Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loder, R.T.; Greenfield, M.L. Clinical characteristics of children with atypical and idiopathic slipped capital femoral epiphysis: Description of the age-weight test and implications for further diagnostic investigation. J. Pediatr. Orthop. 2001, 21, 481–487. [Google Scholar] [CrossRef]
- Whyte, N.; Sullivan, C. Slipped capital femoral epiphysis in atypical patients. Pediatr. Ann. 2016, 45, e128–e134. [Google Scholar] [CrossRef]
- Assi, C.; Mansour, J.; Kouyoumdjian, P.; Yammine, K. Valgus slipped capital femoral epiphysis: A systematic review. J. Pediatr. Orthop. B 2021, 30, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.S.; Weitzel, P.P.; Davidson, R.S. Valgus slipped capital femoral epiphysis: Fact or fiction? Clin. Orthop. 1996, 322, 91–98. [Google Scholar] [CrossRef]
- Gelink, A.; Cúneo, A.; Silveri, C.; Tiderius, C.J.; Loder, R.; von Heideken, J. Valgus slipped capital femoral epiphysis: Presentation, treatment, and clinical outcomes using patient-reported measurements. J. Pediatr. Orthop. B 2020, 30, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Loder, R.T.; Richards, B.S.; Shapiro, P.S.; Reznick, L.R.; Aronson, D.D. Acute slipped capital femoral epiphysis: The importance of physeal stability. J. Bone Jt. Surg. 1993, 75, 1134–1140. [Google Scholar] [CrossRef]
- Perry, D.C.; Metcalfe, D.; Costa, M.L.; Staa, T.V. A nationwide cohort study of slipped capital femoral epiphysis. Arch. Dis. Child. 2017, 102, 1132–1136. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Keggi, K.J.; Southwick, W.O. The incidence and distribution of slipped capital femoral epiphysis in Connecticut and southwestern United States. J. Bone Jt. Surg. 1970, 52, 1203–1216. [Google Scholar] [CrossRef]
- Lim, Y.-J.; Kagda, F.; Lam, K.S.; Hui, J.H.; Lim, K.B.; Mahadev, A.; Lee, E.H. Demographics and clinical presentation of slipped capital femoral epiphysis in Singapore: Comparing the East with the West. J. Pediatr. Orthop. B 2008, 17, 289–292. [Google Scholar] [CrossRef]
- Fedorak, G.T.; Brough, A.K.; Miyamoto, R.H.; Raney, E.M. The epidemiology of slipped capital femoral epiphysis in American Samoa. Hawaii J. Med. Public Health 2018, 77, 215–219. [Google Scholar]
- Herngren, B.; Stenmarker, M.; Vavruch, L.; Hagglund, G. Slipped capital femoral epiphysis: A population-based study. BMC Musculoskelet. Disord. 2017, 18, 304. [Google Scholar] [CrossRef] [PubMed]
- Jerre, R.; Karlsson, J.; Henrikson, B. The incidence of physiolysis of the hip. A population-based study of 175 patients. Acta Orthop. Scand. 1996, 67, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Loder, R.T. Coinvestigators from 33 centers and 6 continents. The demographics of slipped capital femoral epiphysis. An international multicenter study. Clin. Orthop. 1996, 322, 8–27. [Google Scholar] [CrossRef]
- Hägglund, G.; Hansson, L.I.; Ordeberg, G. Epidemiology of slipped capital femoral epiphysis in southern Sweden. Clin. Orthop. 1984, 191, 82–94. [Google Scholar] [CrossRef]
- Larson, A.N.; Yu, E.M.; Melton, L., III; Peterson, H.A.; Stans, A.A. Incidence of slipped capital femoral epiphysis: A population-based study. J. Pediatr. Orthop. B 2010, 19, 9–12. [Google Scholar] [CrossRef]
- Phadnis, J.; Phillps, P.; Willoughby, R. The epidemiologic characteristics of slipped capital femoral epiphysis in Maori children. J. Pediatr. Orthop. 2012, 32, 510–514. [Google Scholar] [CrossRef]
- Loder, R.T.; Skopelja, E.N. The epidemiology and demographics of slipped capital femoral epiphysis. ISRN Orthop. 2011, 2011, 486512. [Google Scholar] [CrossRef]
- Stott, S.; Bidwell, T. Epidemiology of slipped capital femoral epiphysis in a population with a high proportion of New Zealand Maori and Pacific children. N. Z. Med. J. 2003, 116, U647. [Google Scholar]
- Song, K.-S.; Oh, C.-W.; Lee, H.-J.; Kim, S.-D. Society, Multicenter Study Committee of the Korean Pediatric Orthopedic Society. Epidemiology and demographics of slipped capital femoral epiphysis in Korea: A multicenter study by the Korean Pediatric Orthopaedic Society. J. Pediatr. Orthop. 2009, 29, 683–686. [Google Scholar] [CrossRef]
- Southwick, W.O. Osteotomy through the lesser trochanter for slipped capital femoral epiphysis. J. Bone Jt. Surg. 1967, 49, 807–835. [Google Scholar] [CrossRef]
- Boyer, D.W.; Mickelson, M.R.; Ponseti, I.V. Slipped capital femoral epiphysis. Long-term follow-up of one hundred and twenty-one patients. J. Bone Jt. Surg. 1981, 63, 85–95. [Google Scholar] [CrossRef]
- Acheson, R.M. The Oxford method of assessing skeletal maturity. Clin. Orthop. 1957, 10, 19–39. [Google Scholar] [PubMed]
- Kalogrianitis, S.; Tan, C.K.; Kemp, G.J.; Bass, A.; Bruce, C. Does unstable slipped capital femoral epiphysis require urgent stabilization? J. Pediatr. Orthop. B 2007, 16, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Schoenecker, P.L.; Dobbs, M.B.; Luhmann, S.J.; Szymanski, D.A.; Gordon, J.E. Urgent reduction, fixation, and arthrotomy for unstable slipped capital femoral epiphysis. J. Pediatr. Orthop. 2009, 29, 687–694. [Google Scholar] [CrossRef]
- Palocaren, T.; Holmes, L.; Rogers, K.; Kumar, S.J. Outcome of in situ pinning in patients with unstable slipped capital femoral epiphysis: Assessment of risk factors associated with avascular necrosis. J. Pediatr. Orthop. 2010, 30, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Steele, M.; Narayanan, U.; Howard, A.; Alman, B.; Wright, J.G. Open reduction and internal fixation of unstable slipped capital femoral epiphysis by means of surgical dislocation does not decrease the rate of avascular necrosis: A preliminary study. J. Child. Orthop. 2012, 6, 277–283. [Google Scholar] [CrossRef]
- McPartland, T.G.; Sankar, W.N.; Kim, Y.-J.; Millis, M.B. Patients with unstable slipped capital femoral epiphysis have antecedent symptoms. Clin. Orthop. 2013, 471, 2132–2136. [Google Scholar] [CrossRef][Green Version]
- Yngve, D.A.; Moulton, D.L.; Evans, E.B. Valgus slipped capital femoral epiphysis. J. Pediatr. Orthop. B 2005, 14, 172–176. [Google Scholar] [CrossRef]
- Loder, R.T.; O’Donnell, P.W.; Didelot, W.P.; Kayes, K.J. Valgus slipped capital femoral epiphysis. J. Pediatr. Orthop. 2006, 26, 594–600. [Google Scholar] [CrossRef]
- Shank, C.F.; Thiel, E.J.; Klingele, K.E. Valgus slipped capital femoral epiphysis: Prevalence, presentation, and treatment options. J. Pediatr. Orthop. 2010, 30, 140–146. [Google Scholar] [CrossRef]
- Koczewski, P. Valgus slipped capital femoral epiphyhsis: Subcapital growth plate orientation analysis. J. Pediatr. Orthop. B 2013, 22, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Kalhor, M.; Gharanizadeh, K.; Rego, P.; Leunig, M.; Ganz, R. Valgus slipped capital femoral epiphysis: Pathophysiology of motion and results of intracapsulare realignment. J. Orthop. Trauma 2018, 32S, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, P.; Iwinski, H.J.; Salava, J.; Oeffinger, D. Delay in the diagnosis of stable slipped capital femoral epiphysis. J. Pediatr. Orthop. 2017, 37, e19–e22. [Google Scholar] [CrossRef] [PubMed]
- Loder, R.T.; Starnes, T.; Dikos, G.; Aronsson, D.D. Demographic predictors of severity of stable slipped capital femoral epiphyses. J. Bone Jt. Surg. 2006, 88, 97–105. [Google Scholar] [CrossRef]
- Novais, E.N.; Maranho, D.A.; Kim, Y.-J.; Kiapour, A. Age- and sex-specific morphologic variations of capital femoral epiphysis growth in children and adolescents without hip disorders. Orthop. J. Sports Med. 2018, 6, 2325967118781579. [Google Scholar] [CrossRef]
- Popejoy, D.; Emara, K.; Birch, J. Prediction of contralateral slipped capital femoral epiphsys using the modified Oxford bone age score. J. Pediatr. Orthop. 2012, 32, 290–294. [Google Scholar] [CrossRef]
- Schur, M.D.; Andras, L.M.; Broom, A.M.; Barrett, K.K.; Bowman, C.A.; Luther, H.; Goldstein, R.Y.; Fletcher, N.D.; Millis, M.B.; Runner, R.; et al. Continuing delay in the diagnosis of slipped capital femoral epiphysis. J. Pediatr. 2016, 177, 250–254. [Google Scholar] [CrossRef]
- Kocher, M.S.; Bishop, J.A.; Weed, B.; Hresko, M.T.; Millis, M.B.; Kim, Y.J.; Kasser, J.R. Delay in diagnosis of slipped capital femoral epiphysis. Pediatrics 2004, 113, e322–e325. [Google Scholar] [CrossRef]
- Carney, B.T.; Weinstein, S.W.; Noble, J. Long-term follow-up of slipped capital femoral epiphysis. J. Bone Jt. Surg. 1991, 73, 667–674. [Google Scholar] [CrossRef]
- Matava, M.J.; Patton, C.M.; Luhmann, S.; Gordon, J.E.; Schoenecker, P.L. Knee pain as the initial symptom of slipped capital femoral epiphysis: An analysis of initial presentation and treatment. J. Pediatr. Orthop. 1999, 19, 455–460. [Google Scholar] [CrossRef]
- Ward, W.T.; Stefko, J.; Wood, K.B.; Stanitski, C.L. Fixation with a single screw for slipped capital femoral epiphysis. J. Bone Jt. Surg. 1992, 74, 799–809. [Google Scholar] [CrossRef]
- Aronson, D.D.; Carlson, W.E. Slipped capital femoral epiphysis: A prospective study of fixation with a single screw. J. Bone Jt. Surg. 1992, 74, 810–819. [Google Scholar] [CrossRef]
- Aronson, D.D.; Peterson, D.A.; Miller, D.V. Slipped capital femoral epiphysis: The case for internal fixation in situ. Clin. Orthop. 1992, 281, 115–122. [Google Scholar] [CrossRef]
- Örtegren, J.; Österman, J.; Tiderius, C.J. Patients’ delay is the major cause for late diagnosis of slipped capital femoral epiphysis. J. Pediatr. Orthop. B 2021, 30, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Obana, K.K.; Siddiqui, A.A.; Broom, A.M.; Barrett, K.; Andras, L.M.; Millis, M.B.; Goldstein, R.Y. Slipped capital femoral epiphysis in children without obesity. J. Pediatr. 2020, 218, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Danino, B.; Singh, S.; Shi, J.; Yang, J.; Samora, W.P.; Iobst, C.A.; Klingele, K.E. Probability analysis of sequential SCFE (PASS score). J. Child. Orthop. 2020, 14, 387–396. [Google Scholar] [CrossRef]
- Donnelly, M.R.; Layne, J.E.; Castañeda, P.G. Surgeon preference for prophylactic contralateral fixation in slipped capital femoral epiphysis (SCFE) patients: A nationwide POSNA study. J. Pediatr. Orthop. 2023, 43, 567–571. [Google Scholar] [CrossRef]
- Koenig, K.M.; Thomson, J.D.; Anderson, K.L.; Carney, B.T. Does skeletal maturity predict sequential contralateral involvement after fixation of slipped capital femoral epiphysis? J. Pediatr. Orthop. 2007, 27, 796–800. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Kwiatkowsk, M.; Czubak-Wrzosek, M.; Czubak, J.; Tyrakowski, M. Can we still use X-rays to predict contralateral slip in primary unilateral slipped capital femoral epiphysis? J. Pediatr. Orthop. B 2023, 32, 247–252. [Google Scholar] [CrossRef]
- Lindell, M.; Sköldberg, M.; Stenmarker, M.; Michno, P.; Herngren, B. The contralateral hip in slipped capital femoral epiphysis: Is there an easy-to-use algorithm to support a decision for prophylactic fixation? J. Child. Orthop. 2022, 16, 297–305. [Google Scholar] [CrossRef]
- Maranho, D.A.; Ferrer, M.G.; Kim, Y.-J.; Miller, P.E.; Novais, E.N. Predicting risk of contralateral slip in unilateral slipped capital femoral epiphysis. Posterior epiphyseal tilt increase and superior epiphyseal extension reduces risk. J. Bone Jt. Surg. 2019, 101, 209–217. [Google Scholar] [CrossRef]
- Nowicki, P.D.; Silva, S.; Toelle, L.; Strohmeyer, G.; Mahlquist, T.; Li, Y.; Farley, F.A.; Caird, M.S. Severity of asynchronous slipped capital femoral epiphysis in skeletally immature versus more skeletally mature patients. J. Pediatr. Orthop. 2017, 37, e23–e27. [Google Scholar] [CrossRef] [PubMed]
- Puylaert, D.; Dimeglio, A.; Bentahar, T. Staging puberty in slipped capital femoral epiphysis. Importance of the triradiate cartilage. J. Pediatr. Orthop. 2004, 24, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Riad, J.; Bajelidze, G.; Gabos, P.G. Bilateral slipped capital femoral epiphysis. Predictive factors for contralateral slip. J. Pediatr. Orthop. 2007, 27, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Swarup, I.; Goodbody, C.; Goto, R.; Sankar, W.N.; Fabricant, P.D. Risk factors for contralateral slipped capital femoral epiphysis: A meta-analysis of cohort and case-control studies. J. Pediatr. Orthop. 2020, 40, e446–e453. [Google Scholar] [CrossRef]
All | Stable Varus | Unstable Varus | Stable Valgus | p-Value $ | p-Value * | p-Value ^ | |
---|---|---|---|---|---|---|---|
Continuous variables | |||||||
All | 190 | 138 | 45 | 7 | - | - | - |
LESA (mean ± 1 sd) | 38 ± 20 | 35 ± 19 | 48 ± 18 | 25 ± 15 | 0.0002 | 0.0002 | 0.17 |
Age | |||||||
Mean ± 1 sd | 12.1 ± 1.7 | 12.3 ± 1.7 | 11.8 ± 1.8 | 11.0 ± 1.2 | 0.019 | 0.048 | 0.027 |
Median (range) | 12.0 (6.2–17.0) | 12.3 (6.8–16.4) | 11.7 (6.2–17.0) | 10.6 (9.5–13.0) | |||
Weight percentile | 94 ± 10 | 95 ± 9 | 94 ± 9 | 82 ± 18 | 0.018 | 0.081 | 0.014 |
Height percentile | 75 ± 26 | 76 ± 25 | 76 ± 24 | 64 ± 41 | 0.84 | 0.86 | 0.56 |
BMI percentile | 93 ± 15 | 93 ± 16 | 90 ± 11 | 94 ± 9 | 0.30 | 0.12 | 0.97 |
Symptom duration (mos) | 3.9 ± 5.0 | 4.5 ± 5.0 | 2.3 ± 5.0 | 4.1 ± 4.1 | 0.00005 | 0.000009 | 0.92 |
ADI national percentile | 72 ± 21 | 72 ± 20 | 71 ± 22 | 63 ± 31 | 0.74 | 0.67 | 0.47 |
Categorical variables | |||||||
Sex | |||||||
Female | 82 (43.2) | 55 (39.9) | 21 (47) | 6 (86) | 0.05 | 0.49 | 0.042 |
Male | 108 (56.8) | 83 (60.1) | 24 (53) | 1 (14) | |||
Race | |||||||
Non-white | 72 (38.3) | 54 (39.4) | 12 (27) | 6 (86) | 0.011 | 0.16 | 0.021 |
White | 116 (61.7) | 83 (60.6) | 32 (73) | 1 (14) | |||
Laterality | |||||||
Left | 103 (54.2) | 74 (53.6) | 25 (56) | 4 (57) | 0.96 | 0.86 | 1.00 |
Right | 87 (45.8) | 64 (46.4) | 20 (44) | 3 (43) | |||
Tri-radiate cartilage | |||||||
Closed | 61 (32.1) | 51 (37.0) | 8 (18) | 2 (29) | 0.082 | 0.018 | 0.87 |
Closing | 40 (21.1) | 30 (21.7) | 8 (18) | 2 (29) | |||
Open | 89 (46.8) | 57 (41.3) | 29 (64) | 3 (42) |
Open | Closing | Closed | p-Value $ | p-Value * | p-Value ^ | |
---|---|---|---|---|---|---|
89 | 40 | 61 | - | - | - | |
LESA (mean ± 1 sd) | 35 ± 21 | 33 ± 18 | 46 ± 17 | 0.0004 | 0.74 | 0.0007 |
Age | ||||||
Mean ± 1 sd | 11.4 ± 1.6 | 12.0 ± 1.5 | 13.3 ± 1.3 | <10−6 | 0.069 | <10−6 |
Median (range) | 11.5 (6.2–14.4) | 11.8 (8.3–15.0) | 13.2 (11.2–17.0) | |||
Weight percentile | 94 ± 9 | 94 ± 11 | 95 ± 11 | 0.89 | - | - |
Height percentile | 77 ± 26 | 75 ± 29 | 73 ± 25 | 0.42 | - | - |
BMI percentile | 93 ± 16 | 93 ± 14 | 92 ± 16 | 0.73 | - | - |
Symptom duration (mos) | 1.8 ± 2.4 | 2.6 ± 2.4 | 7.7 ± 6.7 | <10−6 | 0.006 | <10−6 |
ADI national percentile | 73 ± 20 | 66 ± 26 | 73 ± 17 | 0.47 | - | - |
Sex | ||||||
Female | 34 (38) | 22 (55) | 26 (43) | 0.20 | - | - |
Male | 55 (62) | 18 (45) | 35 (57) | |||
Race | ||||||
Non-white | 29 (33) | 14 (35) | 29 | 0.19 | - | - |
White | 58 (67) | 26 (65) | 32 | |||
Laterality | ||||||
Left | 56 (63) | 21 (53) | 26 (43) | 0.048 | 0.33 | 0.019 |
Right | 33 (37) | 19 (47) | 35 (57) |
Open | Closing | Closed | p-Value $ | p-Value * | p-Value ^ | |
---|---|---|---|---|---|---|
57 | 30 | 51 | - | - | - | |
LESA (mean ± 1 sd) | 28 ± 19 | 28 ± 16 | 46 ± 17 | <10−6 | 0.94 | <10−6 |
Age | ||||||
Mean ± 1 sd | 11.5 ± 1.6 | 12.0 ± 1.6 | 13.3 ± 1.3 | <10−6 | 0.62 | 0.01 |
Median (range) | 11.5 (6.8–14.4) | 11.8 (8.3–15.0) | 13.3 (11.2–16.4) | |||
Weight percentile | 96 ± 7 | 95 ± 11 | 95 ± 10 | 0.91 | - | - |
Height percentile | 78 ± 26 | 78 ± 28 | 72 ± 22 | 0.15 | - | - |
BMI percentile | 93 ± 17 | 94 ± 15 | 93 ± 16 | 0.57 | - | - |
Symptom duration (mos) | 2.3 ± 2.8 | 2.8 ± 2.6 | 7.8 ± 6.1 | <10−6 | 0.76 | <10−6 |
ADI national percentile | 74 ± 20 | 69 ± 24 | 73 ± 16 | 0.83 | - | - |
Sex | ||||||
Female | 18 (32) | 17 (57) | 29 (48) | 0.075 | - | - |
Male | 39 (68) | 13 (43) | 31 (52) | |||
Race | ||||||
Non-white | 19 (37) | 10 (33) | 25 (49) | 0.21 | - | - |
White | 37 (63) | 20 (67) | 26 (51) | |||
Laterality | ||||||
Left | 38 (67) | 14 (47) | 22 (43) | 0.034 | 0.33 | 0.019 |
Right | 19 (33) | 16 (53) | 29 (57) |
Author | Year | Overall Number in the Study | Number of Appropriate Patients within the Subgroup & | Average Age (Years) | Average LESA * | Symptom Duration (Months) | Boys | Girls | %Girls |
---|---|---|---|---|---|---|---|---|---|
Unstable SCFEs | |||||||||
Loder [6] | 1993 | NA | 30 | 12 | 51 | NA | 14 | 16 | 53.3 |
Kalogrianitis [23] | 2007 | 82 | 16 | 12.3 | NA | NA | 9 | 7 | 43.8 |
Chen [24] | 2009 | NA | 23 | 11.9 | NA | 1.0 | 16 | 7 | 30.4 |
Palocaren [25] | 2010 | 280 | 27 | 12.2 | 51 | NA | 19 | 8 | 29.6 |
Alves [26] | 2012 | 189 | 12 | 12.2 | 33 | NA | 6 | 6 | 50.0 |
McPartland [27] | 2013 | 582 | 82 | 12.5 | NA | 1.4 | 41 | 41 | 50.0 |
Weighted average | 1133 | 190 | 12.3 | 48 | 105 | 85 | 44.7 | ||
Valgus SCFEs | |||||||||
Yngve [28] | 2005 | NA | 7 | 14.1 | 34 | NA | 3 | 4 | 57.1 |
Loder [29] | 2006 | 105 | 4 | 11.7 | 14 | 13.0 | 2 | 2 | 50.0 |
Shank [30] | 2010 | 258 | 12 | 11.6 | 30 | 1.8 | 5 | 7 | 58.3 |
Koczewski [31] | 2013 | 115 | 11 | 11.1 | 23 | 2.7 | 5 | 6 | 54.5 |
Kalhor [32] | 2018 | NA | 6 | 13.8 | 21 | NA | 3 | 3 | 50.0 |
Gelink [5] | 2020 | NA | 8 | 11.9 | 28 | 2 | 6 | 75.0 | |
Weighted average | 48 | 12.2 | 26 | 20 | 28 | 58.3 | |||
Loder [13] | 1996 | 1630 | 1363 | 12.9 | NA | 4.8 | 812 | 551 | 40.4 |
Stable SCFEs | |||||||||
Hosseinzadeh [33] | 2017 | NA | 149 | 11.8 | NA | 5.2 | 89 | 60 | 40.3 |
Loder ^ [34] | 2006 | NA | 243 | 12.6 | 29 | 5.2 | 159 | 84 | 34.6 |
Weighted average | 12.8 | 29 | 1060 | 695 | 39.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loder, R.T.; Gunderson, Z.; Sun, S. Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types. Children 2023, 10, 1557. https://doi.org/10.3390/children10091557
Loder RT, Gunderson Z, Sun S. Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types. Children. 2023; 10(9):1557. https://doi.org/10.3390/children10091557
Chicago/Turabian StyleLoder, Randall T., Zachary Gunderson, and Seungyup Sun. 2023. "Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types" Children 10, no. 9: 1557. https://doi.org/10.3390/children10091557
APA StyleLoder, R. T., Gunderson, Z., & Sun, S. (2023). Idiopathic Slipped Capital Femoral Epiphysis: Demographic Differences and Similarities between Stable, Unstable, and Valgus Types. Children, 10(9), 1557. https://doi.org/10.3390/children10091557