Impact of Protein Binding Capacity and Daily Dosage of a Drug on Total Serum Bilirubin Levels in Susceptible Infants
Abstract
1. Introduction
2. Bilirubin and Its Binding with Albumin
3. Phototherapy and Free Versus Total Bilirubin
4. Impact of Protein Binding Capacity and Daily Dosage of a Drug
5. Susceptible Groups: Premature or Very Low Birth Weight (VLBW) Infants
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falcão, A.S.; Silva, R.F.M.; Vaz, A.R.; Silva, S.L.; Fernandes, A.; Brites, D. Cross-talk between neurons and astrocytes in response to bilirubin: Early beneficial effects. Neurochem. Res. 2013, 38, 644–659. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, P.; Kelley, D. Hyperbilirubinemia in pediatrics: Evaluation and care. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100842. [Google Scholar] [CrossRef] [PubMed]
- Dennery, P.A.; Seidman, D.S.; Stevenson, D.K. Neonatal hyperbilirubinemia. N. Engl. J. Med. 2001, 344, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, G.; Francie, J.; Roeslani, R.D.; Saldi, S.R.F.; Oswari, H. Role of ursodeoxycholic acid in neonatal indirect hyperbilirubinemia: A systematic review and meta-analysis of randomized controlled trials. Ital. J. Pediatr. 2022, 48, 179. [Google Scholar] [CrossRef]
- Bockor, L.; Bortolussi, G.; Vodret, S.; Iaconcig, A.; Jašprová, J.; Zelenka, J.; Vitek, L.; Tiribelli, C.; Muro, A.F. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia. Hum. Mol. Genet. 2017, 26, 145–157. [Google Scholar] [CrossRef][Green Version]
- Kuitunen, I.; Kiviranta, P.; Sankilampi, U.; Renko, M. Ursodeoxycholic acid as adjuvant treatment to phototherapy for neonatal hyperbilirubinemia: A systematic review and meta-analysis. World J. Pediatr. WJP 2022, 18, 589–597. [Google Scholar] [CrossRef]
- Evans, D. Neonatal jaundice. BMJ Clin. Evid. 2007, 2007, 0319. [Google Scholar]
- Yang, L.; Wu, D.; Wang, B.; Bu, X.; Tang, J. The influence of zinc sulfate on neonatal jaundice: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obs. 2018, 31, 1311–1317. [Google Scholar] [CrossRef]
- Olusanya, B.O.; Kaplan, M.; Hansen, T.W.R. Neonatal hyperbilirubinaemia: A global perspective. Lancet. Child Adolesc. Health 2018, 2, 610–620. [Google Scholar] [CrossRef][Green Version]
- Hulzebos, C.V.; Vitek, L.; Coda Zabetta, C.D.; Dvořák, A.; Schenk, P.; van der Hagen, E.A.E.; Cobbaert, C.; Tiribelli, C. Diagnostic methods for neonatal hyperbilirubinemia: Benefits, limitations, requirements, and novel developments. Pediatr. Res. 2021, 90, 277–283. [Google Scholar] [CrossRef]
- Rubaltelli, F.F. Current drug treatment options in neonatal hyperbilirubinaemia and the prevention of kernicterus. Drugs 1998, 56, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Ma, X.; Shen, X.; Bao, Y.; Chen, L.; Bhutani, V.K. Neonatal hyperbilirubinemia management: Clinical assessment of bilirubin production. Semin. Perinatol. 2021, 45, 151351. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.C.; Stevenson, D.K. Advances in the diagnosis and treatment of neonatal hyperbilirubinemia. Clin. Perinatol. 1995, 22, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, M.; Bertino, G.; Zocco, M.; Vecchio, I.; Raffaele, R.; Trifiletti, R.R.; Pavone, P. Incidence and causes of neonatal hyperbilirubinemia in a center of Catania. Ther. Clin. Risk Manag. 2009, 5, 247–250. [Google Scholar] [CrossRef][Green Version]
- Qattea, I.; Farghaly, M.A.A.; Elgendy, M.; Mohamed, M.A.; Aly, H. Neonatal hyperbilirubinemia and bilirubin neurotoxicity in hospitalized neonates: Analysis of the US Database. Pediatr. Res. 2022, 91, 1662–1668. [Google Scholar] [CrossRef]
- Gidi, N.W.; Siebeck, M. Neonatal Hyperbilirubinemia treatment by Locally Made Low-Cost Phototherapy Units. Ethiop. J. Health Sci. 2021, 31, 55–62. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Tang, X.; Wang, T. Association between G6PD deficiency and hyperbilirubinemia in neonates: A meta-analysis. Pediatr. Hematol. Oncol. 2015, 32, 92–98. [Google Scholar] [CrossRef]
- Aynalem, Y.A.; Mulu, G.B.; Akalu, T.Y.; Shiferaw, W.S. Prevalence of neonatal hyperbilirubinaemia and its association with glucose-6-phosphate dehydrogenase deficiency and blood-type incompatibility in sub-Saharan Africa: A systematic review and meta-analysis. BMJ Paediatr. Open 2020, 4, e000750. [Google Scholar] [CrossRef]
- Watchko, J.F. Refractory Causes of Kernicterus in Developed Countries: Can We Eradicate G6PD Deficiency Triggered and Low-Bilirubin Kernicterus? Curr. Pediatr. Rev. 2017, 13, 159–168. [Google Scholar] [CrossRef]
- Valaes, T.N.; Harvey-Wilkes, K. Pharmacologic approaches to the prevention and treatment of neonatal hyperbilirubinemia. Clin. Perinatol. 1990, 17, 245–273. [Google Scholar] [CrossRef]
- Pahlavanzadeh, M.; Hekmatimoghaddam, S.; Teremahi Ardestani, M.; Ghafoorzadeh, M.; Aminorraaya, M. G6PD Enzyme Deficiency in Neonatal Pathologic Hyperbilirubinemia in Yazd. Iran. J. Pediatr. Hematol. Oncol. 2013, 3, 69–72. [Google Scholar]
- García-Magallanes, N.; Luque-Ortega, F.; Aguilar-Medina, E.M.; Ramos-Payán, R.; Galaviz-Hernández, C.; Romero-Quintana, J.G.; Del Pozo-Yauner, L.; Rangel-Villalobos, H.; Arámbula-Meraz, E. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico and description of a novel mutation. J. Genet. 2014, 93, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Myle, A.K.; Al-Khattabi, G.H. Hemolytic Disease of the Newborn: A Review of Current Trends and Prospects. Pediatr. Health Med. Ther. 2021, 12, 491–498. [Google Scholar] [CrossRef]
- Walker, P.C. Neonatal bilirubin toxicity. A review of kernicterus and the implications of drug-induced bilirubin displacement. Clin. Pharmacokinet. 1987, 13, 26–50. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, B.; Deshpande, S.S. Cotrimoxazole and neonatal kernicterus: A review. Drug Chem. Toxicol. 2014, 37, 121–129. [Google Scholar] [CrossRef][Green Version]
- Ahlfors, C.E. Unbound bilirubin associated with kernicterus: A historical approach. J. Pediatr. 2000, 137, 540–544. [Google Scholar] [CrossRef]
- Riley, H.D., Jr. Vancomycin and novobiocin. Med. Clin. N. Am. 1970, 54, 1277–1289. [Google Scholar] [CrossRef]
- Brodersen, R.; Friis-Hansen, B.; Stern, L. Drug-induced displacement of bilirubin from albumin in the newborn. Dev. Pharmacol. Ther. 1983, 6, 217–229. [Google Scholar] [CrossRef]
- Ahlfors, C.E.; Bhutani, V.K.; Wong, R.J.; Stevenson, D.K. Bilirubin binding in jaundiced newborns: From bench to bedside? Pediatr. Res. 2018, 84, 494–498. [Google Scholar] [CrossRef]
- Johnson, L.; Bhutani, V.K. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin. Perinatol. 2011, 35, 101–113. [Google Scholar] [CrossRef]
- Amin, S.B. Bilirubin Binding Capacity in the Preterm Neonate. Clin. Perinatol. 2016, 43, 241–257. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yeung, C.Y.; Fung, Y.S.; Sun, D.X. Capillary electrophoresis for the determination of albumin binding capacity and free bilirubin in jaundiced neonates. Semin. Perinatol. 2001, 25, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Vítek, L.; Ostrow, J.D. Bilirubin chemistry and metabolism; harmful and protective aspects. Curr. Pharm. Des. 2009, 15, 2869–2883. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.K.; Kumar, D.; Singh, A.; Mahmood, T. Ratio of cord blood bilirubin and albumin as predictors of neonatal hyperbilirubinaemia. Clin. Exp. Hepatol. 2020, 6, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W. Mechanisms of bilirubin toxicity: Clinical implications. Clin. Perinatol. 2002, 29, 765–778. [Google Scholar] [CrossRef]
- Watchko, J.F.; Spitzer, A.R.; Clark, R.H. Prevalence of Hypoalbuminemia and Elevated Bilirubin/Albumin Ratios in a Large Cohort of Infants in the Neonatal Intensive Care Unit. J. Pediatr. 2017, 188, 280–286. [Google Scholar] [CrossRef]
- Griffiths, W.C.; Diamond, I.; Dextraze, P. The albumin binding of unconjugated bilirubin in serum. Clin. Biochem. 1975, 8, 254–260. [Google Scholar] [CrossRef]
- Stevenson, D.K.; Wong, R.J. Metalloporphyrins in the management of neonatal hyperbilirubinemia. Semin. Fetal Neonatal Med. 2010, 15, 164–168. [Google Scholar] [CrossRef][Green Version]
- van der Schoor, L.W.E.; Verkade, H.J.; Bertolini, A.; de Wit, S.; Mennillo, E.; Rettenmeier, E.; Weber, A.A.; Havinga, R.; Valášková, P.; Jašprová, J.; et al. Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia. Sci. Rep. 2021, 11, 11107. [Google Scholar] [CrossRef]
- Rubaltelli, F.; Camurri, S.; Sala, M. Treatment of neonatal hyperbilirubinemia. Pediatr. Med. E Chir. Med. Surg. Pediatr. 1990, 12, 17–23. [Google Scholar]
- Chawla, D.; Parmar, V. Phenobarbitone for prevention and treatment of unconjugated hyperbilirubinemia in preterm neonates: A systematic review and meta-analysis. Indian Pediatr. 2010, 47, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Peng, M.; Wei, H. Melatonin Promotes Brain-Derived Neurotrophic Factor (BDNF) Expression and Anti-Apoptotic Effects in Neonatal Hemolytic Hyperbilirubinemia via a Phospholipase (PLC)-Mediated Mechanism. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 5951–5959. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chu, L.; Xue, X.; Qiao, J. Efficacy of Intermittent Phototherapy versus Continuous Phototherapy for Treatment of Neonatal Hyperbilirubinaemia: A Systematic Review and Meta-analysis. J. Adv. Nurs. 2021, 77, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, M.; Eriksson, M.; Albinsson, E.; Ohlin, A. Home phototherapy for hyperbilirubinemia in term neonates-an unblinded multicentre randomized controlled trial. Eur. J. Pediatr. 2021, 180, 1603–1610. [Google Scholar] [CrossRef]
- Wang, J.; Guo, G.; Li, A.; Cai, W.Q.; Wang, X. Challenges of phototherapy for neonatal hyperbilirubinemia (Review). Exp. Ther. Med. 2021, 21, 231. [Google Scholar] [CrossRef]
- Hansen, T.W.R.; Maisels, M.J.; Ebbesen, F.; Vreman, H.J.; Stevenson, D.K.; Wong, R.J.; Bhutani, V.K. Sixty years of phototherapy for neonatal jaundice—From serendipitous observation to standardized treatment and rescue for millions. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2020, 40, 180–193. [Google Scholar] [CrossRef]
- Abdulkadir, I.; Slusher, T.M. Neonatal Eye Shielding during Phototherapy: What Protects the Eye Better? J. Trop. Pediatr. 2021, 67, fmab101. [Google Scholar] [CrossRef]
- Kato, S.; Iwata, O.; Yamada, Y.; Kakita, H.; Yamada, T.; Nakashima, H.; Sugiura, T.; Suzuki, S.; Togari, H. Standardization of phototherapy for neonatal hyperbilirubinemia using multiple-wavelength irradiance integration. Pediatr. Neonatol. 2020, 61, 100–105. [Google Scholar] [CrossRef][Green Version]
- Letamendia-Richard, E.; Ammar, R.B.; Tridente, A.; De Luca, D. Relationship between transcutaneous bilirubin and circulating unbound bilirubin in jaundiced neonates. Early Hum. Dev. 2016, 103, 235–239. [Google Scholar] [CrossRef]
- Hegyi, T.; Kleinfeld, A. Neonatal hyperbilirubinemia and the role of unbound bilirubin. J. Matern. Fetal Neonatal Med. 2021, 35, 9201–9207. [Google Scholar] [CrossRef]
- Wennberg, R.P.; Ahlfors, C.E.; Bhutani, V.K.; Johnson, L.H.; Shapiro, S.M. Toward understanding kernicterus: A challenge to improve the management of jaundiced newborns. Pediatrics 2006, 117, 474–485. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hegyi, T.; Kleinfeld, A.; Huber, A.; Weinberger, B.; Memon, N.; Carayannopoulos, M.; Oh, W. Unbound bilirubin levels in phototherapy-treated preterm infants receiving soy-based lipid emulsion. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2020, 62, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Kishi, I.; Nagano, N.; Katayama, D.; Imaizumi, T.; Akimoto, T.; Fuwa, K.; Aoki, R.; Hijikata, M.; Kayama, K.; Kato, R.; et al. Successful Treatment of Hyperbilirubinemia by Monitoring Serum Unbound Bilirubin in an Extremely Preterm Infant with Bacterial Infection. Clin. Lab. 2021, 67. [Google Scholar] [CrossRef] [PubMed]
- Hulzebos, C.V.; Dijk, P.H. Bilirubin-albumin binding, bilirubin/albumin ratios, and free bilirubin levels: Where do we stand? Semin. Perinatol. 2014, 38, 412–421. [Google Scholar] [CrossRef] [PubMed]
- van der Schoor, L.W.; Dijk, P.H.; Verkade, H.J.; Kamsma, A.C.; Schreuder, A.B.; Groen, H.; Hulzebos, C.V. Unconjugated free bilirubin in preterm infants. Early Hum. Dev. 2017, 106–107, 25–32. [Google Scholar] [CrossRef]
- Morioka, I. Hyperbilirubinemia in preterm infants in Japan: New treatment criteria. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2018, 60, 684–690. [Google Scholar] [CrossRef][Green Version]
- Iskander, I.; Gamaleldin, R.; El Houchi, S.; El Shenawy, A.; Seoud, I.; El Gharbawi, N.; Abou-Youssef, H.; Aravkin, A.; Wennberg, R.P. Serum bilirubin and bilirubin/albumin ratio as predictors of bilirubin encephalopathy. Pediatrics 2014, 134, e1330–e1339. [Google Scholar] [CrossRef][Green Version]
- Abe, S.; Fujioka, K.; Nakasone, R.; Suga, S.; Ashina, M.; Nishida, K.; Wong, R.J.; Iijima, K. Bilirubin/albumin (B/A) ratios correlate with unbound bilirubin levels in preterm infants. Pediatr. Res. 2021, 89, 1427–1431. [Google Scholar] [CrossRef]
- Vodret, S.; Bortolussi, G.; Schreuder, A.B.; Jašprová, J.; Vitek, L.; Verkade, H.J.; Muro, A.F. Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia. Sci. Rep. 2015, 5, 16203. [Google Scholar] [CrossRef][Green Version]
- Cuperus, F.J.; Schreuder, A.B.; van Imhoff, D.E.; Vitek, L.; Vanikova, J.; Konickova, R.; Ahlfors, C.E.; Hulzebos, C.V.; Verkade, H.J. Beyond plasma bilirubin: The effects of phototherapy and albumin on brain bilirubin levels in Gunn rats. J. Hepatol. 2013, 58, 134–140. [Google Scholar] [CrossRef]
- Bhutani, V.K.; Wong, R.J. Bilirubin neurotoxicity in preterm infants: Risk and prevention. J. Clin. Neonatol. 2013, 2, 61–69. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ebbesen, F.; Jacobsen, J. Bilirubin-albumin binding affinity and serum albumin concentration during intensive phototherapy (blue double light) in jaundiced newborn infants. Eur. J. Pediatr. 1980, 134, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sheng, G.; Shi, L.; Cheng, X. Increased serum total bilirubin-albumin ratio was associated with bilirubin encephalopathy in neonates. Biosci. Rep. 2020, 40, BSR20192152. [Google Scholar] [CrossRef] [PubMed]
- Morioka, I.; Iwatani, S.; Koda, T.; Iijima, K.; Nakamura, H. Disorders of bilirubin binding to albumin and bilirubin-induced neurologic dysfunction. Semin. Fetal Neonatal Med. 2015, 20, 31–36. [Google Scholar] [CrossRef]
- Wennberg, R.P.; Ahlfors, C.E. A different view on bilirubin binding. Pediatrics 2006, 118, 846–847. [Google Scholar] [CrossRef] [PubMed]
- Zecca, E.; Romagnoli, C.; De Carolis, M.P.; Costa, S.; Marra, R.; De Luca, D. Does Ibuprofen increase neonatal hyperbilirubinemia? Pediatrics 2009, 124, 480–484. [Google Scholar] [CrossRef]
- Lee, Z.M.; Yang, Y.H.; Chang, L.S.; Chen, C.C.; Yu, H.R.; Kuo, K.C. Increased Total Serum Bilirubin Level Post-Ibuprofen Use Is Inversely Correlated with Neonates’ Body Weight. Children 2022, 9, 1184. [Google Scholar] [CrossRef]
- Micromedex Database. Product Information: Gantanol(R), Sulfamethoxazole; Roche Laboratories: Nutley, NJ, USA, 1998; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj9trz0wo3_AhWEPXAKHWtwD6UQFnoECBUQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F294007798_Table_S1%2Fdata%2F56bd4c7c08ae5e7ba4100819%2Fpone0041471s001.xlsx&usg=AOvVaw01Vg8tzOW3M6XNP1NAP8CR (accessed on 27 April 2023).
- Ah, Y.M.; Kim, Y.M.; Kim, M.J.; Choi, Y.H.; Park, K.H.; Son, I.J.; Kim, S.G. Drug-induced hyperbilirubinemia and the clinical influencing factors. Drug Metab. Rev. 2008, 40, 511–537. [Google Scholar] [CrossRef]
- Pellegatti, M.; Pagliarusco, S.; Solazzo, L.; Colato, D. Plasma protein binding and blood-free concentrations: Which studies are needed to develop a drug? Expert Opin. Drug Metab. Toxicol. 2011, 7, 1009–1020. [Google Scholar] [CrossRef]
- Tasaki, K.; Minami, T.; Ieiri, I.; Ohtsubo, K.; Hirakawa, Y.; Ueda, K.; Higuchi, S. Drug interactions of zonisamide with phenytoin and sodium valproate: Serum concentrations and protein binding. Brain Dev. 1995, 17, 182–185. [Google Scholar] [CrossRef]
- Micromedex Database. Product Information: LASIX(R) Oral Tablets, Furosemide Oral Tablets; Validus Pharmaceuticals LLC (per DailyMed): Parsippany, NJ, USA, 2018. [Google Scholar]
- Shankaran, S.; Poland, R.L. The displacement of bilirubin from albumin by furosemide. J. Pediatr. 1977, 90, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Micromedex Database. Product Information: Bumetanide Injection, Bumetanide Injection; Bedford Laboratories: Bedford, OH, USA, 2005. [Google Scholar]
- Turmen, T.; Thom, P.; Louridas, A.T.; LeMorvan, P.; Aranda, J.V. Protein binding and bilirubin displacing properties of bumetanide and furosemide. J. Clin. Pharmacol. 1982, 22, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Micromedex Database. Product Information: NEXIUM(R) IV Intravenous Injection, Esomeprazole Sodium Intravenous Injection; AstraZeneca Pharmaceuticals LP (per FDA): Wilmington, DE, USA, 2019. [Google Scholar]
- Schneider, R.E.; Bishop, H.; Kendall, M.J.; Quarterman, C.P. Effect of inflammatory disease on plasma concentrations of three beta-adrenoceptor blocking agents. Int. J. Clin. Pharmacol. Ther. Toxicol. 1981, 19, 158–162. [Google Scholar]
- Al-Hadrawy, S.M.J.; Mahdi Al-Turfi, Z.S. Effects of the Long-term Treatment of Proton Pump Inhibitors on the Function of Kidney and Liver in Laboratory Female Rats. Arch. Razi Inst. 2021, 76, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Wenbin, L.; Rong, W.; Hua, X.; Juanhong, Z.; Xiaoyu, W.; Zhengping, J. Effects on Pharmacokinetics of Propranolol and Other Factors in Rats After Acute Exposure to High Altitude at 4,010 m. Cell Biochem. Biophys. 2015, 72, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Berns, M.; Toennessen, M.; Koehne, P.; Altmann, R.; Obladen, M. Ibuprofen augments bilirubin toxicity in rat cortical neuronal culture. Pediatr. Res. 2009, 65, 392–396. [Google Scholar] [CrossRef][Green Version]
- Micromedex Database. Product Information: Indomethacin Intravenous Injection Lyophilized Powder for Solution, Indomethacin Intravenous Injection Lyophilized Powder for Solution; Fresenius Kabi USA, LLC (per DailyMed): Lake Zurich, IL, USA, 2014. [Google Scholar]
- Rossano, J.W.; Cabrera, A.G.; Jefferies, J.L.; Naim, M.P.; Humlicek, T. Pediatric Cardiac Intensive Care Society 2014 Consensus Statement: Pharmacotherapies in Cardiac Critical Care Chronic Heart Failure. Pediatr. Crit. Care Med. A J. Soc. Crit. Care Med. World Fed. Pediatr. Intensive Crit. Care Soc. 2016, 17, S20–S34. [Google Scholar] [CrossRef]
- Wennberg, R.P.; Rasmussen, F.; Ahlfors, C.E. Displacement of bilirubin from human albumin by three diuretics. J. Pediatr. 1977, 90, 647–650. [Google Scholar] [CrossRef]
- Pacifici, G.M. Clinical pharmacology of the loop diuretics furosemide and bumetanide in neonates and infants. Paediatr. Drugs 2012, 14, 233–246. [Google Scholar] [CrossRef]
- Micromedex Database. Product Information: NEXIUM(R) Oral Delayed-Release Capsules, Oral Delayed-Release Suspension, Esomeprazole Magnesium Oral Delayed-Release Capsules, Oral Delayed-Release Suspension; AstraZeneca LP (per FDA): Wilmington, DE, USA, 2014. [Google Scholar]
- Ward, R.M.; Kearns, G.L. Proton pump inhibitors in pediatrics: Mechanism of action, pharmacokinetics, pharmacogenetics, and pharmacodynamics. Paediatr. Drugs 2013, 15, 119–131. [Google Scholar] [CrossRef][Green Version]
- Micromedex Database. Product Information: Amphotericin B Intravenous Injection, Amphotericin B Intravenous Injection; X-GEN Pharmaceuticals, Inc. (per manufacturer): Big Flats, NY, USA, 2010. [Google Scholar]
- Buchhorn, R.; Hulpke-Wette, M.; Hilgers, R.; Bartmus, D.; Wessel, A.; Bürsch, J. Propranolol treatment of congestive heart failure in infants with congenital heart disease: The CHF-PRO-INFANT Trial. Congestive heart failure in infants treated with propanol. Int. J. Cardiol. 2001, 79, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cashore, W.J.; Oh, W.; Brodersen, R. Bilirubin-displacing effect of furosemide and sulfisoxazole. An in vitro and in vivo study in neonatal serum. Dev. Pharmacol. Ther. 1983, 6, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Micromedex Database. Benitz WE & Tatro DS: The Pediatric Drug Handbook; Year Book Medical Publishers: Chicago, IL, USA, 1981. [Google Scholar]
- Micromedex Database. Facts and Comparisons; Olin, B., Ed.; JB Lippincott Co.: St Louis, MO, USA, 1991. [Google Scholar]
- Watanabe, Y.; Hayashi, T.; Kitayama, R.; Yasuda, T.; Saikawa, I.; Shimizu, K. Studies on protein binding of antibiotics. III. Effect of novobiocin on protein binding and pharmacokinetics of cefoperazone and cefazolin. J. Antibiot. 1981, 34, 758–762. [Google Scholar] [CrossRef][Green Version]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm. Rep. 2021, 70, 1–187. [Google Scholar] [CrossRef]
- Choo, K.E.; Tan, K.K.; Chuah, S.P.; Ariffin, W.A.; Gururaj, A. Haemorrhagic disease in newborn and older infants: A study in hospitalized children in Kelantan, Malaysia. Ann. Trop Paediatr. 1994, 14, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.; Desforges, J.; Gellis, S. Mechanisms Underlying Vitamin K Induced Hyperbilirubinemia in Premature Infants. Ann. N. Y. Acad. Sci. 1963, 111, 472–482. [Google Scholar] [CrossRef]
- Aranda, J.V.; Varvarigou, A.; Beharry, K.; Bansal, R.; Bardin, C.; Modanlou, H.; Papageorgiou, A.; Chemtob, S. Pharmacokinetics and protein binding of intravenous ibuprofen in the premature newborn infant. Acta Paediatr. 1997, 86, 289–293. Available online: https://pubmed.ncbi.nlm.nih.gov/9099319/ (accessed on 27 April 2023). [CrossRef]
- Pourarian, S.; Pishva, N.; Madani, A.; Rastegari, M. Comparison of oral ibuprofen and indomethacin on closure of patent ductus arteriosus in preterm infants. East Mediterr. Health J. 2008, 14, 360–365. Available online: https://pubmed.ncbi.nlm.nih.gov/18561728/ (accessed on 27 April 2023).
- Micromedex Database. Product Information: Ceftriaxone Sodium Intramuscular, Intravenous Injection, Ceftriaxone Sodium Intramuscular, Intravenous Injection; Hospira Inc. (per DailyMed): Lake Forest, IL, USA, 2020. [Google Scholar]
- Hoshi, K.; Nomura, K.; Sano, Y.; Koshihara, Y. Nuclear vitamin K2 binding protein in human osteoblasts: Homologue to glyceraldehyde-3-phosphate dehydrogenase. Biochem. Pharmacol. 1999, 58, 1631–1638. [Google Scholar] [CrossRef]
- Corner, B.; Berry, E.; Neale, A.V. Hyperbilirubinaemia in premature infants and the effect of synthetic vitamin K. Lancet 1960, 1, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Ahlfors, C.E. Effect of ibuprofen on bilirubin-albumin binding. J. Pediatr. 2004, 144, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Brann, B.S.t.; Stonestreet, B.S.; Oh, W.; Cashore, W.J. The in vivo effect of bilirubin and sulfisoxazole on cerebral oxygen, glucose, and lactate metabolism in newborn piglets. Pediatr. Res. 1987, 22, 135–140. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Oie, S.; Levy, G. Effect of sulfisoxazole on pharmacokinetics of free and plasma protein-bound bilirubin in experimental unconjugated hyperbilirubinemia. J. Pharm. Sci. 1979, 68, 6–9. [Google Scholar] [CrossRef]
- Han, J.; Li, C.; Dai, Z.; Duan, J.; Cai, W.; Wang, Y.; Zhang, Y. Yinzhihuang Oral Liquid Ameliorates Hyperbilirubinemia Induced by δ-Aminolevulinic Acid and Novobiocin in Neonatal Rats. Chem. Biodivers. 2021, 18, e2100222. [Google Scholar] [CrossRef]
- Brown, A.K.; Henning, G. The effect of novobiocin on the development of the glucuronide conjugating system in newborn animals. Ann. N. Y. Acad. Sci. 1963, 111, 307–318. [Google Scholar] [CrossRef]
- Ahlfors, C.E. Bilirubin-albumin binding and free bilirubin. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2001, 21 (Suppl. 1), S40–S42. [Google Scholar] [CrossRef][Green Version]
- Amin, S.B.; Miravalle, N. Effect of ibuprofen on bilirubin-albumin binding affinity in premature infants. J. Perinat. Med. 2011, 39, 55–58. [Google Scholar] [CrossRef][Green Version]
- Cashore, W.J. Free bilirubin concentrations and bilirubin-binding affinity in term and preterm infants. J. Pediatr. 1980, 96, 521–527. [Google Scholar] [CrossRef]
- Romagnoli, C.; De Turris, P.; Zuppa, A.A.; Currò, V.; De Carolis, M.P.; Zecca, E.; Tortorolo, G. Physiologic hyperbilirubinemia in low birth weight newborn infants: Relation to gestational age, neonatal weight and intra-uterine growth. La Pediatr. Med. E Chir. Med. Surg. Pediatr. 1983, 5, 299–303. [Google Scholar]
- Bender, G.J.; Cashore, W.J.; Oh, W. Ontogeny of bilirubin-binding capacity and the effect of clinical status in premature infants born at less than 1300 grams. Pediatrics 2007, 120, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Okumura, A.; Ichimura, S.; Hayakawa, M.; Arai, H.; Maruo, Y.; Kusaka, T.; Kunikata, T.; Kumada, S.; Morioka, I. Neonatal Jaundice in Preterm Infants with Bilirubin Encephalopathy. Neonatology 2021, 118, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.B.; Wang, H. Bilirubin Albumin Binding and Unbound Unconjugated Hyperbilirubinemia in Premature Infants. J. Pediatr. 2018, 192, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Bunt, J.E.; Rietveld, T.; Schierbeek, H.; Wattimena, J.L.; Zimmermann, L.J.; van Goudoever, J.B. Albumin synthesis in preterm infants on the first day of life studied with [1-13C] leucine. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1157–G1161. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bulut, O.; Erek, A.; Duruyen, S. Effects of hyperbilirubinemia on markers of genotoxicity and total oxidant and antioxidant status in newborns. Drug Chem. Toxicol. 2022, 45, 451–455. [Google Scholar] [CrossRef]
- Erol, S.; Arslan, Z.; Isik, D.U.; Bas, A.Y.; Demirel, N.; Erel, O. The Effects of Bilirubin and Phototherapy on Neonatal Thiol-Disulfide Homeostasis. J. Coll. Physicians Surg. Pak. JCPSP 2019, 29, 843–847. [Google Scholar] [CrossRef]
- Dani, C.; Poggi, C.; Pratesi, S. Bilirubin and oxidative stress in term and preterm infants. Free Radic. Res. 2019, 53, 2–7. [Google Scholar] [CrossRef]
- Cooper-Peel, C.; Brodersen, R.; Robertson, A. Does ibuprofen affect bilirubin-albumin binding in newborn infant serum? Pharmacol. Toxicol. 1996, 79, 297–299.e251. [Google Scholar] [CrossRef]
- Desfrere, L.; Thibaut, C.; Kibleur, Y.; Barbier, A.; Bordarier, C.; Moriette, G. Unbound bilirubin does not increase during ibuprofen treatment of patent ductus arteriosus in preterm infants. J. Pediatr. 2012, 160, 258–264. [Google Scholar] [CrossRef]
- Gulian, J.M.; Gonard, V.; Dalmasso, C.; Palix, C. Bilirubin displacement by ceftriaxone in neonates: Evaluation by determination of ‘free’ bilirubin and erythrocyte-bound bilirubin. J. Antimicrob. Chemother. 1987, 19, 823–829. [Google Scholar] [CrossRef]
- Amin, S.B. Bilirubin-Displacing Effect of Ceftriaxone in Infants With Unconjugated Hyperbilirubinemia Born at Term. J. Pediatr. 2023, 254, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Monte, S.V.; Prescott, W.A.; Johnson, K.K.; Kuhman, L.; Paladino, J.A. Safety of ceftriaxone sodium at extremes of age. Expert Opin. Drug Saf. 2008, 7, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Fanconi, S.; Kälin, P.; Zwingelstein, C.; Crevoisier, C.; Ruch, W.; Brodersen, R. Ceftriaxone--bilirubin-albumin interactions in the neonate: An in vivo study. Eur. J. Pediatr. 1993, 152, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Cadoz, M.; Denis, F.; Guerma, T.; Prince-David, M.; Diop Mar, I. Bacteriological, pharmacological and clinical comparison between amoxycillin and ceftriaxone in the treatment of 300 purulent meningitis. Pathol. Biol. 1982, 30, 522–525. [Google Scholar]
- Jirsa, M.; Sticová, E. Neonatal hyperbilirubinemia and molecular mechanisms of jaundice. Vnitr. Lek. 2013, 59, 566–571. [Google Scholar]
- Wang, J.; Yin, J.; Xue, M.; Lyu, J.; Wan, Y. Roles of UGT1A1 Gly71Arg and TATA promoter polymorphisms in neonatal hyperbilirubinemia: A meta-analysis. Gene 2020, 736, 144409. [Google Scholar] [CrossRef]
Drug | Protein Binding Rate | Common daily Dosage in Infants | Impact of a Drug on TSB | References |
---|---|---|---|---|
indomethacin | 99% | 0.2 mg/kg/day | no | [81] |
furosemide | 91% to 99% | 1–2 mg/kg/day | no | [72,82] |
bumetanide | 94–96% | 0.02 to 0.2 mg /kg/day | no | [74,84] |
esomeprazole | 97% | 0.5–1 mg/kg/day | no | [76,85] |
propranolol | 93% | 0.5 to 2 mg/kg/day | no | [77,88] |
amphotericin B | >90% | 1 mg/kg/day | no | [87,89] |
sulfisoxazole | 85% | 75–150 mg/ kg/day | yes | [68,91] |
novobiocin | >90% | 15–30 mg/kg/day | yes | [92,93] |
sulfamethoxazole(cotrimoxazole) | 70 % | 50–60 mg/kg/day | mixed conclusion | [68] |
ibuprofen | 95% | 5–10 mg/kg/day | mixed conclusion | [97,98] |
ceftriaxone | 85% to 95% | 25 to 50 mg/kg/day | mixed conclusion | [94,99] |
Vitamin K | 95% | 1–2 mg/kg/day and 4–8 mg/kg/day | mixed conclusion | [95,96,100,101] |
Daily Dosage /Protein Binding | >50 mg /kg/day | 15–50 mg /kg/day | 5–15 mg /kg/day | <5 mg /kg/day |
---|---|---|---|---|
>95% | A | B | C | D |
75–95% | B | C | D | E |
<75% | C | D | E | F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Z.-M.; Chang, L.-S.; Kuo, K.-C.; Lin, M.-C.; Yu, H.-R. Impact of Protein Binding Capacity and Daily Dosage of a Drug on Total Serum Bilirubin Levels in Susceptible Infants. Children 2023, 10, 926. https://doi.org/10.3390/children10060926
Lee Z-M, Chang L-S, Kuo K-C, Lin M-C, Yu H-R. Impact of Protein Binding Capacity and Daily Dosage of a Drug on Total Serum Bilirubin Levels in Susceptible Infants. Children. 2023; 10(6):926. https://doi.org/10.3390/children10060926
Chicago/Turabian StyleLee, Zon-Min, Ling-Sai Chang, Kuang-Che Kuo, Meng-Chiao Lin, and Hong-Ren Yu. 2023. "Impact of Protein Binding Capacity and Daily Dosage of a Drug on Total Serum Bilirubin Levels in Susceptible Infants" Children 10, no. 6: 926. https://doi.org/10.3390/children10060926
APA StyleLee, Z.-M., Chang, L.-S., Kuo, K.-C., Lin, M.-C., & Yu, H.-R. (2023). Impact of Protein Binding Capacity and Daily Dosage of a Drug on Total Serum Bilirubin Levels in Susceptible Infants. Children, 10(6), 926. https://doi.org/10.3390/children10060926