Clinical Characteristics and Outcomes of SARS-CoV-2 Infection in Neonates with Persistent Pulmonary Hypertension of the Newborn (PPHN): A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Design
2.2. Inclusion–Exclusion Criteria
2.3. Definitions of COVID-19 Severity, Mother-to-Neonate Transmission of SARS-CoV-2, and Multisystem Inflammatory Syndrome in Neonates (MIS-N)
2.4. Data Extraction
2.5. Quality Assessment
2.6. Data Analysis
3. Results
3.1. Study Characteristics and Quality
3.2. Demographic Features and Clinical Characteristics of SARS-CoV-2 Infection in Neonates with PPHN
3.3. Demographic Features and Clinical Characteristics of SARS-CoV-2 Infection in Mothers Who Delivered Neonates with PPHN and a History of Mother-to-Neonate SARS-CoV-2 Transmission
3.4. Diagnosis and Severity of SARS-CoV-2 Infection in Neonates with PPHN
3.5. Management, Treatment Outcomes, and Relative Risk Associated with Mortality in PPHN Cases Infected with SARS-CoV-2
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Steurer, M.A.; Baer, R.J.; Oltman, S.; Ryckman, K.K.; Feuer, S.K.; Rogers, E.; Keller, R.L.; Jelliffe-Pawlowski, L.L. Morbidity of persistent pulmonary hypertension of the newborn in the first year of life. J. Pediatr. 2019, 213, 58–65.e4. [Google Scholar] [CrossRef] [PubMed]
- Roofthooft, M.; Elema, A.; Bergman, K.; Berger, R. Patient characteristics in persistent pulmonary hypertension of the newborn. Pulm. Med. 2011, 2011, 858154. [Google Scholar] [CrossRef] [PubMed]
- Nakwan, N.; Jain, S.; Kumar, K.; Hosono, S.; Hammoud, M.; Elsayed, Y.Y.; Ariff, S.; Hasan, B.; Khowaja, W.; Poon, W.B. An Asian multicenter retrospective study on persistent pulmonary hypertension of the newborn: Incidence, etiology, diagnosis, treatment and outcome. J. Matern.-Fetal Neonatal Med. 2020, 33, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Alhumaid, S.; Alnaim, A.A.; Al Ghamdi, M.A.; Alahmari, A.A.; Alabdulqader, M.; Al HajjiMohammed, S.M.; Alalwan, Q.M.; Al Dossary, N.; Alghazal, H.A.; Al Hassan, M.H. International treatment outcomes of neonates on extracorporeal membrane oxygenation (ECMO) with persistent pulmonary hypertension of the newborn (PPHN): A systematic review. J. Cardiothorac. Surg. 2024, 19, 493. [Google Scholar] [CrossRef] [PubMed]
- Farmer, M.L. A neonate with vertical transmission of COVID-19 and acute respiratory failure: A case report. Adv. Neonatal Care 2021, 21, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, M.; Tomar, M.; Gaonkar, S.; Rastogi, A.; Shenoi, A. Pilot study analyzing combination of point-of-care echocardiography and clinical correlation in unveiling cryptic multi-inflammatory syndrome in neonates during coronavirus disease 2019 pandemic. J. Indian Acad. Echocardiogr. Cardiovasc. Imaging 2022, 6, 89–99. [Google Scholar] [CrossRef]
- Ishqeir, A.; Nir, A.; Aptowitzer, I.; Godfrey, M.; Pediatric Cardiology Unit, Shaare Zedek Medical Center, Jerusalem, Israel. Increased incidence of Persistent Pulmonary Hypertension of the Newborn following third trimester maternal COVID-19 infection. Eur. Heart J. 2021, 42, ehab724.1843. [Google Scholar] [CrossRef]
- Tomar, M.; Chaudhuri, M.; Goel, T.; Agarwal, V.; Bidhan, S.; Jain, A.; Rastogi, A.; Saxena, V.; Tomar, H.S. Profile of cardiac involvement in children after exposure to COVID-19. Indian Pediatr. 2023, 60, 385–388. [Google Scholar] [CrossRef]
- Jamali, Z.; Sinaei, R.; Razi, L. Multisystem inflammatory syndrome in a newborn (MIS-N): Clinical evidence and neurodevelopmental outcome. Curr. Pediatr. Rev. 2023, 19, 210–212. [Google Scholar]
- Algadeeb, K.B.; AlMousa, H.H.; AlKadhem, S.M.; Alduhilan, M.O., II; Almatawah, Y. A novel case of severe respiratory symptoms and persistent pulmonary hypertension in a Saudi neonate with SARS-CoV-2 infection. Cureus 2020, 12, e10472. [Google Scholar] [CrossRef]
- Ergon, E.Y.; Akbay, S.; Aytemiz, G.; Çelik, E.C.A.; Çalıskan Polat, A.; Umit, Z.; Paytoncu, S. A novel case of neonatal acute respiratory distress syndrome with SARS-CoV-2 infection: Potential perinatal transmission. Arch. Argent. De Pediatr 2021, 119, e531–e535. [Google Scholar]
- Gonçalves-Ferri, W.A.; Carvalheiro, C.G.; Mussi-Pinhata, M.M.; Cavasin, B.P.D.; Fonseca, B.A.L.d. Gamma variant vertically transmitted from a mild symptomatic pregnant woman associated with fatal neonatal COVID. Braz. J. Infect. Dis. 2022, 26, 102385. [Google Scholar] [CrossRef] [PubMed]
- Balleda, L.; Pasupula, S.; Kolla, S.; Thimmapuram, C.R. Clinical profile, laboratory parameters, management and outcomes of newborns with multisystem inflammatory syndrome (mis-n) due to transplacental transfer of SARS-CoV 2 antibodies: A study from a tertiary care institute. J. Clin. Neonatol. 2022, 11, 65–70. [Google Scholar] [CrossRef]
- Gupta, P.; Tamatam, P.R.; Dhulipudi, B.; Vardhelli, V.; Deshabhotla, S.; Oleti, T.P. Neonatal multisystem inflammatory syndrome (MIS-N) associated with maternal SARS-CoV-2 exposure. Indian J. Pediatr. 2022, 89, 827–828. [Google Scholar] [CrossRef]
- More, K.; Aiyer, S.; Goti, A.; Parikh, M.; Sheikh, S.; Patel, G.; Kallem, V.; Soni, R.; Kumar, P. Multisystem inflammatory syndrome in neonates (MIS-N) associated with SARS-CoV2 infection: A case series. Eur. J. Pediatr. 2022, 181, 1883–1898. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, 71. [Google Scholar] [CrossRef]
- National Institutes of Health. COVID-19 Treatment Guidelines. Clinical Spectrum of SARS-CoV-2 Infection 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570371/pdf/Bookshelf_NBK570371.pdf (accessed on 30 January 2024).
- World Health Organization. Definition and Categorization of the Timing of Mother-to-Child Transmission of SARS-CoV-2. Scientific Brief 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-mother-to-child-transmission-2021.1 (accessed on 30 January 2024).
- United States Centers for Disease Control and Prevention. Multisystem Inflammatory Syndrome (MIS). Case Definitions and Reporting. MIS-C Case Definition. Available online: https://www.cdc.gov/mis/hcp/case-definition-reporting/index.html (accessed on 30 January 2024).
- Molloy, E.J.; Nakra, N.; Gale, C.; Dimitriades, V.R.; Lakshminrusimha, S. Multisystem inflammatory syndrome in children (MIS-C) and neonates (MIS-N) associated with COVID-19: Optimizing definition and management. Pediatr. Res. 2023, 93, 1499–1508. [Google Scholar] [CrossRef]
- Mascarenhas, D.; Goyal, M.; Haribalakrishna, A.; Nanavati, R.; Ish, P.; Kunal, S. Multisystem inflammatory syndrome in neonates (MIS-N): A systematic review. Eur. J. Pediatr. 2023, 182, 2283–2298. [Google Scholar] [CrossRef]
- Bazerbachi, F.; Sawas, T.; Vargas, E.J.; Prokop, L.J.; Chari, S.T.; Gleeson, F.C.; Levy, M.J.; Martin, J.; Petersen, B.T.; Pearson, R.K. Metal stents versus plastic stents for the management of pancreatic walled-off necrosis: A systematic review and meta-analysis. Gastrointest. Endosc. 2018, 87, 30–42.e15. [Google Scholar] [CrossRef]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ott. Ott. Hosp. Res. Inst. 2011, 2, 1–12. [Google Scholar]
- Borkotoky, R.K.; Barua, P.B.; Paul, S.P.; Heaton, P.A. COVID-19-related potential multisystem inflammatory syndrome in childhood in a neonate presenting as persistent pulmonary hypertension of the newborn. Pediatr. Infect. Dis. J. 2021, 40, e162–e164. [Google Scholar] [CrossRef] [PubMed]
- Easterlin, M.C.; De Beritto, T.; Yeh, A.M.; Wertheimer, F.B.; Ramanathan, R. Extremely preterm infant born to a mother with severe COVID-19 pneumonia. J. Investig. Med. High Impact Case Rep. 2020, 8, 2324709620946621. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Quinones Cardona, V.; Menkiti, O.R. Use of vasopressin in persistent pulmonary hypertension of the newborn: A case series. SAGE Open Med. Case Rep. 2022, 10, 2050313X221102289. [Google Scholar] [CrossRef] [PubMed]
- Kalani-Moghaddam, F.; Pouralizadeh, N.; Pourdowlat, G.; Sarfarazi-Moghaddam, S.; Gharib, M.H.; Pakdel, M. The youngest surviving COVID-19 patient: A case report. Int. J. Surg. Case Rep. 2022, 94, 107065. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; Khadga, M.; Zahid, M.N.; Mojib, S.; Debnath, R.; Khan, S.; Haque, M.; Godman, B.; Islam, S.; Khan, S. Multisystem inflammatory syndrome of a neonate from a COVID-19-infected mother: A case report. Cureus 2022, 14, e23046. [Google Scholar] [CrossRef]
- McCarty, K.L.; Tucker, M.; Lee, G.; Pandey, V. Fetal inflammatory response syndrome associated with maternal SARS-CoV-2 infection. Pediatrics 2021, 147, e2020010132. [Google Scholar] [CrossRef]
- Moore, S.S.; Altit, G. Detection of Pulmonary Hypertension in an Infant with Covid Related Chronic Lung Disease. Available online: https://neonatalhemodynamics.com/wp-content/uploads/2022/03/MooreCaseNHRC_MAR2022.pdf (accessed on 30 January 2024).
- Pawar, R.; Gavade, V.; Patil, N.; Mali, V.; Girwalkar, A.; Tarkasband, V.; Loya, S.; Chavan, A.; Nanivadekar, N.; Shinde, R. Neonatal multisystem inflammatory syndrome (MIS-N) associated with prenatal maternal SARS-CoV-2: A case series. Children 2021, 8, 572. [Google Scholar] [CrossRef]
- Schoenmakers, S.; Snijder, P.; Verdijk, R.M.; Kuiken, T.; Kamphuis, S.S.; Koopman, L.P.; Krasemann, T.B.; Rousian, M.; Broekhuizen, M.; Steegers, E.A. Severe acute respiratory syndrome coronavirus 2 placental infection and inflammation leading to fetal distress and neonatal multi-organ failure in an asymptomatic woman. J. Pediatr. Infect. Dis. Soc. 2021, 10, 556–561. [Google Scholar] [CrossRef]
- Shaiba, L.A.; Hadid, A.; Altirkawi, K.A.; Bakheet, H.M.; Alherz, A.M.; Hussain, S.A.; Sobaih, B.H.; Alnemri, A.M.; Almaghrabi, R.; Ahmed, M. Case report: Neonatal multi-system inflammatory syndrome associated with SARS-CoV-2 exposure in two cases from Saudi Arabia. Front. Pediatr. 2021, 9, 652857. [Google Scholar] [CrossRef]
- Aikio, O.; Metsola, J.; Vuolteenaho, R.; Perhomaa, M.; Hallman, M. Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure. J. Pediatr. 2012, 161, 397–403.e1. [Google Scholar] [CrossRef]
- Steinhorn, R.H. Advances in neonatal pulmonary hypertension. Neonatology 2016, 109, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Quddusi, A.I.; Nizami, N. Risk factors and mortality among newborns with persistent pulmonary hypertension. Pak. J. Med. Sci. 2013, 29, 1099. [Google Scholar] [CrossRef] [PubMed]
- Walsh-Sukys, M.C.; Tyson, J.E.; Wright, L.L.; Bauer, C.R.; Korones, S.B.; Stevenson, D.K.; Verter, J.; Stoll, B.J.; Lemons, J.A.; Papile, L.-A. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: Practice variation and outcomes. Pediatrics 2000, 105, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Teng, R.-J.; Wu, T.-J. Persistent pulmonary hypertension of the newborn. J. Formos. Med. Assoc. 2013, 112, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Ziegler, J.; Ford, S.; Padbury, J.; Tucker, R.; Laptook, A. Pulmonary hypertension in preterm infants: Prevalence and association with bronchopulmonary dysplasia. J. Pediatr. 2014, 165, 909–914.e1. [Google Scholar] [CrossRef]
- Buffoni, I.; Buratti, S.; Mallamaci, M.F.; Pezzato, S.; Lampugnani, E.; Buffelli, F.; Fulcheri, E.; Moscatelli, A. Sudden Onset of Severe Pulmonary Hypertension in a Preterm Infant: A Case Report on the Role of Maternal Use of Serotonin Re-Uptake Inhibitors During Pregnancy and Concurrent Risk Factors. Front. Pediatr. 2022, 10, 855419. [Google Scholar] [CrossRef]
- Mourani, P.M.; Sontag, M.K.; Younoszai, A.; Miller, J.I.; Kinsella, J.P.; Baker, C.D.; Poindexter, B.B.; Ingram, D.A.; Abman, S.H. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2015, 191, 87–95. [Google Scholar] [CrossRef]
- Seth, S.A.; Soraisham, A.S.; Harabor, A. Risk factors and outcomes of early pulmonary hypertension in preterm infants. J. Matern.-Fetal Neonatal Med. 2018, 31, 3147–3152. [Google Scholar] [CrossRef]
- Berenz, A.; Vergales, J.E.; Swanson, J.R.; Sinkin, R.A. Evidence of early pulmonary hypertension is associated with increased mortality in very low birth weight infants. Am. J. Perinatol. 2017, 34, 801–807. [Google Scholar] [CrossRef]
- Soraisham, A.S.; Harabor, A.; Shivananda, S.; Alvaro, R.; Xiang, Y.Y.; Lee, S.K.; Shah, P.S.; Network, C.N. Trends and variations in the use of inhaled nitric oxide in preterm infants in Canadian neonatal intensive care units. Am. J. Perinatol. 2016, 33, 715–722. [Google Scholar]
- Koenders, V.; Appels, A.; van Straaten, H.; Dutman, A.; Hemels, M. Postnatal corticosteroid response in neonates <32 weeks and relation with placental pathology. Eur. J. Pediatr. 2023, 182, 265–274. [Google Scholar] [PubMed]
- Baczynski, M.; Ginty, S.; Weisz, D.E.; McNamara, P.J.; Kelly, E.; Shah, P.; Jain, A. Short-term and long-term outcomes of preterm neonates with acute severe pulmonary hypertension following rescue treatment with inhaled nitric oxide. Arch. Dis. Child.-Fetal Neonatal Ed. 2017, 102, F508–F514. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Salzer, U.; Baumgartner, S.; Waldhoer, T.; Klebermass-Schrehof, K.; Wald, M.; Langgartner, M.; Berger, A. Intravenous sildenafil i. v. as rescue treatment for refractory pulmonary hypertension in extremely preterm infants. Klin. Pädiatrie 2014, 226, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Kahveci, H.; Yilmaz, O.; Avsar, U.Z.; Ciftel, M.; Kilic, O.; Laloglu, F.; Ozturk, K. Oral sildenafil and inhaled iloprost in the treatment of pulmonary hypertension of the newborn. Pediatr. Pulmonol. 2014, 49, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Lakshminrusimha, S.; Konduri, G.; Steinhorn, R. Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J. Perinatol. 2016, 36, S12–S19. [Google Scholar] [CrossRef]
- Gortner, L.; Shen, J.; Tutdibi, E. Sexual dimorphism of neonatal lung development. Klin. Pädiatrie 2013, 225, 64–69. [Google Scholar] [CrossRef]
- Yarci, E.; Canpolat, F.E. Evaluation of morbidities and complications of neonatal intensive care unit patients with respiratory disorders at different gestational ages. Am. J. Perinatol. 2022, 29, 1533–1540. [Google Scholar]
- Hillman, N.H.; Lam, H.S. Respiratory disorders in the newborn. In Kendig’s Disorders of the Respiratory Tract in Children; Elsevier: Amsterdam, The Netherlands, 2019; pp. 338–366.e6. [Google Scholar]
- Su, Z.; Lin, L.; Fan, X.; Jia, C.; Huang, X.; Wei, J.; Wu, F. Increased risk for respiratory complications in male extremely preterm infants: A propensity score matching study. Front. Endocrinol. 2022, 13, 823707. [Google Scholar] [CrossRef]
- Janevic, T.; Zeitlin, J.; Auger, N.; Egorova, N.N.; Hebert, P.; Balbierz, A.; Howell, E.A. Association of race/ethnicity with very preterm neonatal morbidities. JAMA Pediatr. 2018, 172, 1061–1069. [Google Scholar] [CrossRef]
- Ong, M.-S.; Abman, S.; Austin, E.D.; Feinstein, J.A.; Hopper, R.K.; Krishnan, U.S.; Mullen, M.P.; Natter, M.D.; Raj, J.U.; Rosenzweig, E.B. Racial and ethnic differences in pediatric pulmonary hypertension: An analysis of the pediatric pulmonary hypertension network registry. J. Pediatr. 2019, 211, 63–71.e6. [Google Scholar] [CrossRef]
- Gopalan, H.S.; Misra, A. COVID-19 pandemic and challenges for socio-economic issues, healthcare and National Health Programs in India. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Rajalakshmi, R.; Surya, J.; Ramakrishnan, R.; Sivaprasad, S.; Conroy, D.; Thethi, J.P.; Mohan, V.; Netuveli, G. Impact on health and provision of healthcare services during the COVID-19 lockdown in India: A multicentre cross-sectional study. BMJ Open 2021, 11, e043590. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Bhattacharyya, A. Social distanciation through COVID-19: A narrative analysis of Indian Peri-Urban Elderly. Soc. Sci. Humanit. Open 2021, 4, 100139. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Tripathy, S.; Kar, S.K.; Sharma, N.; Verma, S.K.; Kaushal, V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J. Psychiatry 2020, 51, 102083. [Google Scholar]
- Trevisanuto, D.; Cavallin, F.; Cavicchiolo, M.E.; Borellini, M.; Calgaro, S.; Baraldi, E. Coronavirus infection in neonates: A systematic review. Arch. Dis. Child.-Fetal Neonatal Ed. 2021, 106, 330–335. [Google Scholar] [CrossRef]
- Devin, J.; Marano, R.; Mikhael, M.; Feaster, W.; Sanger, T.; Ehwerhemuepha, L. Epidemiology of neonatal COVID-19 in the United States. Pediatrics 2022, 150, e2022056297. [Google Scholar] [CrossRef]
- Kyle, M.H.; Hussain, M.; Saltz, V.; Mollicone, I.; Bence, M.; Dumitriu, D. Vertical transmission and neonatal outcomes following maternal SARS-CoV-2 infection during pregnancy. Clin. Obstet. Gynecol. 2022, 65, 195–202. [Google Scholar] [CrossRef]
- Jeganathan, K.; Paul, A.B. Vertical transmission of SARS-CoV-2: A systematic review. Obstet. Med. 2022, 15, 91–98. [Google Scholar] [CrossRef]
- Dubey, P.; Reddy, S.Y.; Manuel, S.; Dwivedi, A.K. Maternal and neonatal characteristics and outcomes among COVID-19 infected women: An updated systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 490–501. [Google Scholar] [CrossRef]
- Diriba, K.; Awulachew, E.; Getu, E. The effect of coronavirus infection (SARS-CoV-2, MERS-CoV, and SARS-CoV) during pregnancy and the possibility of vertical maternal–fetal transmission: A systematic review and meta-analysis. Eur. J. Med. Res. 2020, 25, 39. [Google Scholar] [CrossRef]
- Karimi-Zarchi, M.; Neamatzadeh, H.; Dastgheib, S.A.; Abbasi, H.; Mirjalili, S.R.; Behforouz, A.; Ferdosian, F.; Bahrami, R. Vertical transmission of coronavirus disease 19 (COVID-19) from infected pregnant mothers to neonates: A review. Fetal Pediatr. Pathol. 2020, 39, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Agolli, A.; Agolli, O.; Velazco, D.F.S.; Ahammed, M.R.; Patel, M.; Cardona-Guzman, J.; Garimella, R.; Rummaneethorn, N.; Bista, S.; Abreu, R. Fetal complications in COVID-19 infected pregnant woman: A systematic review and meta-analysis. Avicenna J. Med. 2021, 11, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Lei, D.; Wang, C.; Li, C.; Fang, C.; Yang, W.; Chen, B.; Wei, M.; Xu, X.; Yang, H.; Wang, S. Clinical characteristics of COVID-19 in pregnancy: Analysis of nine cases. Chin. J. Perinat. Med. 2020, 12, 159–165. [Google Scholar]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; Do Vale, M.S.; Cardona-Perez, J.A. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection: The INTERCOVID multinational cohort study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef]
- Allotey, J.; Fernandez, S.; Bonet, M.; Stallings, E.; Yap, M.; Kew, T.; Zhou, D.; Coomar, D.; Sheikh, J.; Lawson, H. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ 2020, 370, m3320. [Google Scholar] [CrossRef]
- Shahbazi Sighaldeh, S.; Ebrahimi Kalan, M. Care of newborns born to mothers with COVID-19 infection; a review of existing evidence. J. Matern.-Fetal Neonatal Med. 2022, 35, 2203–2215. [Google Scholar] [CrossRef]
- Yeo, K.T.; Oei, J.L.; De Luca, D.; Schmölzer, G.M.; Guaran, R.; Palasanthiran, P.; Kumar, K.; Buonocore, G.; Cheong, J.; Owen, L.S. Review of guidelines and recommendations from 17 countries highlights the challenges that clinicians face caring for neonates born to mothers with COVID-19. Acta Paediatr. 2020, 109, 2192–2207. [Google Scholar] [CrossRef]
- De Rose, D.U.; Pugnaloni, F.; Calì, M.; Ronci, S.; Caoci, S.; Maddaloni, C.; Martini, L.; Santisi, A.; Dotta, A.; Auriti, C. Multisystem inflammatory syndrome in neonates born to mothers with SARS-CoV-2 infection (MIS-N) and in neonates and infants younger than 6 months with acquired COVID-19 (MIS-C): A systematic review. Viruses 2022, 14, 750. [Google Scholar] [CrossRef]
- Rauniyar, R.; Mishra, A.; Kharel, S.; Giri, S.; Rauniyar, R.; Yadav, S.; Chaudhary, G. IVIG plus glucocorticoids versus IVIG alone in multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19: A systematic review and meta-analysis. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 9458653. [Google Scholar] [CrossRef]
- Tagarro, A.; Domínguez-Rodríguez, S.; Mesa, J.M.; Epalza, C.; Grasa, C.; Iglesias-Bouzas, M.I.; Fernández-Cooke, E.; Calvo, C.; Villaverde, S.; Torres-Fernández, D. Treatments for multi-system inflammatory syndrome in children—Discharge, fever, and second-line therapies. Eur. J. Pediatr. 2023, 182, 461–466. [Google Scholar] [CrossRef]
- Henderson, L.A.; Canna, S.W.; Friedman, K.G.; Gorelik, M.; Lapidus, S.K.; Bassiri, H.; Behrens, E.M.; Kernan, K.F.; Schulert, G.S.; Seo, P. American College of Rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS–CoV-2 and hyperinflammation in pediatric COVID-19: Version 3. Arthritis Rheumatol. 2022, 74, e1–e20. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhu, S.; Zhou, K.; Jin, Y.; He, L.; Xu, W.; Lao, C.; Liu, G.; Han, S. Sildenafil for pulmonary hypertension in neonates: An updated systematic review and meta-analysis. Pediatr. Pulmonol. 2021, 56, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Pasero, D.; Cossu, A.P.; Terragni, P. Multi-drug resistance bacterial infections in critically ill patients admitted with COVID-19. Microorganisms 2021, 9, 1773. [Google Scholar] [CrossRef] [PubMed]
- Sher, E.K.; Ćosović, A.; Džidić-Krivić, A.; Farhat, E.K.; Pinjić, E.; Sher, F. COVID-19 a triggering factor of autoimmune and multi-inflammatory diseases. Life Sci. 2023, 319, 121531. [Google Scholar] [CrossRef] [PubMed]
- Barrington, K.J.; Finer, N.; Pennaforte, T.; Altit, G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst. Rev. 2017, 1, CD000399. [Google Scholar] [CrossRef]
- Sharma, V.; Berkelhamer, S.; Lakshminrusimha, S. Persistent pulmonary hypertension of the newborn. Matern. Health Neonatol. Perinatol. 2015, 1, 14. [Google Scholar] [CrossRef]
Variable | All (n = 36) a | Variable | All (n = 36) a |
---|---|---|---|
Age (hours) | Maternal COVID-19 severity | ||
<1 | 10 (27.8) | Asymptomatic | 9 (25) |
1–3 | 2 (5.5) | Mild | 5 (13.9) |
>3 | 10 (27.8) | Moderate | 1 (2.8) |
Gender | Severe | 3 (8.3) | |
Female | 7 (19.4) | Mother-to-neonate transmission of SARS-CoV-2 | |
Male | 12 (33.3) | Confirmed intrauterine | 5 (13.9) |
Ethnicity | Possible intrauterine | 4 (11.1) | |
Indian | 18 (50) | Confirmed intrapartum | 2 (5.5) |
Persian | 2 (5.5) | Confirmed early postpartum | 2 (5.5) |
Bengali | 1 (2.8) | Possible intrapartum | 1 (2.8) |
White (Caucasian) | 1 (2.8) | Unlikely intrapartum | 1 (2.8) |
Black b | 1 (2.8) | Unlikely intrauterine | 1 (2.8) |
Hispanic | 1 (2.8) | Neonatal COVID-19 symptoms | |
Asian | 1 (2.8) | Respiratory distress | 12 (33.3) |
Arab | 1 (2.8) | Fever | 9 (25) |
Delivery mode | Low O2 sat | 6 (16.7) | |
Caesarean | 16 (44.4) | SOB | 5 (13.9) |
NSVD | 2 (5.5) | Cyanosis | 5 (13.9) |
Induced labor | 1 (2.8) | Rash | 5 (13.9) |
Weight (grams) | Grunting | 4 (11.1) | |
Normal: ≥2500 | 10 (27.8) | Tachypnoea | 4 (11.1) |
Low: ≥1500–2499 | 9 (25) | Retractions | 3 (8.3) |
Very low: <1500 | 1 (2.8) | Respiratory failure | 3 (8.3) |
Extremely low: <1000 | 2 (5.5) | Tachycardia | 3 (8.3) |
Gestational age (weeks) | Neonatal abnormal laboratory findings | ||
Term (≥37 weeks) | 9 (25) | High D-dimer | 16 (44.4) |
Moderate to late preterm (32 to <37 weeks) | 13 (36.1) | High CRP | 15 (41.7) |
Very preterm (28 to <32 weeks) | 3 (8.3) | Thrombocytopenia | 14 (38.9) |
Apgar score | High LDH | 13 (36.1) | |
Low: 0–3 | 7 (19.4) | High NT-proBNP | 10 (27.8) |
Moderately abnormal: 4–6 | 11 (30.5) | High LFTs | 10 (27.8) |
Reassuring: 7–10 | 17 (47.2) | High troponin-I | 8 (22.2) |
Neonatal comorbidities | High ferritin | 7 (19.4) | |
Arrhythmia | 6 (16.7) | High procalcitonin | 6 (16.7) |
Atrial thrombi | 6 (16.7) | Leukocytosis | 6 (16.7) |
Seizures | 5 (13.9) | High IL-6 | 5 (13.9) |
Hypotension | 4 (11.1) | High BUN | 5 (13.9) |
ICH | 4 (11.1) | High WBCs | 4 (11.1) |
NEC | 3 (8.3) | High PTT | 3 (8.3) |
Sepsis | 3 (8.3) | Lymphopenia | 3 (8.3) |
Metabolic acidosis | 3 (8.3) | Neutrophilia | 3 (8.3) |
Decreased fetal movements | 3 (8.3) | Neonatal abnormal radiological findings | |
Lack of fetal movements | 3 (8.3) | Echo: PPHN | 31 (86.1) |
Chorioamnionitis | 3 (8.3) | Echo: TR | 10 (27.8) |
Food intolerance | 3 (8.3) | CXR: Cardiomegaly | 7 (19.4) |
Respiratory acidosis | 2 (5.5) | USG: Abnormal NST | 5 (13.9) |
Rash | 2 (5.5) | CXR: GGO | 4 (11.1) |
Decreased fetal HR | 2 (5.5) | Echo: Dilated coronaries | 4 (11.1) |
Vomiting | 2 (5.5) | Echo: Coronary aneurysm | 4 (11.1) |
CRVS | 2 (5.5) | Echo: Cardiomegaly | 2 (5.5) |
Shock | 2 (5.5) | Neonatal COVID-19 severity | |
Cardiorespiratory failure | 2 (5.5) | Severe | 16 (44.4) |
Hydrocephalus | 2 (5.5) | Critical | 8 (22.2) |
HIE | 2 (5.5) | If neonate suffered ARDS | |
Cardiogenic shock | 1 (2.8) | Yes | 21 (58.3) |
Septic shock | 1 (2.8) | No | 1 (2.8) |
MOD | 1 (2.8) | If experienced MIS-N | |
Coinfection with Klebsiella oxytoca | 1 (2.8) | Most likely | 21 (58.3) |
MI | 1 (2.8) | Possible | 8 (22.2) |
Myocarditis | 1 (2.8) | Unlikely | 1 (2.8) |
CLD | 1 (2.8) | Type of MIS-N | |
PVD | 1 (2.8) | Early | 18 (50) |
Bronchiectasis | 1 (2.8) | Late | 4 (11.1) |
PPHN etiology | Neonatal treatment of SARS-CoV-2 infection | ||
NRDS | 15 (41.7) | Antibiotics | 20 (55.5) |
MSAF | 6 (16.7) | IVIG | 15 (41.7) |
PPROM | 4 (11.1) | Steroids | 14 (38.9) |
HIE | 2 (5.5) | Aspirin | 7 (19.4) |
Pneumonia | 2 (5.5) | Anticoagulants | 3 (8.3) |
Idiopathic | 1 (2.8) | Remdesivir | 2 (5.5) |
Initiated PPHN treatments | Prone positioning | 2 (5.5) | |
IPPV | 18 (50) | Duration on supplemental oxygen (days) | |
CPAP | 17 (47.2) | <7 | 4 (11.1) |
iNO | 14 (38.9) | 7 to <14 | 9 (25) |
HFV | 10 (27.8) | ≥14 | 3 (8.3) |
Surfactant | 9 (25) | Duration of MV (days) | |
Sildenafil | 9 (25) | <7 | 5 (13.9) |
NPPV | 8 (22.2) | 7 to <14 | 8 (22.2) |
Dopamine | 7 (19.4) | ≥14 | 4 (11.1) |
Hydrocortisone | 7 (19.4) | Duration on iNO use (days) | |
Packed RBCs | 6 (16.7) | <7 | 4 (11.1) |
Milrinone | 5 (13.9) | 7 to <14 | 3 (8.3) |
Inotropes | 5 (13.9) | ≥14 | 1 (2.8) |
FFP | 4 (11.1) | Duration of hospital stay (days) | |
Diuretics | 4 (11.1) | <7 | 0 |
Epinephrine | 4 (11.1) | 7 to <14 | 3 (8.3) |
Dobutamine | 4 (11.1) | ≥14 | 14 (38.9) |
Antihypertensives | 4 (11.1) | Final treatment outcome | |
Magnesium sulfate | 3 (8.3) | Survived | 29 (80.5) |
Vasopressors | 2 (5.5) | Died | 6 (16.7) |
Sedation | 2 (5.5) | Still hospitalized | 1 (2.8) |
CPR | 2 (5.5) | ||
Platelets | 2 (5.5) | ||
ERAs | 2 (5.5) | ||
Opioids | 2 (5.5) | ||
Vasodilators | 2 (5.5) | ||
Therapeutic hypothermia | 2 (5.5) | ||
Maternal comorbidities | |||
Gestational DM | 4 (11.1) | ||
PIH | 3 (8.3) | ||
Preeclampsia | 3 (8.3) | ||
No comorbidities | 3 (8.3) | ||
Hypothyroidism | 2 (5.5) | ||
Placenta previa | 2 (5.5) | ||
Coinfection with Group B Streptococcus | 1 (2.8) | ||
Coinfection with CMV | 1 (2.8) | ||
Coinfection with Parvovirus B19 | 1 (2.8) |
Variable | Findings | ||
---|---|---|---|
Survived (n = 30) a | Died (n = 6) a | p-Value b | |
Neonatal comorbidities | |||
Cardiorespiratory failure | 0 | 2 (33.3) | 0.047 * |
PPHN etiology | |||
Pneumonia | 0 | 2 (33.3) | 0.047 * |
Initiated PPHN treatments | |||
Sildenafil | 5 (16.7) | 4 (66.7) | 0.037 * |
Epinephrine | 2 (6.7) | 2 (33.3) | 0.03 * |
Vasopressors | 1 (3.3) | 2 (33.3) | 0.047 * |
ERAs | 0 | 2 (33.3) | 0.047 * |
Neonatal need of iNO (days) | |||
<7 | 4 (13.3) | 0 | 0.034 * |
7 to <14 | 1 (3.3) | 2 (33.3) | |
≥14 | 0 | 1 (16.7) | |
Neonatal COVID-19 severity | |||
Severe | 15 (50) | 1 (16.7) | 0.026 * |
Critical | 3 (10) | 5 (83.3) | |
Neonatal treatment of SARS-CoV-2 infection | |||
Antibiotics | 15 (50) | 5 (83.3) | 0.048 * |
Variable | Survived (n = 30) | Died (n = 6) | Relative Risk | 95% CIs |
---|---|---|---|---|
Gender (male) | 9 (30) | 3 (50) | 2.60 | 0.30–1.17 |
Neonatal comorbidities (hypotension) | 3 (10) | 1 (16.7) | 1.23 | 0.82–1.86 |
Neonatal comorbidities (sepsis) | 1 (3.3) | 2 (33.3) | 1.28 | 0.85–1.93 |
PPHN etiology (NRDS) | 13 (43.3) | 2 (33.3) | 1.78 | 0.69–4.52 |
PPHN treatments (sildenafil) | 3 (10) | 3 (50) | 1.70 | 0.83–3.46 |
PPHN treatments (epinephrine) | 3 (10) | 1 (16.7) | 1.54 | 0.89–2.64 |
PPHN treatments (HFV) | 7 (23.3) | 3 (50) | 1.55 | 0.75–3.20 |
PPHN treatments (IPPV) | 14 (46.7) | 4 (66.7) | 2.22 | 0.64–7.73 |
PPHN treatments (dobutamine) | 2 (6.7) | 2 (33.3) | 1.23 | 0.81–1.87 |
PPHN treatments (surfactant) | 6 (20) | 3 (50) | 1.24 | 0.70–2.20 |
Neonatal COVID-19 severity (critical) | 3 (10) | 5 (83.3) | 2.84 | 0.86–9.39 |
Neonatal COVID-19 symptoms (fever) | 7 (23.3) | 2 (33.3) | 1.24 | 0.70–2.20 |
Neonatal abnormal laboratory findings (high NT-proBNP) | 7 (23.3) | 3 (50) | 1.63 | 0.79–3.33 |
Neonatal abnormal laboratory findings (high troponin-I) | 5 (16.7) | 3 (50) | 1.30 | 0.74–2.29 |
Neonatal abnormal laboratory findings (high ferritin) | 5 (16.7) | 2 (33.3) | 1.36 | 0.77–2.38 |
Neonatal abnormal radiological findings (CXR GGO) | 2 (6.7) | 2 (33.3) | 1.28 | 0.85–1.92 |
Neonatal treatment of SARS-CoV-2 infection (IVIG) | 11 (36.7) | 4 (66.7) | 1.67 | 0.65–4.29 |
Neonatal treatment of SARS-CoV-2 infection (steroids) | 12 (40) | 3 (50) | 1.87 | 0.74–4.74 |
Neonatal treatment of SARS-CoV-2 infection (antibiotics) | 15 (50) | 5 (83.3) | 4.14 | 0.64–6.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhumaid, S.; Alabdulqader, M.; Al Alawi, Z.; Al Ghamdi, M.A.; Alabdulmuhsin, M.A.; Al Hassar, H.I.; Alsouaib, H.A.; Alhassan, H.A.; Al-Helal, H.; Almoraihel, S.A.; et al. Clinical Characteristics and Outcomes of SARS-CoV-2 Infection in Neonates with Persistent Pulmonary Hypertension of the Newborn (PPHN): A Systematic Review. Children 2024, 11, 1305. https://doi.org/10.3390/children11111305
Alhumaid S, Alabdulqader M, Al Alawi Z, Al Ghamdi MA, Alabdulmuhsin MA, Al Hassar HI, Alsouaib HA, Alhassan HA, Al-Helal H, Almoraihel SA, et al. Clinical Characteristics and Outcomes of SARS-CoV-2 Infection in Neonates with Persistent Pulmonary Hypertension of the Newborn (PPHN): A Systematic Review. Children. 2024; 11(11):1305. https://doi.org/10.3390/children11111305
Chicago/Turabian StyleAlhumaid, Saad, Muneera Alabdulqader, Zainab Al Alawi, Mohammed A. Al Ghamdi, Mohammed A Alabdulmuhsin, Hassan I Al Hassar, Hussain Ahmed Alsouaib, Hussain Ali Alhassan, Hassan Al-Helal, Sameer Ahmed Almoraihel, and et al. 2024. "Clinical Characteristics and Outcomes of SARS-CoV-2 Infection in Neonates with Persistent Pulmonary Hypertension of the Newborn (PPHN): A Systematic Review" Children 11, no. 11: 1305. https://doi.org/10.3390/children11111305
APA StyleAlhumaid, S., Alabdulqader, M., Al Alawi, Z., Al Ghamdi, M. A., Alabdulmuhsin, M. A., Al Hassar, H. I., Alsouaib, H. A., Alhassan, H. A., Al-Helal, H., Almoraihel, S. A., Alomran, M. J., AL-Tarfi, H. R., Al-Makinah, A. R., Alghareeb, T. T., Alkhwaitem, M. A., Alsuliman, M., Bukhamseen, A. N., Alajmi, K. K., Al Majhad, A. S., ... Alnaim, A. A. (2024). Clinical Characteristics and Outcomes of SARS-CoV-2 Infection in Neonates with Persistent Pulmonary Hypertension of the Newborn (PPHN): A Systematic Review. Children, 11(11), 1305. https://doi.org/10.3390/children11111305