |
26.0–26.9 | 44 | 23 | 52.3 | 0.486 | 0.262, 0.901 | |
27.0–27.9 | 83 | 33 | 39.8 | 0.345 | 0.194, 0.614 | |
≥28.0 | 61 | 18 | 29.5 | 0.236 | 0.123, 0.455 | |
Birth weight, g | 0.002 | |||||
<600 | 18 | 14 | 77.8 | 1.000 | — | |
600–799 | 18 | 11 | 61.1 | 0.611 | 0.277, 1.348 | |
800–899 | 34 | 17 | 50.0 | 0.452 | 0.223, 0.920 | |
900–999 | 110 | 36 | 32.7 | 0.267 | 0.143, 0.496 | |
≥1000 g | 31 | 14 | 45.2 | 0.390 | 0.186, 0.820 | |
Apgar score at 1 min. | 0.009 | |||||
0–3 | 35 | 23 | 65.7 | 1.000 | — | |
4–5 | 37 | 18 | 48.6 | 0.603 | 0.325, 1.119 | |
7–8 | 83 | 32 | 38.6 | 0.441 | 0.258, 0.754 | |
9–10 | 56 | 19 | 33.9 | 0.376 | 0.204, 0.691 | |
Apgar score at 5 min. | 0.001 | |||||
1–6 | 25 | 17 | 68.0 | 1.000 | — | |
7–8 | 49 | 27 | 55.1 | 0.593 | 0.323, 1.089 | |
9 | 54 | 23 | 42.6 | 0.459 | 0.245, 0.860 | |
10 | 83 | 25 | 30.1 | 0.289 | 0.156, 0.536 | |
Apgar score at 10 min. | 0.131 | |||||
3–8 | 39 | 19 | 48.7 | 1.000 | — | |
9 | 59 | 31 | 52.5 | 0.996 | 0.563, 1.764 | |
10 | 113 | 42 | 37.2 | 0.655 | 0.381, 1.126 | |
Base excess, mmol/L | 0.015 | |||||
<−10 | 64 | 37 | 57.8 | 1.000 | — | |
−10–−5.6 | 81 | 30 | 37.0 | 0.544 | 0.336, 0.882 | |
−5.7–−3.1 | 35 | 10 | 28.6 | 0.380 | 0.189, 0.764 | |
≥−3.0 | 31 | 15 | 48.4 | 0.690 | 0.379, 1.257 | |
Blood lactate, mmol/L | <0.001 | |||||
≤1.6 | 26 | 4 | 15.4 | 1.000 | — | |
1.7–2.9 | 57 | 18 | 31.6 | 2.204 | 0.746, 6.514 | |
3.0–5.9 | 88 | 44 | 50.0 | 4.045 | 1.452, 11.263 | |
≥6.0 | 40 | 26 | 65.0 | 6.239 | 2.174, 17.902 | |
Blood pH | 0.060 | |||||
<7.2 | 56 | 31 | 55.4 | 1.000 | — | |
7.2–7.34 | 107 | 42 | 39.3 | 0.601 | 0.378, 0.956 | |
7.35–7.45 | 41 | 18 | 43.9 | 0.687 | 0.384, 1.228 | |
>7.45 | 7 | 1 | 14.3 | 0.186 | 0.025, 1.366 | |
White blood cell count, 109/L | 0.201 | |||||
<5.0 | 38 | 17 | 44.7 | 1.000 | — | |
5.0–9.9 | 102 | 50 | 49.0 | 1.123 | 0.648, 1.948 | |
10.0–14.9 | 31 | 9 | 29.0 | 0.561 | 0.250, 1.258 | |
≥15.0 | 40 | 16 | 40.0 | 0.840 | 0.424, 1.663 | |
Hemoglobin, g/L | 0.480 | |||||
<145 | 63 | 24 | 38.1 | 1.000 | — | |
145–159 | 65 | 32 | 49.2 | 1.425 | 0.839, 2.419 | |
160–189 | 76 | 34 | 44.7 | 1.244 | 0.738, 2.097 | |
≥190 | 7 | 2 | 28.6 | 0.701 | 0.166, 2.968 | |
Body temperature, °C | 0.002 | |||||
<36.0 | 26 | 16 | 1.000 | — | ||
36.1–36.4 | 96 | 49 | 0.782 | 0.445, 1.376 | ||
36.5–37.3 | 89 | 27 | 0.384 | 0.207, 0.713 | ||
Year of birth | 0.014 | |||||
2016 and before | 39 | 24 | 61.5 | 1.000 | — | |
2017–2019 | 54 | 26 | 48.1 | 0.706 | 0.405, 1.231 | |
2020–2021 | 67 | 19 | 28.4 | 0.379 | 0.207, 0.693 | |
2022–2024 | 51 | 23 | 45.1 | 0.632 | 0.356, 1.120 |
Predictors | Total (n = 211) | Female (n = 99) | Male (n = 112) | ||||||
---|---|---|---|---|---|---|---|---|---|
HRs | 95% CIs | p-Values | HRs | 95% CIs | p-Values | HRs | 95% CIs | p-Values | |
Surfactant, 1 dose | 0.67 | 0.57–0.80 | <0.001 | 0.63 | 0.45–0.89 | 0.009 | 0.68 | 0.55–0.84 | <0.001 |
Apgar scores at 5 min, 1 point | 0.83 | 0.75–0.92 | <0.001 | 0.88 | 0.77–1.01 | 0.068 | 0.8 | 0.67–0.97 | 0.021 |
Maximum appropriate FiO2, 10% | 1.17 | 1.08–1.26 | <0.001 | 1.2 | 1.07–1.34 | 0.002 | 1.18 | 1.06–1.31 | 0.003 |
UVC (vs. PICC) | 0.37 | 0.23–0.60 | <0.001 | 0.30 | 0.15–0.61 | <0.001 | 0.37 | 0.19–0.72 | 0.004 |
Twins/multiplicity (Yes vs. No) | 2.03 | 1.21–3.39 | 0.007 | 2.38 | 1.09–5.20 | 0.030 | 2.05 | 0.98–4.29 | 0.057 |
Gestational age, week | |||||||||
<26.0 | 1.00 | ||||||||
26.0–26.9 | 0.54 | 0.29–1.00 | 0.051 | 0.85 | 0.30–2.45 | 0.764 | 0.45 | 0.18–1.14 | 0.093 |
27.0–27.9 | 0.33 | 0.18–0.60 | <0.001 | 0.38 | 0.17–0.83 | 0.016 | 0.29 | 0.11–0.76 | 0.012 |
≥28 | 0.29 | 0.14–0.59 | <0.001 | 0.51 | 0.20–1.30 | 0.159 | 0.17 | 0.05–0.56 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Zhong, X.; Chen, Q.; Chen, Y.; Pan, S.; Ye, H.; Tang, X. Identification of Neonatal Factors Predicting Pre-Discharge Mortality in Extremely Preterm or Extremely Low Birth Weight Infants: A Historical Cohort Study. Children 2024, 11, 1453. https://doi.org/10.3390/children11121453
Dai Z, Zhong X, Chen Q, Chen Y, Pan S, Ye H, Tang X. Identification of Neonatal Factors Predicting Pre-Discharge Mortality in Extremely Preterm or Extremely Low Birth Weight Infants: A Historical Cohort Study. Children. 2024; 11(12):1453. https://doi.org/10.3390/children11121453
Chicago/Turabian StyleDai, Zhenyuan, Xiaobing Zhong, Qian Chen, Yuming Chen, Sinian Pan, Huiqing Ye, and Xinyi Tang. 2024. "Identification of Neonatal Factors Predicting Pre-Discharge Mortality in Extremely Preterm or Extremely Low Birth Weight Infants: A Historical Cohort Study" Children 11, no. 12: 1453. https://doi.org/10.3390/children11121453
APA StyleDai, Z., Zhong, X., Chen, Q., Chen, Y., Pan, S., Ye, H., & Tang, X. (2024). Identification of Neonatal Factors Predicting Pre-Discharge Mortality in Extremely Preterm or Extremely Low Birth Weight Infants: A Historical Cohort Study. Children, 11(12), 1453. https://doi.org/10.3390/children11121453