Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loder, R.T.; Greenfield, M.L. Clinical characteristics of children with atypical and idiopathic slipped capital femoral epiphysis: Description of the age-weight test and implications for further diagnostic investigation. J. Pediatr. Orthop. 2001, 21, 481–487. [Google Scholar] [CrossRef]
- Whyte, N.; Sullivan, C. Slipped capital femoral epiphysis in atypical patients. Pediatr. Ann. 2016, 45, e128–e134. [Google Scholar] [CrossRef]
- Assi, C.; Mansour, J.; Kouyoumdjian, P.; Yammine, K. Valgus slipped capital femoral epiphysis: A systematic review. J. Pediatr. Orthop. B 2021, 30, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.S.; Weitzel, P.P.; Davidson, R.S. Valgus slipped capital femoral epiphysis: Fact or fiction? Clin. Orthop. 1996, 322, 91–98. [Google Scholar] [CrossRef]
- Gelink, A.; Cúneo, A.; Silveri, C.; Tiderius, C.J.; Loder, R.; von Heideken, J. Valgus slipped capital femoral epiphysis: Presentation, treatment, and clinical outcomes using patient-reported measurements. J. Pediatr. Orthop. B 2020, 30, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Loder, R.T.; Richards, B.S.; Shapiro, P.S.; Reznick, L.R.; Aronson, D.D. Acute slipped capital femoral epiphysis: The importance of physeal stability. J. Bone Jt. Surg. 1993, 75, 1134–1140. [Google Scholar] [CrossRef]
- Perry, D.C.; Metcalfe, D.; Costa, M.L.; Staa, T.V. A nationwide cohort study of slipped capital femoral epiphysis. Arch. Dis. Child. 2017, 102, 1132–1136. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Keggi, K.J.; Southwick, W.O. The incidence and distribution of slipped capital femoral epiphysis in Connecticut and southwestern United States. J. Bone Jt. Surg. 1970, 52, 1203–1216. [Google Scholar] [CrossRef]
- Lim, Y.-J.; Kagda, F.; Lam, K.S.; Hui, J.H.; Lim, K.B.; Mahadev, A.; Lee, E.H. Demographics and clinical presentation of slipped capital femoral epiphysis in Singapore: Comparing the East with the West. J. Pediatr. Orthop. B 2008, 17, 289–292. [Google Scholar] [CrossRef]
- Fedorak, G.T.; Brough, A.K.; Miyamoto, R.H.; Raney, E.M. The epidemiology of slipped capital femoral epiphysis in American Samoa. Hawaii J. Med. Public Health 2018, 77, 215–219. [Google Scholar]
- Herngren, B.; Stenmarker, M.; Vavruch, L.; Hagglund, G. Slipped capital femoral epiphysis: A population-based study. BMC Musculoskelet. Disord. 2017, 18, 304. [Google Scholar] [CrossRef] [PubMed]
- Jerre, R.; Karlsson, J.; Henrikson, B. The incidence of physiolysis of the hip. A population-based study of 175 patients. Acta Orthop. Scand. 1996, 67, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Loder, R.T. Coinvestigators from 33 centers and 6 continents. The demographics of slipped capital femoral epiphysis. An international multicenter study. Clin. Orthop. 1996, 322, 8–27. [Google Scholar] [CrossRef]
- Hägglund, G.; Hansson, L.I.; Ordeberg, G. Epidemiology of slipped capital femoral epiphysis in southern Sweden. Clin. Orthop. 1984, 191, 82–94. [Google Scholar] [CrossRef]
- Larson, A.N.; Yu, E.M.; Melton, L., III; Peterson, H.A.; Stans, A.A. Incidence of slipped capital femoral epiphysis: A population-based study. J. Pediatr. Orthop. B 2010, 19, 9–12. [Google Scholar] [CrossRef]
- Phadnis, J.; Phillps, P.; Willoughby, R. The epidemiologic characteristics of slipped capital femoral epiphysis in Maori children. J. Pediatr. Orthop. 2012, 32, 510–514. [Google Scholar] [CrossRef]
- Loder, R.T.; Skopelja, E.N. The epidemiology and demographics of slipped capital femoral epiphysis. ISRN Orthop. 2011, 2011, 486512. [Google Scholar] [CrossRef]
- Stott, S.; Bidwell, T. Epidemiology of slipped capital femoral epiphysis in a population with a high proportion of New Zealand Maori and Pacific children. N. Z. Med. J. 2003, 116, U647. [Google Scholar]
- Song, K.-S.; Oh, C.-W.; Lee, H.-J.; Kim, S.-D. Society, Multicenter Study Committee of the Korean Pediatric Orthopedic Society. Epidemiology and demographics of slipped capital femoral epiphysis in Korea: A multicenter study by the Korean Pediatric Orthopaedic Society. J. Pediatr. Orthop. 2009, 29, 683–686. [Google Scholar] [CrossRef]
- Southwick, W.O. Osteotomy through the lesser trochanter for slipped capital femoral epiphysis. J. Bone Jt. Surg. 1967, 49, 807–835. [Google Scholar] [CrossRef]
- Boyer, D.W.; Mickelson, M.R.; Ponseti, I.V. Slipped capital femoral epiphysis. Long-term follow-up of one hundred and twenty-one patients. J. Bone Jt. Surg. 1981, 63, 85–95. [Google Scholar] [CrossRef]
- Acheson, R.M. The Oxford method of assessing skeletal maturity. Clin. Orthop. 1957, 10, 19–39. [Google Scholar] [PubMed]
- Kalogrianitis, S.; Tan, C.K.; Kemp, G.J.; Bass, A.; Bruce, C. Does unstable slipped capital femoral epiphysis require urgent stabilization? J. Pediatr. Orthop. B 2007, 16, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Schoenecker, P.L.; Dobbs, M.B.; Luhmann, S.J.; Szymanski, D.A.; Gordon, J.E. Urgent reduction, fixation, and arthrotomy for unstable slipped capital femoral epiphysis. J. Pediatr. Orthop. 2009, 29, 687–694. [Google Scholar] [CrossRef]
- Palocaren, T.; Holmes, L.; Rogers, K.; Kumar, S.J. Outcome of in situ pinning in patients with unstable slipped capital femoral epiphysis: Assessment of risk factors associated with avascular necrosis. J. Pediatr. Orthop. 2010, 30, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Steele, M.; Narayanan, U.; Howard, A.; Alman, B.; Wright, J.G. Open reduction and internal fixation of unstable slipped capital femoral epiphysis by means of surgical dislocation does not decrease the rate of avascular necrosis: A preliminary study. J. Child. Orthop. 2012, 6, 277–283. [Google Scholar] [CrossRef]
- McPartland, T.G.; Sankar, W.N.; Kim, Y.-J.; Millis, M.B. Patients with unstable slipped capital femoral epiphysis have antecedent symptoms. Clin. Orthop. 2013, 471, 2132–2136. [Google Scholar] [CrossRef]
- Yngve, D.A.; Moulton, D.L.; Evans, E.B. Valgus slipped capital femoral epiphysis. J. Pediatr. Orthop. B 2005, 14, 172–176. [Google Scholar] [CrossRef]
- Loder, R.T.; O’Donnell, P.W.; Didelot, W.P.; Kayes, K.J. Valgus slipped capital femoral epiphysis. J. Pediatr. Orthop. 2006, 26, 594–600. [Google Scholar] [CrossRef]
- Shank, C.F.; Thiel, E.J.; Klingele, K.E. Valgus slipped capital femoral epiphysis: Prevalence, presentation, and treatment options. J. Pediatr. Orthop. 2010, 30, 140–146. [Google Scholar] [CrossRef]
- Koczewski, P. Valgus slipped capital femoral epiphyhsis: Subcapital growth plate orientation analysis. J. Pediatr. Orthop. B 2013, 22, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Kalhor, M.; Gharanizadeh, K.; Rego, P.; Leunig, M.; Ganz, R. Valgus slipped capital femoral epiphysis: Pathophysiology of motion and results of intracapsulare realignment. J. Orthop. Trauma 2018, 32S, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, P.; Iwinski, H.J.; Salava, J.; Oeffinger, D. Delay in the diagnosis of stable slipped capital femoral epiphysis. J. Pediatr. Orthop. 2017, 37, e19–e22. [Google Scholar] [CrossRef] [PubMed]
- Loder, R.T.; Starnes, T.; Dikos, G.; Aronsson, D.D. Demographic predictors of severity of stable slipped capital femoral epiphyses. J. Bone Jt. Surg. 2006, 88, 97–105. [Google Scholar] [CrossRef]
- Novais, E.N.; Maranho, D.A.; Kim, Y.-J.; Kiapour, A. Age- and sex-specific morphologic variations of capital femoral epiphysis growth in children and adolescents without hip disorders. Orthop. J. Sports Med. 2018, 6, 2325967118781579. [Google Scholar] [CrossRef]
- Popejoy, D.; Emara, K.; Birch, J. Prediction of contralateral slipped capital femoral epiphsys using the modified Oxford bone age score. J. Pediatr. Orthop. 2012, 32, 290–294. [Google Scholar] [CrossRef]
- Schur, M.D.; Andras, L.M.; Broom, A.M.; Barrett, K.K.; Bowman, C.A.; Luther, H.; Goldstein, R.Y.; Fletcher, N.D.; Millis, M.B.; Runner, R.; et al. Continuing delay in the diagnosis of slipped capital femoral epiphysis. J. Pediatr. 2016, 177, 250–254. [Google Scholar] [CrossRef]
- Kocher, M.S.; Bishop, J.A.; Weed, B.; Hresko, M.T.; Millis, M.B.; Kim, Y.J.; Kasser, J.R. Delay in diagnosis of slipped capital femoral epiphysis. Pediatrics 2004, 113, e322–e325. [Google Scholar] [CrossRef]
- Carney, B.T.; Weinstein, S.W.; Noble, J. Long-term follow-up of slipped capital femoral epiphysis. J. Bone Jt. Surg. 1991, 73, 667–674. [Google Scholar] [CrossRef]
- Matava, M.J.; Patton, C.M.; Luhmann, S.; Gordon, J.E.; Schoenecker, P.L. Knee pain as the initial symptom of slipped capital femoral epiphysis: An analysis of initial presentation and treatment. J. Pediatr. Orthop. 1999, 19, 455–460. [Google Scholar] [CrossRef]
- Ward, W.T.; Stefko, J.; Wood, K.B.; Stanitski, C.L. Fixation with a single screw for slipped capital femoral epiphysis. J. Bone Jt. Surg. 1992, 74, 799–809. [Google Scholar] [CrossRef]
- Aronson, D.D.; Carlson, W.E. Slipped capital femoral epiphysis: A prospective study of fixation with a single screw. J. Bone Jt. Surg. 1992, 74, 810–819. [Google Scholar] [CrossRef]
- Aronson, D.D.; Peterson, D.A.; Miller, D.V. Slipped capital femoral epiphysis: The case for internal fixation in situ. Clin. Orthop. 1992, 281, 115–122. [Google Scholar] [CrossRef]
- Örtegren, J.; Österman, J.; Tiderius, C.J. Patients’ delay is the major cause for late diagnosis of slipped capital femoral epiphysis. J. Pediatr. Orthop. B 2021, 30, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Obana, K.K.; Siddiqui, A.A.; Broom, A.M.; Barrett, K.; Andras, L.M.; Millis, M.B.; Goldstein, R.Y. Slipped capital femoral epiphysis in children without obesity. J. Pediatr. 2020, 218, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Danino, B.; Singh, S.; Shi, J.; Yang, J.; Samora, W.P.; Iobst, C.A.; Klingele, K.E. Probability analysis of sequential SCFE (PASS score). J. Child. Orthop. 2020, 14, 387–396. [Google Scholar] [CrossRef]
- Donnelly, M.R.; Layne, J.E.; Castañeda, P.G. Surgeon preference for prophylactic contralateral fixation in slipped capital femoral epiphysis (SCFE) patients: A nationwide POSNA study. J. Pediatr. Orthop. 2023, 43, 567–571. [Google Scholar] [CrossRef]
- Koenig, K.M.; Thomson, J.D.; Anderson, K.L.; Carney, B.T. Does skeletal maturity predict sequential contralateral involvement after fixation of slipped capital femoral epiphysis? J. Pediatr. Orthop. 2007, 27, 796–800. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Kwiatkowsk, M.; Czubak-Wrzosek, M.; Czubak, J.; Tyrakowski, M. Can we still use X-rays to predict contralateral slip in primary unilateral slipped capital femoral epiphysis? J. Pediatr. Orthop. B 2023, 32, 247–252. [Google Scholar] [CrossRef]
- Lindell, M.; Sköldberg, M.; Stenmarker, M.; Michno, P.; Herngren, B. The contralateral hip in slipped capital femoral epiphysis: Is there an easy-to-use algorithm to support a decision for prophylactic fixation? J. Child. Orthop. 2022, 16, 297–305. [Google Scholar] [CrossRef]
- Maranho, D.A.; Ferrer, M.G.; Kim, Y.-J.; Miller, P.E.; Novais, E.N. Predicting risk of contralateral slip in unilateral slipped capital femoral epiphysis. Posterior epiphyseal tilt increase and superior epiphyseal extension reduces risk. J. Bone Jt. Surg. 2019, 101, 209–217. [Google Scholar] [CrossRef]
- Nowicki, P.D.; Silva, S.; Toelle, L.; Strohmeyer, G.; Mahlquist, T.; Li, Y.; Farley, F.A.; Caird, M.S. Severity of asynchronous slipped capital femoral epiphysis in skeletally immature versus more skeletally mature patients. J. Pediatr. Orthop. 2017, 37, e23–e27. [Google Scholar] [CrossRef] [PubMed]
- Puylaert, D.; Dimeglio, A.; Bentahar, T. Staging puberty in slipped capital femoral epiphysis. Importance of the triradiate cartilage. J. Pediatr. Orthop. 2004, 24, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Riad, J.; Bajelidze, G.; Gabos, P.G. Bilateral slipped capital femoral epiphysis. Predictive factors for contralateral slip. J. Pediatr. Orthop. 2007, 27, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Swarup, I.; Goodbody, C.; Goto, R.; Sankar, W.N.; Fabricant, P.D. Risk factors for contralateral slipped capital femoral epiphysis: A meta-analysis of cohort and case-control studies. J. Pediatr. Orthop. 2020, 40, e446–e453. [Google Scholar] [CrossRef]
All | Stable Varus | Unstable Varus | Stable Valgus | p-Value $ | p-Value * | p-Value ^ | |
---|---|---|---|---|---|---|---|
Continuous variables | |||||||
All | 190 | 138 | 45 | 7 | - | - | - |
LESA (mean ± 1 sd) | 38 ± 20 | 35 ± 19 | 48 ± 18 | 25 ± 15 | 0.0002 | 0.0002 | 0.17 |
Age | |||||||
Mean ± 1 sd | 12.1 ± 1.7 | 12.3 ± 1.7 | 11.8 ± 1.8 | 11.0 ± 1.2 | 0.019 | 0.048 | 0.027 |
Median (range) | 12.0 (6.2–17.0) | 12.3 (6.8–16.4) | 11.7 (6.2–17.0) | 10.6 (9.5–13.0) | |||
Weight percentile | 94 ± 10 | 95 ± 9 | 94 ± 9 | 82 ± 18 | 0.018 | 0.081 | 0.014 |
Height percentile | 75 ± 26 | 76 ± 25 | 76 ± 24 | 64 ± 41 | 0.84 | 0.86 | 0.56 |
BMI percentile | 93 ± 15 | 93 ± 16 | 90 ± 11 | 94 ± 9 | 0.30 | 0.12 | 0.97 |
Symptom duration (mos) | 3.9 ± 5.0 | 4.5 ± 5.0 | 2.3 ± 5.0 | 4.1 ± 4.1 | 0.00005 | 0.000009 | 0.92 |
ADI national percentile | 72 ± 21 | 72 ± 20 | 71 ± 22 | 63 ± 31 | 0.74 | 0.67 | 0.47 |
Categorical variables | |||||||
Sex | |||||||
Female | 82 (43.2) | 55 (39.9) | 21 (47) | 6 (86) | 0.05 | 0.49 | 0.042 |
Male | 108 (56.8) | 83 (60.1) | 24 (53) | 1 (14) | |||
Race | |||||||
Non-white | 72 (38.3) | 54 (39.4) | 12 (27) | 6 (86) | 0.011 | 0.16 | 0.021 |
White | 116 (61.7) | 83 (60.6) | 32 (73) | 1 (14) | |||
Laterality | |||||||
Left | 103 (54.2) | 74 (53.6) | 25 (56) | 4 (57) | 0.96 | 0.86 | 1.00 |
Right | 87 (45.8) | 64 (46.4) | 20 (44) | 3 (43) | |||
Tri-radiate cartilage | |||||||
Closed | 61 (32.1) | 51 (37.0) | 8 (18) | 2 (29) | 0.082 | 0.018 | 0.87 |
Closing | 40 (21.1) | 30 (21.7) | 8 (18) | 2 (29) | |||
Open | 89 (46.8) | 57 (41.3) | 29 (64) | 3 (42) |
Open | Closing | Closed | p-Value $ | p-Value * | p-Value ^ | |
---|---|---|---|---|---|---|
89 | 40 | 61 | - | - | - | |
LESA (mean ± 1 sd) | 35 ± 21 | 33 ± 18 | 46 ± 17 | 0.0004 | 0.74 | 0.0007 |
Age | ||||||
Mean ± 1 sd | 11.4 ± 1.6 | 12.0 ± 1.5 | 13.3 ± 1.3 | <10−6 | 0.069 | <10−6 |
Median (range) | 11.5 (6.2–14.4) | 11.8 (8.3–15.0) | 13.2 (11.2–17.0) | |||
Weight percentile | 94 ± 9 | 94 ± 11 | 95 ± 11 | 0.89 | - | - |
Height percentile | 77 ± 26 | 75 ± 29 | 73 ± 25 | 0.42 | - | - |
BMI percentile | 93 ± 16 | 93 ± 14 | 92 ± 16 | 0.73 | - | - |
Symptom duration (mos) | 1.8 ± 2.4 | 2.6 ± 2.4 | 7.7 ± 6.7 | <10−6 | 0.006 | <10−6 |
ADI national percentile | 73 ± 20 | 66 ± 26 | 73 ± 17 | 0.47 | - | - |
Sex | ||||||
Female | 34 (38) | 22 (55) | 26 (43) | 0.20 | - | - |
Male | 55 (62) | 18 (45) | 35 (57) | |||
Race | ||||||
Non-white | 29 (33) | 14 (35) | 29 | 0.19 | - | - |
White | 58 (67) | 26 (65) | 32 | |||
Laterality | ||||||
Left | 56 (63) | 21 (53) | 26 (43) | 0.048 | 0.33 | 0.019 |
Right | 33 (37) | 19 (47) | 35 (57) |
Open | Closing | Closed | p-Value $ | p-Value * | p-Value ^ | |
---|---|---|---|---|---|---|
57 | 30 | 51 | - | - | - | |
LESA (mean ± 1 sd) | 28 ± 19 | 28 ± 16 | 46 ± 17 | <10−6 | 0.94 | <10−6 |
Age | ||||||
Mean ± 1 sd | 11.5 ± 1.6 | 12.0 ± 1.6 | 13.3 ± 1.3 | <10−6 | 0.62 | 0.01 |
Median (range) | 11.5 (6.8–14.4) | 11.8 (8.3–15.0) | 13.3 (11.2–16.4) | |||
Weight percentile | 96 ± 7 | 95 ± 11 | 95 ± 10 | 0.91 | - | - |
Height percentile | 78 ± 26 | 78 ± 28 | 72 ± 22 | 0.15 | - | - |
BMI percentile | 93 ± 17 | 94 ± 15 | 93 ± 16 | 0.57 | - | - |
Symptom duration (mos) | 2.3 ± 2.8 | 2.8 ± 2.6 | 7.8 ± 6.1 | <10−6 | 0.76 | <10−6 |
ADI national percentile | 74 ± 20 | 69 ± 24 | 73 ± 16 | 0.83 | - | - |
Sex | ||||||
Female | 18 (32) | 17 (57) | 29 (48) | 0.075 | - | - |
Male | 39 (68) | 13 (43) | 31 (52) | |||
Race | ||||||
Non-white | 19 (37) | 10 (33) | 25 (49) | 0.21 | - | - |
White | 37 (63) | 20 (67) | 26 (51) | |||
Laterality | ||||||
Left | 38 (67) | 14 (47) | 22 (43) | 0.034 | 0.33 | 0.019 |
Right | 19 (33) | 16 (53) | 29 (57) |
Author | Year | Overall Number in the Study | Number of Appropriate Patients within the Subgroup & | Average Age (Years) | Average LESA * | Symptom Duration (Months) | Boys | Girls | %Girls |
---|---|---|---|---|---|---|---|---|---|
Unstable SCFEs | |||||||||
Loder [6] | 1993 | NA | 30 | 12 | 51 | NA | 14 | 16 | 53.3 |
Kalogrianitis [23] | 2007 | 82 | 16 | 12.3 | NA | NA | 9 | 7 | 43.8 |
Chen [24] | 2009 | NA | 23 | 11.9 | NA | 1.0 | 16 | 7 | 30.4 |
Palocaren [25] | 2010 | 280 | 27 | 12.2 | 51 | NA | 19 | 8 | 29.6 |
Alves [26] | 2012 | 189 | 12 | 12.2 | 33 | NA | 6 | 6 | 50.0 |
McPartland [27] | 2013 | 582 | 82 | 12.5 | NA | 1.4 | 41 | 41 | 50.0 |
Weighted average | 1133 | 190 | 12.3 | 48 | 105 | 85 | 44.7 | ||
Valgus SCFEs | |||||||||
Yngve [28] | 2005 | NA | 7 | 14.1 | 34 | NA | 3 | 4 | 57.1 |
Loder [29] | 2006 | 105 | 4 | 11.7 | 14 | 13.0 | 2 | 2 | 50.0 |
Shank [30] | 2010 | 258 | 12 | 11.6 | 30 | 1.8 | 5 | 7 | 58.3 |
Koczewski [31] | 2013 | 115 | 11 | 11.1 | 23 | 2.7 | 5 | 6 | 54.5 |
Kalhor [32] | 2018 | NA | 6 | 13.8 | 21 | NA | 3 | 3 | 50.0 |
Gelink [5] | 2020 | NA | 8 | 11.9 | 28 | 2 | 6 | 75.0 | |
Weighted average | 48 | 12.2 | 26 | 20 | 28 | 58.3 | |||
Loder [13] | 1996 | 1630 | 1363 | 12.9 | NA | 4.8 | 812 | 551 | 40.4 |
Stable SCFEs | |||||||||
Hosseinzadeh [33] | 2017 | NA | 149 | 11.8 | NA | 5.2 | 89 | 60 | 40.3 |
Loder ^ [34] | 2006 | NA | 243 | 12.6 | 29 | 5.2 | 159 | 84 | 34.6 |
Weighted average | 12.8 | 29 | 1060 | 695 | 39.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loder, R.T.; Gunderson, Z.; Sun, S. Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types. Children 2023, 10, 1557. https://doi.org/10.3390/children10091557
Loder RT, Gunderson Z, Sun S. Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types. Children. 2023; 10(9):1557. https://doi.org/10.3390/children10091557
Chicago/Turabian StyleLoder, Randall T., Zachary Gunderson, and Seungyup Sun. 2023. "Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types" Children 10, no. 9: 1557. https://doi.org/10.3390/children10091557
APA StyleLoder, R. T., Gunderson, Z., & Sun, S. (2023). Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types. Children, 10(9), 1557. https://doi.org/10.3390/children10091557